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Editorial on the Research Topic

Digital evolution: Insights for biologists

Over the past 30 years, digital evolution research has established itself as a valuable

technique in biology, bridging experimental research with computational modeling (Ray,

1991; Adami, 2006). The articles in this Research Topic cover various aspects of digital

evolution, ranging from the role of phenotypic plasticity on the adaptation process to

that of ecological interactions in promoting diversification. In this editorial, we provide

the context for the those papers, as well as summarize the main contributions of digital

evolution to the development of ecology and evolutionary biology. We have organized

those contributions by main topics, starting from the evolution of complexity.

1. Complexity

When evolution is free to proceed in a fashion most closely analogous to the way it

operates in creating organic life on Earth, complexity arises at different levels (Ray, 1997).

The complexity of a genetic architecture can be quantified by studying the exponent of

the scale-free degree distribution of the network resulting from a functional genomic

array. In silico, the exponent of the distribution depends on the mutation rate: low

mutation rates give rise to distributions with high exponents and hence complex genetic

architectures (Gerlee and Lundh, 2008). Complexity is highly linked to epistasis. The

genes of complex digital organisms have a higher degree of interdependence than their

simple counterparts (Lenski et al., 1999). Indeed, the evolution of complex traits is

possible as long as the building blocks of the complex function are favored by selection

(Lenski et al., 1999). This is so because novel traits appear by reusing existing information

(Ofria et al., 2008) leading to a “complexity ratchet” that can be stronger than selection

(Liard et al., 2020). The amount of information that a genome encodes about the world

in which it evolves always increases when the fitness of the organism depends only on

their own sequence information (Adami et al., 2000).
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2. Robustness and evolvability

The ability of organisms to persist in the face of

changing conditions requires a balance between robustness

and evolvability, that is, between resisting and allowing

phenotypic change (Lenski et al., 2006). This robustness is the

most likely cause for the connected genotype networks and

asymmetric phenotypic transitions found in digital organisms

(Fortuna et al., 2017). Robustness increases with mutation

rate and decreases with population size (Elena et al., 2007).

Nevertheless, robustness is achieved at expenses of losing

epistatic interactions (Edlund and Adami, 2004). This ability to

produce adaptive evolutionary change is related to robustness.

In silico, robustness promotes evolvability only at the last stages

of the adaptive process (Elena and Sanjuán, 2008). Moreover,

mutations are more frequent in changing environments

(Crombach and Hogeweg, 2008) and encode more novel

phenotypes in digital organisms with complex phenotypes

(Fortuna et al., 2017).

3. Phenotypic plasticity

Using digital evolution to understand the mechanisms

responsible for phenotypic plasticity (Fortuna, 2022) has shed

light on the selective pressures that could favor one type

of plasticity (genetic-based) over another (non-genetic-based).

The simplest strategy for selection is to evolve plasticity

with no genetic basis, which is analogous to the effect of

the temperature on the phenotype (e.g., nearly all enzyme

activity is temperature-dependent). This kind of plasticity

comes at no fitness cost to the organisms. In contrast,

changing gene expression in response to the environment

requires much more complex selective pressures for plasticity

to prevail (Clune et al., 2007). In changing environments,

phenotypic plasticity provides a mechanism for organisms to

regulate trait expression, which can stabilize populations. In

this Research Topic, Lalejini et al. used in silico experiments

to show that plasticity slows down evolutionary change

in fluctuating environments because the genome of plastic

organisms experiences less mutations compared to that of

non-plastic organisms evolving under identical environments

(Lalejini et al.).

4. The role of historical contigency
in evolution

The role of chance variation and history on the adaptation

process has been explored using populations of digital

organisms. For example, long-term evolutionary change is

highly contingent (Yedid and Bell, 2001, 2002) and depends

on the mutation rate: at low mutation rates, dominant

genotypes descend from previous dominant genotypes, but at

high mutation rates new dominant genotypes descend from

one of the many rare genotypes (Yedid and Bell, 2001). In

addition, evolutionary history influences the adaptation to a

new environment, which suggests that past adaptation may

hinder or promote some evolutionary outcomes over others

(Wagenaar and Adami, 2004). Phylogenetic reconstruction

methods and hypothesis on the diversification process that

takes place after mass extinctions can also be tested in

silico. On the one hand, phylogenetic reconstruction methods

often fail when selection between branch points is absent

(Hagstrom et al., 2004). On the other hand, diversification

takes place faster after random mass extinctions than after

selective extinctions (Yedid et al., 2009). Moreover, phenotypic

traits that arise earlier in a lineage’s history also tend to be

expressed earlier in the development of individuals (Clune

et al., 2012), which supports the hypothesis that ontology

recapitulates phylogeny.

