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Invasion by non-native species due to human activities is a major threat to

biodiversity. The niche hypothesis for invasive species that rapidly disperse

and disturb ecosystems is easily discarded owing to eradication activities

or unsaturated dispersal. Here, we used spatial and non-spatial models to

model the distribution of two invasive plant species (Ambrosia artemisiifolia

and Ambrosia trifida), which are widely distributed, but are also being actively

eradicated. Regression kriging (RK) and Maxent were used to predict the

spatial distribution of the two plant species having eradication targets for

decades in South Korea. In total, 1,478 presence/absence data points in

the Seoul metropolitan area (∼11,000 km2 in northeastern South Korea)

were used. For regression kriging, the presence/absence data were first

fitted with environmental covariates using a generalized linear model

(GLM), and then the residuals of the GLM were modeled using ordinary

kriging. The residuals of GLM showed significant spatial autocorrelation.

The spatial autocorrelation was modeled using kriging. Regression kriging,

which considers the spatial structure of data, yielded area under the receiver

operating curve values of 0.785 and 0.775 for A. artemisiifolia and A. trifida,

respectively; however, the values of Maxent, a non-spatial model, were 0.619

and 0.622, respectively. Thus, regression kriging was advantageous as it

considers the spatial autocorrelation of the data. However, species distribution

modeling encounters difficulties when the current species distribution does

not reflect optimal habitat conditions (the niche habitat preferences) or when

colonization is disturbed by artificial interference (e.g., removal activity). This

greatly reduces the predictive power of the model if the model is based

solely on the niche hypotheses that do not reflect reality. Managers can take

advantage of regression modeling when modeling species distributions under

conditions unfavorable to the niche hypothesis.
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Introduction

Invasion by non-native species through human activity is
a major threat to biodiversity (Essl et al., 2020). International
trade and tourism are direct causes of the rapid spread of
non-native species (Fuller et al., 1984; Mills et al., 1994;
Rejmánek and Randall, 1994). Although these invasive species
are not dominant in their native environment, they often
exhibit important traits, such as high growth rate and strong
survivability, which can increase their population size, and
assist in outcompeting native species in new habitats (Hinz and
Schwarzlaender, 2004; Vilà et al., 2011). Moreover, persistent
seeds play an important role in increasing the genetic diversity
of invasive populations and increasing their adaptability to
environmental changes (Gioria et al., 2012; Gioria and Pyšek,
2016). Additionally, invasion of non-native populations can
change the genetic structure of native communities because of
genetic interactions between the two populations (Prentis et al.,
2008; Chun et al., 2009). Various species are translocated from
their original places to new habitats by planned or unplanned
human activities. Such translocated non-native species can
negatively affect the native biodiversity and ecosystem (Mayfield
et al., 2021). This negative impact is not only restricted to the
ecosystem but also extends to the economy, society, and public
health (Pimentel et al., 2005; Vilà et al., 2011; Warziniack et al.,
2021).

The control of non-native species invasions is becoming
increasingly important. The adverse effects of invasive species
are well-recognized by the Korean government, and efforts to
mitigate these negative effects have been underway since decades
(Ministry of the Environment, 2019). In addition to identifying
the habitat preferences of the target species (Kim et al., 2013; Lee
et al., 2013; Hong et al., 2015), it is important to develop models
that can accurately estimate the current spatial distribution and
any distribution changes, to effectively control invasive species.

Species distribution models (SDMs) can model
the relationship between occurrence (presence only or
presence/absence) data and environmental factors to map
the estimated spatial distribution. SDMs have been used to
estimate the habitat suitability of non-native species and
identify their potential distribution patterns (Smolik et al.,
2010; Farashi and Najafabadi, 2015; Lee et al., 2016; Park et al.,
2017; Früh et al., 2018; Ng et al., 2018). Predicting the potential
distribution is important for the long-term management of
non-native species. However, current distribution information
of the target species is also critical for species management.
In the most problematic cases, non-native species have been
introduced recently (decades or years) and their habitats are
currently expanding. Even in habitable regions, non-native
species may not reach the maximum predicted distribution
because of dispersal restrictions (not yet settled) or eradication
campaigns (removed after settlement). Hence, we can assume
that there is a large deviation between the potential and current

