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Editorial on the Research Topic

Avian behavioral and physiological responses to challenging thermal

environments and extreme weather events

Introduction

Birds occupy habitats ranging from Antarctic ice shelfs to tropical deserts and
lowland rainforests, so are exposed to the full range of climates on Earth (Dawson and
O’Connor, 1996). Cold, hot or spatially and temporally variable thermal conditions can
present significant thermoregulatory challenges to birds, which typically must maintain
body temperatures (Tb) within narrow physiological limits (McKechnie, 2022). Such
challenges may occur throughout the year (Parr et al., 2019) and in all life stages
(DuRant et al., 2012; Nord and Giroud, 2020), so adjustments to these conditions
are required to maintain fitness and, ultimately, stable populations. Here, we broadly
define a challenging thermal environment as one requiring physiological acclimation
or behavioral adjustments that modify rates of thermogenesis or heat loss to maintain
long-term ecological function.
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Avian abilities to respond physiologically to extreme
temperatures are defined by capacities for heat production
or dissipation (Swanson, 2010; McKechnie et al., 2021a).
Behavioral responses to environmental temperature reduce the
magnitude of physiological adjustments, although potentially
with opportunity costs (Cunningham et al., 2021). It is this
combination of behavioral and physiological responses at
multiple levels of organization that determines the survival
probability of birds in thermally challenging situations (e.g.,
Albright et al., 2017; Petit et al., 2017). Moreover, thermal
conditions experienced during reproduction can affect parental
investment and nestling development, with potentially long-
term consequences (Nord and Giroud, 2020; van de Ven
et al., 2020; Broggi et al., 2022). Our knowledge of response
mechanisms, their time courses, and their impacts on fitness,
however, remains incomplete. Behavioral and physiological
responses of birds to extreme and/or seasonally variable climates
have been a research focus for decades (Chaffee and Roberts,
1971; Dawson et al., 1983), but recent methodological and
analytical advances for studies of physiology and behavior have
produced novel findings regarding patterns and mechanisms
of avian adjustments to challenging thermal environments
(e.g., McCafferty et al., 2015; Cheviron and Swanson, 2017;
McKechnie et al., 2021a).

Avian responses to heat and aridity

Physiological and behavioral responses permit the
maintenance of sublethal Tb under hot conditions, but
water is required for evaporative cooling, so interactions
between temperature and water availability are important
considerations for thermoregulation in the heat (Conradie et al.,
2020). Large birds have greater thermal inertia and lower surface
area to volume ratios than small species, so body mass may
impact the magnitude of heat tolerance responses (McKechnie
et al., 2021a), but this has been little studied. Czenze et al. found
that heat tolerance, maximum Tb, and evaporative cooling
capacities in three larger-bodied South African non-passerines
approximated those in other non-passerines and exceeded
capacities in passerines (McKechnie et al., 2021a). Sabat et al.
tested a new method to estimate metabolic and pre-formed
water contributions to the body water pool and detected isotopic
differences under cold temperatures and between species using
freshwater and saltwater resources, thereby validating the
method for future studies of water balance. Navarette et al.
experimentally manipulated water availability in rufous-collared
sparrows (Zonotrichia capensis) and identified trade-offs
involving water restriction-induced increases in basal metabolic
rate (BMR) and erythrocyte oxidative enzyme activities at
the expense of skeletal muscle oxidative damage. Sharpe et al.
documented reduced foraging and increased use of thermally
buffered microhabitats by Jacky Winters (Microeca fascinans)

during hot weather; nevertheless, 29% of the study population
died when air temperature reached 49◦C, demonstrating limits
to physiological and behavioral capacities for responding to
extreme heat events.

Avian responses to heat during
reproduction

The heat dissipation limits hypothesis (HDLH) posits that
the capacity to dissipate heat loads acquired during sustained
activities, such as breeding, limits performance and may
negatively affect reproductive output and fitness (Speakman
and Król, 2010). Several studies of free-living birds support
the HDLH, even in comparatively cool habitats (Andreasson
et al., 2020). Zagkle et al. found support for the HDLH by
manipulating heat loss while increasing foraging costs in zebra
finches (Taeniopygia guttata), documenting negative effects on
reproduction under warm temperatures that were buffered by
experimentally increased heat loss. Increasing temperatures over
an 11-year study period were strongly negatively correlated with
reproductive output in southern yellow-billed hornbills (Tockus
leucomelas) (Pattinson et al.), suggesting that, if current warming
trends continue, reproductive capacity will be sufficiently
compromised to result in imminent nesting failure for this
population. Pipoly et al. demonstrated that negative effects of
high temperatures on nestling growth and survival were stronger
in forest than urban populations of great tits (Parus major),
suggesting that urban nestlings are less vulnerable to heat.
Udino and Mariette experimentally documented that parental
heat calls during the late in ovo period resulted in panting at
lower temperatures, reduced panting at high temperatures, and
higher activity at warm temperatures when the offspring had
reached adulthood, highlighting the priming effects of early life
conditions on later thermoregulatory patterns.

Avian responses to cold

Metabolic flexibility allows birds to match metabolic rates
to environmental conditions (Swanson, 2010). Underlying
mechanisms of metabolic flexibility include adjustments in
muscle size (Swanson and Vézina, 2015; Swanson et al.,
2022) and cellular aerobic and fat catabolism capacities
(Swanson, 2010), but the contribution of other metabolic
pathways to this flexibility is poorly known (Stager et al.,
2015; Cheviron and Swanson, 2017). Wone and Swanson
used integrated metabolomics/transcriptomics analyses to
document seasonal changes in amino acid, lipid- and cellular
metabolism pathways in two passerine birds and identified a
potential role for nicotinamide-adenine-nucleotide derivatives
in regulating cellular metabolism. In addition to heat production
mechanisms, energy conservation strategies, including torpor
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(Ruf and Geiser, 2015; Geiser, 2021) and ventilatory/respiratory
adjustments (Arens and Cooper, 2005), can contribute to avian
cold tolerance. Bech and Mariussen detected winter increases
in BMR and the respiratory frequency/tidal volume ratio in
great tits, allowing energy savings by reducing respiratory
energetic costs and evaporative water losses. Aharon-Rotman
et al. showed that winter-acclimatized eastern yellow robins
(Eopsaltria australis) regularly entered torpor, expanding
documentation of torpor use in the comparatively poorly
studied passerine taxon.

Conclusions

As demonstrated by the studies in this Research
Topic, behavioral and physiological flexibility can buffer
temperature impacts on birds. In addition to changes in average
temperatures, however, global change is predicted to increase
climate variability, with more frequent extreme events for
many locations (Jentsch et al., 2007; Wallace et al., 2014;
Cohen et al., 2018). Increasing extreme summer maximum
temperatures and more variable winter temperatures can have
negative consequences for birds, including mass mortality
events (McKechnie and Wolf, 2010; McKechnie et al., 2021b),
phenotype-environment mismatches (Boyles et al., 2011;
Jimenez et al., 2020; Vézina et al., 2020; Ruuskanen et al.,
2021), reduced reproductive capacities (Carroll et al., 2018;
Nord and Nilsson, 2019; van de Ven et al., 2020), and altered
offspring physiology and behavior (Mariette and Buchanan,
2016; Mariette, 2020). Future research incorporating not only
behavior and physiology, but also flexibility in these traits and
their thermal reaction norms, into population and distribution
models will be critical to understand impacts of climate change
on avian biodiversity.
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