5. Ecological interactions among
species

Many contributions to this Research Topic deal with

eco-evolutionary dynamics. Digital evolution has been

used to address ecological questions (Dolson and Ofria),

involving pairwise competitive interactions (Cooper and

Ofria, 2003); mutualism (Johnson and Wilke, 2004; Rocabert

et al., 2017; Vostinar et al.), predator-prey (Shao and Ray,

2010), host-parasite (Zaman et al., 2011, 2014; Acosta and

Zaman) and even entire ecological networks (Fortuna et al.,

2013). The transition from generalist to specialist shows that

antagonistic pleiotropy reduces niche breadth (Ostrowski

et al., 2007). Coevolution among mutually dependent

organisms reduces the amplitude of the oscillations of

species abundances compared to purely ecological scenarios

(Johnson and Wilke, 2004). Positive frequency-dependent

selection promotes coexistence in digital predator-prey

populations (Shao and Ray, 2010). Hosts coevolving with

parasites are significantly more diverse than hosts evolving

alone (Zaman et al., 2011) and their traits are more complex

relative to that otherwise achieved (Zaman et al., 2014 Acosta

and Zaman). Indeed, host resistance traits arising spontaneously

as exaptations increase the complexity of host-parasite networks

(Fortuna et al., 2017).

6. Genome architecture

One of the main results from digital evolution experiments

on genome architecture is that mutation rate limits genome

size, supporting the Drake’s empirical rule observed in vivo

(Drake, 1991). When mutation rate per site is high, evolution
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promotes small-size genomes at expenses of reducing fitness

since evolving more complex functions involves more genes

(Knibbe et al., 2007). This is so because smaller genomes

undergo less mutations per replication and hence move a

population away from an error threshold (Wilke et al.,

2001). In contrast, under low mutation rates, insertions are

more beneficial than deletions (Gupta et al., 2016) and the

gain of robustness allows for the accumulation of non-

coding sequences (Knibbe et al., 2007), driving genome

expansion and the exploration of the mutational neighborhood.

Selection plays also an important role in shaping genome

size. Indeed, the genome reduction observed in some bacteria

can be reproduced in silico by lowering the selection pressure

(Batut et al., 2013).

7. Gene regulatory networks

Small genomes with few genes have only a very basic

regulation activity while large ones develop complex regulatory

networks with the number of transcription factors scaling

quadratically with the number of metabolic genes (Molina

and van Nimwegen, 2009). The same trend evolves in

silico as response to the mutational pressure (Beslon et al.,

2010). Moreover, breaking up interactions among genes (i.e.,

reducing the epistatic effects of mutations) diminishes the

deleterious effect of mutations in environments with high

mutation rates (Edlund and Adami, 2004). Yet, deleterious

mutations facilitate the evolution of complex, beneficial

functions (Covert et al., 2013). Indeed, interactions among genes

are required to evolve complex traits (Lenski et al., 2003).

These epistatic interactions among genes to increase fitness

take place as well between plasmids and the chromosome

(Misevic et al., 2013).

8. The evolution of sex

Digital evolution can also be used to test the hypothesis that

sexual reproduction is advantageous in changing environments

(Misevic et al., 2010). When the environment changes rapidly

and substantially, it is easier to maintain sexual reproduction

than for sexual organisms to invade a formerly asexual

population. It can also be used to test hypothesis on the

evolution of sexual displays and mating preferences (Chandler

et al., 2012). Mate preferences spread easily once they appear

and are only limited when they are very costly, which

suggests that sexual displays and viability might be regulated

by common genetic mechanisms (i.e., pleiotropy). Indeed,

sexual reproduction shapes the genetic architecture (e.g., the

genomes of sexual organisms being more modular than those

of asexual ones). By evolving genomes of digital organisms,

Misevic et al. (2006) find that genes encoding different

functional traits have less overlap and genes encoding a

particular trait are more tightly clustered on the genome of

sexual organisms than on the genome of the asexual ones.

Moreover, epistasis is weaker in sexual than in asexual organisms

(Misevic et al., 2006).

9. The evolution of cooperation

Genetic architecture may promote the evolution of

cooperation in populations of digital organisms (Frénoy et al.,

2013). The properties of the public good also influence the

evolution of cooperation (Misevic et al., 2012). Group selection

(Knoester et al., 2007) and kin selection (Goings et al., 2004;

Clune et al., 2011) are also explored in silico. For example,

kin-altruism persists despite the presence of kin-cheaters

(Goings et al., 2004), and altruistic genes are favored by natural

selection only if they target altruism to only their copies

(Clune et al., 2011).

10. Major evolutionary transitions

Dividing tasks among specialized group members is an

important aspect of the major transitions in evolution.

For example, when task-switching costs increase, groups

of digital organisms increasingly evolve division of labor

strategies (Goldsby et al., 2012). In addition, digital evolution

provides experimental evidence supporting the hypothesis

that the cells that contribute to the body’s functionality

but cannot produce an offspring themselves arise as an

adaptation to confine metabolic work that damages a cell’s

DNA, which allows germ cells to keep their DNA pristine

for future multicellular offspring (Goldsby et al., 2014).

This transition to multicellularity is observed even allowing

each organism to manage its own spatial distribution and

reproductive process, which lead to the emergence of several

distinct life histories as Moreno and Ofria show in this

Research Topic.
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