(actual) distributions of these species. Potential distribution
estimations provide basic information on habitat preference or
suitability. Nevertheless, they do not always provide satisfactory
information for the quantitative prediction of the current
distribution and ongoing changes. Moreover, the lack of
prediction accuracy hinders the accurate evaluation of the effect
of invasive species removal. Invasive species are non-native
species that may cause harm to the environment and have high
adaptability and dispersal potential. The spatial distribution
of invasive species is highly variable. For these reasons, it is
difficult but important to predict the current distribution of
invasive species. In contrast to previous studies on the potential
distribution of invasive species (Ward, 2007; Lee et al., 2016;
Park et al., 2017; Früh et al., 2018; Ng et al., 2018), studies on
current distribution have rarely been conducted. Gormley et al.
(2011) modeled the potential and current distributions of the
invasive sambar deer using Maxent and occupancy models,
respectively. Remote sensing (RS) is a useful and promising tool
for identifying the current distribution of invasive plant species
(Elkind et al., 2019; Dai et al., 2020). However, to utilize RS,
the target species needs to be distinguished from other species
based on the spectral characteristics of images, which acts as a
constraint.

Various types of models have been used for SDMs.
Species distribution can be estimated using statistical methods,
such as the generalized linear model (GLM). More recently,
various machine-learning methods, including the classification
and regression tree (Breiman et al., 1984) and maximum
entropy (Maxent) (Phillips et al., 2006) models have been
applied to species distribution studies. Machine learning models
have demonstrated an excellent ability to predict species
distributions, effectively modeling the relationships between
environmental factors and species occurrence. However, few
models consider spatial autocorrelations or data proximity.
Studies on invasive species distributions using these non-spatial
models have evaluated habitat suitability and estimated the
potential habitat of the target species (Park et al., 2015, 2017;
Lee et al., 2016; Früh et al., 2018; Ng et al., 2018). Spatial models,
such as regression-kriging (RK) (Hengl et al., 2009), which can
consider spatial autocorrelation of occurrence data, have rarely
been applied to model the distribution of invasive species.

Ambrosia trifida and Ambrosia artemisiifolia are annual
herbs native to North America that have been accidentally
introduced in several countries. These species readily colonize
disturbed areas by producing a large number of seeds. In
Korea, A. artemisiifolia was introduced during the Korean War,
but it was reported first in 1968; presently, it is distributed
evenly throughout the country (Kim, 2017). Additionally,
A. artemisiifolia thrives on roadsides as well as in farmlands.
Similarly, A. trifida was considered to be introduced along with
livestock feed or US military supplies in north of Gyeonggi-do
in the 1970s (Kil et al., 2004). A. trifida can reach a maximum
height of 400 cm and behave as a dominant species throughout
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the entire growing season. Therefore, it can significantly
decrease the native plant diversity and serves as a problematic
species by decreasing the yield of cultivated agricultural crops
(Kil et al., 2004). A large colony of A. trifida is frequently found
on riversides and this species mainly spreads through flowing
water. Contrastingly, A. artemisiifolia is more frequently found
on the roadside and in drier soil. These two Ambrosia species
produce highly allergenic pollen and can induce allergic rhinitis,
fever, or dermatitis. Therefore, both species are designated as
harmful invasive plants by the Ministry of the Environment of
the Republic of Korea in 1999.

The aims of this study were to (1) analyze the environmental
factors affecting the distribution of A. artemisiifolia and
A. trifida, which are designated invasive species that are
highly likely to cause ecosystem disturbances, (2) estimate
the distribution of these species using the Maxent and RK
models, and (3) evaluate the current distribution prediction
performance of the models.

Materials and methods

Study area

This research was conducted in an inland area (excluding
islands) of the Seoul metropolitan region, including Incheon
and Gyeonggi-do. The area has the highest population density
in South Korea and it is heavily urbanized. Incheon Port and
Pyeongtaek Port are in the western section, where there are
international logistics distribution centers. To the east, there are
mountainous and high-altitude areas. To the north and south
are low-altitude flatlands. However, the northern borders are
strictly blocked for all movement. To the south is a high-density
road network with heavy traffic connecting to other areas. In
this region, many non-native species may potentially disperse
through the road network. As the Hangang River mouth is in
the study zone, non-native species can disperse with the river as
well. Thus, it is important to manage non-native species in this
area. The regional climate of the study area is temperate and the
average annual temperature and precipitation are 12.5◦C and ca.
1,400 mm, respectively. The regional population was 25,713,241
in 2018. Over several decades, the farmland and forests in the
area have steadily declined due to the rapid urban expansion.

Data

Non-native species selection and data
collection

A nationwide non-native species survey was conducted
from 2015 to 2018 (National Institute of Ecology, 2019). In the
study area, species data were collected in 2018 (from March to
October). All species listed in the national non-native species

database (Ministry of the Environment, 2019) were surveyed.
Surveyors and taxonomy experts detected all non-native species
communities and listed the species with the coordinates of their
positions using a global positioning system receiver. The survey
points were selected based on the investigator’s knowledge and
field conditions. No predefined sampling design was applied.
Thus, accessibility could have influenced the selection of the
survey points. Therefore, the density and distribution of the
survey points were irregular. The analysis was performed using
a 100× 100 m cell grid. Notably, the resolution was not based on
the scale used in the field survey. The size of the field survey site
was determined by the size of the invasive species community,
rather than the predefined grid. The resolution scale aligned
with the spatial resolution of the land cover (LC) data used in
this study. The survey point coordinates were re-designated to
the center of the cell coordinates. If there was more than one
survey point in a single cell, then the species was listed with a
single coordinate (the cell center). Based on these criteria, the
total number of survey points was 1,478. At each survey point,
the surveyor recorded all the species present in the community.
Hence, the species data were regarded as presence/absence (P/A)
data.

The Korean government has a designated invasive alien
species (IAS) list. A species of the IAS list is a non-native
species that heavily disturbs ecosystems or is likely to do so.
As of 2022, 16 plant species have been listed. A. artemisiifolia
L. var. elator and A. trifida L. var. trifida have been on the
IAS list since 1999, when the IAS designation system was
initiated. Both species are annual and ruderal species. They
especially flourish in sunny environments but are not restricted
to a specific environment (Smolik et al., 2010; Lee et al., 2016;
Park et al., 2017; Ministry of the Environment and National
Institute of Ecology, 2018). Both species share similar ecological
traits, and their distributions partially overlap in the study area.
A. artemisiifolia and A. trifida were detected at 239 (16%) and
716 (48.4%) survey points, respectively (Figure 1). Both species
occurred in the same community in 106 cells. Each species had
unique regional distribution characteristics. A. artemisiifolia is
widely distributed in the southeast, whereas A. trifida is widely
distributed in the northwest. A. artemisiifolia has a limited
regional distribution, whereas A. trifida is widely distributed
across all regions. Both local governments and conservationists
have recognized these species as major harmful species and
have conducted eradication activities over the past decades.
Nevertheless, both species persist throughout the study area.

Environmental data
Topographic data, LC data, and climate data were

used as covariates of SDMs. ALOS World 3D 30-m mesh
(AW3D30) v. 3.21 DEM (Tadono et al., 2016) was used
to calculate the slope and aspect. We used fractional LC

1 https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
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FIGURE 1

Study area (Google Maps, 2021) with field survey points.

data provided by the Copernicus Global Land Service
(CGLS) with a 100 m spatial resolution (Buchhorn et al.,
2020). The fractional LC data provides more comprehensive
information than the LC data with a single type. The data
provide fractional information (0–100%) for each LC type
present in each cell. The 2018 LC map was used. The
CGLS LC data comprise ten LC classes. We used eight
classes (tree, scrub, cropland, grassland, bare oil, built-up
area, seasonal water, and permanent water), because these
potentially influence Ambrosia spp. distributions. The climate
data were obtained from WorldClim 30 v. 2.1.2 Three
uncorrelated climate factors, which are important for the
target species (influencing the physiological characteristics and
life history traits), were selected and used for modeling.
The climate factors included the warmest quarter (Bio18),
mean temperature of the warmest quarter (Bio10), and mean
solar radiation between June and August. All data with the

2 https://www.worldclim.org

geographical coordinates were projected onto the projected
coordinate system (Transverse Mercator Coordinate System;
EPSG: 5179).

Predictive model

Generalized linear model
Generalized linear model logistic regression was used to

model the relationship between species occurrence (P/A) data
and environmental covariates. The following equation predicts
the expected occurrence probability of Ambrosia spp. using the
GLM.

Y (P) = µ = g−1 (q · β) (1)

where Y(P) is the expected probability of occurrence (P ∈
[0, 1]), q is the environmental predictor, β is the coefficient
of the linear model, and g is the link function. A logit link
function was used. A full GLM model was constructed using all
15 environmental covariates (Table 1). Among the covariates,
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TABLE 1 Generalized linear model (GLM) results with the binomial
error structure and logit link function.

Variable Coefficient P-value

Ambrosia artemisiifolia

Intercept –12.4032 0.063

DEM 0.0066 0.005

BT –0.0168 <0.001

Grass –0.0359 0.036

PWater –0.0253 0.125

Bio10 0.8013 0.003

SolRad –0.0004 0.157

Null Deviance 921.3 Degrees of freedom 1,034

Residual Deviance 886.9 Degrees of freedom 1,028

AIC 900.9

Ambrosia trifida

Intercept 40.931 <0.001

DEM –0.0106 <0.001

Slope –0.0022 0.13

BT –0.0099 <0.001

Tree –0.0190 0.004

BareSoil –0.0791 0.003

Bio10 –1.5327 <0.001

Bio18 0.0115 0.06

SolRad –0.0007 0.08

Null Deviance 1,434.2 Degrees of freedom 1,034

Residual Deviance 1,259.0 Degrees of freedom 1,026

AIC 1,277

regression predictors were determined using stepwise selection
based on the Akaike information criterion (AIC).

The GLM models the occurrence (P/A) data variation in two
terms: (a) variations that can be modeled (deterministic part; m)
and (b) residual variation that cannot be modeled (error part; e).
The probability of occurrence at site s can be expressed as:

Y (s) = m (s) + e (s) (2)

The deterministic (trend) part may be constant, but
usually changes as a function of the covariates. Therefore, the
probability of occurrence at a new location (s0) can be predicted
as follows:

m (s0) =

p∑
j=0

βj · qi (s0) (3)

where βj is the regression model coefficient, qi is the selected
covariate (predictor), and p is the number of covariates.

The GLM can yield large residual variations, especially when
the covariates only partially account for the dependent variable.
This can also occur when the observations or measurements
are dependent, which undermines the GLM assumptions. The
spatial distribution modeling of IAS must address twofold
challenges. Most IASs are generalists and not heavily restricted
by specific environmental conditions. Therefore, it is often

difficult to find a covariate with a sufficiently strong explanatory
power to predict the IAS distribution. The distribution of
the IAS can be limited by geographic constraints or dispersal
efficiency. Consequently, the occurrence of IAS may be strongly
autocorrelated. Autocorrelation is a problem in statistical
models, which assume data independence. However, it can
increase the prediction accuracy by providing information on
the proximity of the measurement point (location or time).
When the residuals show spatial autocorrelation, errors that
cannot be modeled may be reduced by modeling the spatial
structure of the residuals. The spatial dependency of the GLM
residuals was tested using Moran’s I (Moran, 1950). The Moran’s
I statistics was calculated as follows:

I =
n
S0

∑n
i=1

∑n
j=1 ωi,jzizj∑n

i=1 z2
i

(4)

where zi is the deviation of the feature I from its mean and ωi,j

is the spatial weight between the features I and j. The inverse
weight was applied to ωi,j, where n is the total number of
features and S0 is the aggregate of all the spatial weights, as
shown below:

S0 =

n∑
i=1

n∑
j=1

ωi,j (5)

If the residuals are spatially dependent, the un-modeled
error can be reduced by modeling the spatial autocorrelation.

Regression kriging
Kriging is an interpolation method that considers spatial

autocorrelation. Kriging models the spatial structure of the data
using a (semi-) variogram. The spatial statistical approach allows
predictions to be made by weight-averaging the observations as
follows:

Y (s0) =

n∑
i=1

λi · yi (si) (6)

where Y (s0) is the predicted value of the new location (s0),
yi is the observed data at site si, i is the location index of
the observation location, and λi is the kriging weight, which
depends on the spatial autocorrelation structure of the data. The
values are determined such that the prediction error variance is
minimized (Hengl et al., 2007). When the residuals are spatially
correlated, the prediction model can be decomposed as follows:

Y (s) = m (s)+ e′ (s)+ e′′ (s) (7)

where s is the 2D location, m (s) is the deterministic component,
e
′

(s) is a spatially correlated component, and e
′′

(s) is a spatially
uncorrelated purely stochastic component. The deterministic
part may be modeled by multiple linear regression models,
such as GLM. After the logistic regression is modeled, ordinary
kriging (OK) can be used to model the spatially correlated
residuals. Uncertainty is reduced twice, by the regression model
and by the OK model. Such hybrid interpolation method is
known as RK (Odeh et al., 1995; Hengl et al., 2004). The
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prediction of RK can be expressed in a matrix notation as follows
(Hengl et al., 2007):

Y (s0) = qT
0 · β̂GLS + λT

0 (z− qT
0 · β̂GLS) (8)

where Y (s0) is the predicted value at the unvisited location s0, q0
is the predictor vector, β̂GLS is the regression coefficient vector,
and λ0 is the kriging weight vector. The kriging model estimates
the prediction error at each new location as well. The error can
be expressed as follows (Hengl et al., 2007):

σ2
RK (s0) = (C0 + C1)− cT

0 · C
−1
· c0 +

(
q0−qT

· C−1
· c0

)T
·(

qT
· C−1

· q
)−1
· (q0−qT

· C−1
· c0) (9)

where C0 + C1 is the sill variation, C0 is a nugget, C1 is a partial
sill, and c0 is the covariance of the residual vector at s0. Notably,
the kriging variance is affected by the locations of the sample
points but not by the quantity of observations (y).

Maxent
The distributions of Ambrosia spp. were modeled using

Maxent v. 3.4.4 (Phillips et al., 2006), which is a machine
learning-based SDM. Maxent showed competitive performance
in species distribution modeling compared with other SDMs
(Elith et al., 2006). Maxent was developed to model species
distribution using presence-only data. It evaluates habitat
suitability (range: 0–1) by comparing the probability density
of covariates f (q) (background sample) with the probability
density of covariates of the locations where the target species
has been observed f1(q) (presence data) (Phillips et al., 2006;
Elith et al., 2011). Maxent evaluates the importance and
relative suitability of each location based on the estimated
ratio f1(q)/f (q). f1(q) is determined so that it is closest to
f (q) (Elith et al., 2011). To model the species response to the
covariates, Maxent uses a fitting function with diverse features,
such as linear, quadratic, hinge, and categorical features. It
calculates the relative contribution of each covariate in the
model. Maxent assumes that the presence data are randomly
collected. However, when presence data are not randomly
collected, the predictive performance may become biased. In
total, 10,000 background sample data points were randomly
selected.

Model evaluation
The occurrence data were divided into two sets, one set

was used to build the SDMs (training data) and the other was
used to evaluate the model (test data). We randomly selected
1,035 data points for the training data (70%) and 443 data
points for the test data (30%). After building the SDM using
RK and Maxent, a receiver operating curve (ROC) was drawn
using the test data. Model performance was evaluated using the
area under the receiver operating characteristic curve (AUC),
Cohen’s Kappa (Cohen, 1960), and true skill statistic (TSS)
(Allouche et al., 2006). To calculate the Kappa coefficient and
TSS, confusion matrices were created based on the predicted

presence/absence maps. Four presence/absence maps (predicted
A. ambrosia maps with RK and Maxent, and A. trifida maps with
the two models) were developed with the thresholds at which the
sum of sensitivity and specificity maximized. TSS and the Kappa
coefficient were calculated for each case.

Software
R software (version 4.0.2) (R Core Team, 2020) was used

for the statistical analyses. The GSIF package (version 0.5-5.1)
(Hengl, 2020) was used to conduct RK. Maxent modeling used
Maxent software (version. 3.4.4) (Phillips et al., 2006). QGIS
(version 3.16) was used for the geographic information system
data analysis (QGIS Development Team, 2020).

Results

Generalized linear model

The selected predictors and their coefficients in the GLM
are listed in Table 2. The GLM for A. artemisiifolia had
eight predictors, while that for A. trifida had six predictors.
A. artemisiifolia existed in built-up and grassland areas and
the distribution decreased with increasing altitude, whereas the
probability of occurrence increased with the mean temperature
of the warmest quarter. A. trifida existed in built-up, forest,
and bare soil areas and the distribution decreased with altitude,
while the probability of occurrence increased with the mean
temperature of the warmest quarter.

The spatial autocorrelation of the GLM residuals was
tested using Moran’s I (Table 3) statistics. The P-values were
statistically significant in both cases (P < 0.05). Hence, the
residuals were spatially autocorrelated. Kriging was applied to
reduce the uncertainty created by modeling variations that could
not be modeled by the GLM with spatial autocorrelation of the
residual.

Regression kriging

The GLM residuals were interpolated using kriging.
The experimental variogram was fitted with the exponential
variogram model (Figure 2). The variograms of the two species
showed different patterns. For A. artemisiifolia, the effective
range of the variogram was ca. 160 km (53.3 km × 3). The

TABLE 2 Moran’s I test results of the spatial autocorrelation of the
generalized linear model (GLM) residuals.

Moran’s I Standard deviation P-value

Ambrosia
artemisiifolia

0.013 0.0054 0.0097

Ambrosia trifida 0.158 0.0054 0.0022
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TABLE 3 Estimated contribution percent of the top five variables in
the Maxent model.

Variable Percentage contribution (%)

Ambrosia artemisiifolia

BT 40.5

SWater 9.8

Tree 9.3

BareSoil 7.4

Bio18 6.7

Ambrosia trifida

BT 40.0

Tree 16.8

SolRad 15.6

Farm 8.4

Bio10 4.8

partial sill was 0.09, which was higher than that of the nugget
(0.08). The spatial dependency remained in the study site. In
contrast, the effective range of A. trifida’s variogram was 18 km
(6.1 km × 3). However, the nugget of A. trifida (0.15) was
higher than that of the partial sill (0.06). Thus, the variogram
explains the higher variation in A. artemisiifolia than A. trifida.
The nugget value is a pure error that is not modeled after kriging.
A relatively high nugget value compared with the partial sill
(modeled variation) indicates that there are significant pure
errors.

The locations of the dataset were identical for both
variograms. Nevertheless, the variograms differed because the
species had different occurrence frequencies. Of the 1,035
training data points, 169 cells contained A. artemisiifolia, and

505 cells contained A. trifida. Moreover, the species differed
in their distribution characteristics. A. trifida was widely
distributed throughout the study site and A. artemisiifolia was
mainly distributed in the south (Figure 1). These differences
in spatial distribution may have caused the differences in the
variogram ranges and sills.

The estimated values were back-transformed after RK. Thus,
we predicted the probability of the species distribution within
each cell (Figures 3, 4). For the RK models, the occurrence
probability was estimated using environmental factors (GLM)
and spatial autocorrelation (kriging). The probability of area
surrounding the points where the species were observed was
estimated to be higher than the probability evaluated by the
GLM. The vicinity of the absence points had the opposite effect.
To evaluate the performance of the model using RK, the ROC
curve was plotted and the AUC value was calculated using the
test data. The AUCs for A. artemisiifolia and A. trifida were 0.785
and 0.775, respectively (Figure 4). The AUC values were higher
than the value recommended for a valid habitat model (0.75)
(Elith, 2000). The Kappa coefficients for A. artemisiifolia and
A. trifida were 0.473 and 0.461, respectively (Supplementary
Table 2), while the TSS values were 0.525 and 0.465, respectively
(Supplementary Table 2).

Maxent

Five environmental variables significantly contributed to the
Maxent model (Table 3). The built-up area contributed the
most to the models for both species. Tree cover contributed
significantly to both models. However, the other variables
contributed differently between the models (Table 3). The

FIGURE 2

Fitted variogram mode of the generalized linear model (GLM) residuals (left: Ambrosia artemisiifolia, right: Ambrosia trifida).
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FIGURE 3

Predicted probability using an regression kriging (RK) model (A: Ambrosia artemisiifolia; B: Ambrosia trifida; red dot: presence; empty dot:
absence; cross: test data point) and a Maxent model (C: A. artemisiifolia; D: A. Trifida).

estimated habitat suitability index (HSI) is provided in
Figure 3. The red circle in Figure 3C indicates a high
HSI estimated by Maxent, but A. artemisiifolia was rarely
observed in the area. The blue circles indicate low habitat
suitability. Both species were observed in these unsuitable
habitats (Figures 3C,D). The absence of species in areas
with high habitat suitability may be due to many factors,
such as dispersal restrictions and eradication efforts. However,
numerous occurrences in areas with low habitat suitability
were predicted, indicating a lack of predictive accuracy by the
model.

When the Maxent model was evaluated using
presence/background data, the AUC was 0.888 for
A. artemisiifolia and 0.875 for A. trifida. However, when
the Maxent model was evaluated using the independent P/A
test data, the AUC for A. artemisiifolia was 0.619 and that for
A. trifida was 0.643 (Figure 4). The low AUC summarizes
the discrepancy between the predicted and observed
distribution shown in Figure 3. The Kappa coefficients for
A. artemisiifolia and A. trifida were 0.087 and 0.278, respectively
(Supplementary Table 2), while the TSS values were 0.198 and
0.275, respectively (Supplementary Table 2).
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FIGURE 4

Receiver operating curve (ROC) plot of the regression kriging (RK) (A: Ambrosia artemisiifolia, B: Ambrosia trifida) and the Maxent result (C:
A. artemisiifolia, D: A. trifida).

Discussion

The Maxent and RK models were used to predict the spatial
distributions of two invasive plant species A. artemisiifolia
and A. trifida. Both species have had eradication targets
since decades. We compared and analyzed the predictive
performance of both models. The species differed in their
prevalence and distribution but shared ruderal species traits.
Thus, these species do not have strong habitat preferences.
We modeled the spatial distribution of both species and
evaluated the model performance using independent test data.
The results indicated that RK outperformed Maxent. The
AUC values of RK and Maxent were approximately 0.78 and
0.62, respectively.

Based on the standards proposed by Landis and Koch
(1977), Kappa coefficient values ranging between 0.4 and 0.6

represent a moderate agreement strength, between 0.2 and 0.4
represent fair agreement strength, and between 0.01 and 0.2
represent marginal agreement strength. In our study, the RK
model yielded better results than Maxent for the predictions of
both species. Similar results were observed for TSS.

When investigating invasive species distributions, SDMs
may not satisfy the niche hypothesis, which assumes that species
may thrive relatively better in their preferred environmental
conditions. A. artemisiifolia and A. trifida are typical cases.
Maxent models the spatial distribution of diverse species,
including invasive species (Lee et al., 2016; Park et al., 2017;
Kim et al., 2018). In many studies, Maxent is a machine-learning
model that outperforms other models (Elith et al., 2006).
However, we observed a discrepancy between the predicted and
observed data. It is well recognized that biased samples can
degrade the performance of Maxent (Phillips et al., 2006; Elith
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FIGURE 5

Regression kriging (RK) variance map of Ambrosia trifida (Triangles present sampling points).

et al., 2011), similar to the case of other SDMs. However, it is
also true that unbiased data are difficult to obtain. Our data
showed strong sampling bias (Figure 1). Surveys were usually
conducted in easily accessible areas. In addition, Maxent may fail
to model the relationship between environmental factors and
habitat suitability when there is a weak habitat preference by the
species (highly adaptable species) or unsaturated occupancy of
the optimal environments. Using the same data in the RK model
and Maxent, RK outperformed Maxent. Notably, an advantage
of the GLM is that it uses P/A data. Although GLMs did not
significantly reduce the deviances (Table 2), they alleviated the
effect of sampling bias by modeling the P/A data. When both the
presence and absence data are collected with the same degree of
bias, the bias is offset (Elith et al., 2011). By contrast, Maxent uses
presence-only and background data, and bias occurs only when

the former data are used. Therefore, data bias strongly affects
Maxent but not RK.

The present study shows that the built-up area fraction (BT)
was negatively correlated with GLM and was the most important
explanatory variable in Maxent (Table 3). The study area has the
highest population density and urbanization level in Korea. This
has increased the proportion of paved surfaces, which serves
as a disadvantage for plant colonization of these regions. Both
species are scarce in urban areas as they are known to be invasive
and are continuously removed by locals.

In this study, the effective range of A. trifida was dominant
compared to that of A. artemisiifolia. A. trifida occurs intensively
in northwest South Korea, specifically in riversides and
farmlands across the country, as the seeds disperse through
flowing water (Lee et al., 2021). It is difficult for the two species
to disperse long distances by wind because of their weight and
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morphological characteristics (Essl et al., 2015). Thus, these
species are likely to exhibit spatial autocorrelation. Dong et al.
(2020) reported that A. trifida showed higher rate of density
increase than A. artemisiifolia, with increasing precipitation.

The distribution of A. trifida is positively associated with
the precipitation of the Warmest Quarter and is restricted
in northwest South Korea. Contrastingly, A. artemisiifolia
was widely distributed. This indicated that A. trifida prefers
more humid climate, and its dispersion is more difficult than
A. artemisiifolia. A. artemisiifolia was observed in almost entire
Europe, while A. trifida showed a regional distribution pattern
(Chauvel et al., 2006, 2021; Cunze et al., 2013).

We predicted that A. artemisiifolia can disperse long
distances more easily through vehicular transmission or other
human activities on the roadside, but A. trifida mainly disperses
through flowing water. Furthermore, compared with the habitat
preferences of A. trifida, A. artemisiifolia prefers habitats with
relatively drier soils and higher temperatures.

A. artemisiifolia and A. trifida are ruderal species. While
their habitats are not markedly restricted, seed dispersal
significantly limits their dispersal. Even when habitat suitability
is low, an abundant seed supply from nearby clusters can form
large colonies. Thus, the spatial distribution of both species was
greatly affected by habitat suitability and spatial autocorrelation.
The RK model accounts for spatial autocorrelation and can
provide relatively better predictive performance than Maxent.
For example, as shown in Figure 3, the RK model predicted
low occurrence probability of A. artemisiifolia (red circular
area in Figure 3A) because few A. artemisiifolia individuals
were spotted in this area (empty dots dominated the area).
However, Maxent did not account for the spatial context of
data and predicted a high HSI in the study area (Figure 3C).
Moreover, Maxent predicted a low HSI (blue circles in Figure 3),
contrasting to the RK model.

The RK model can also map the uncertainty in prediction
by calculating the kriging variation. Figure 5 demonstrates the
kriging variance map of A. trifida. High values indicate a high
predictive uncertainty. The kriging variance was low in areas
with high survey point density, regardless of the observation
value. When the density of survey points was limited, the values
predicted through kriging were less reliable. The magnitude
of the kriging variation may be affected by the survey point
density and the variogram. Figure 5 shows that the uncertainty
in the peripheral area was greater than in the inner area.
Additional survey points could reduce the uncertainty of the
kriging variance map of SDMs.

Regression kriging can increase the prediction accuracy by
modeling the real-world autocorrelation. For this reason, RK is
widely used in various fields but not actively used in ecology.
In the present study, the spatial distribution of invasive species
was modeled using RK, which outperformed the model that did
not consider spatial autocorrelation. A method for modeling

the spatial distribution of invasive species using RK has been
presented. This approach is not limited to studies targeting
invasive species and can also be applied to model the spatial
distribution of species that are difficult to predict based on the
niche hypothesis.

Conclusion

Species distribution models model the relationships between
environmental factors and species occurrence data based on the
niche hypothesis and estimate the availability and preferences
according to environmental conditions. For invasive species that
rapidly disperse and disrupt ecosystems, the niche hypothesis
is easily discarded by eradication activities or unsaturated
dispersal. This weakens the predictive power of SDMs that
are based on the niche hypothesis. In this study, we applied
RK and Maxent to estimate the distribution of two invasive
plant species, A. artemisiifolia and A. trifida. Both species
are generalists and less affected by environmental restrictions;
additionally, both are subjected to continuous eradication
programs. To use RK, we initially modeled the relationship
between the environmental factors and occurrence data using
a GLM. We then modeled the residuals of the GLM by kriging.
Modeling the spatial autocorrelation of the residuals using RK
reduced the uncertainty of the model and enabled it to predict
the spatial distribution of the species more accurately than
Maxent. Habitat conditions and spatial dispersal constraints
play important roles in determining the spatial distribution
of a species. Therefore, RK, which can model both factors
together, successfully predicted the spatial distribution of these
invasive species.
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