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The vegetation in mountainous areas is abundant, and its ecological carbon

sequestration ability is of great significance to maintain the sustainable

and healthy development of the ecological environment. However, when

estimating the carbon sequestration of mountain vegetation, the Carnegie-

Ames-Stanford Approach (CASA) model assigns a uniform value to the

maximum light energy utilization (εmax = 0.389 gC/MJ), ignoring the influence

of vegetation types and topographic factors on εmax, resulting in the low

accuracy of the CASA model in estimating the carbon sequestration of

mountain vegetation. In this paper, the improved CASA model was combined

with Landsat 8 Operational Land Imager (OLI) remote sensing image data

to improve the estimation accuracy of carbon sequestration of mountain

vegetation. The first was the establishment of a linear link between the

terrain characteristics (slope and aspect), vegetation types, and εmax in

mountainous locations. The second was the improvement of the CASA

model’s calculation method for key parameters. The different distributions

of the estimation results from the two techniques in 2015 and 2016 are

then compared using Landsat 8 data as the data source, and the impact of

the terrain factors in the improved CASA model on the estimation results

is confirmed. Finally, the improved CASA model and the CASA model are

used to estimate the Net Primary Productivity (NPP) of the study area from

2000 to 2020, and the estimated results of the two models are compared

with the computation results of the MODIS data NPP product. The findings

indicate that the improved CASA model’s estimation results have a higher
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degree of fit and a better correlation. The improved CASA model aids in

precisely understanding the ecological carbon sequestration potential of

mountain areas and increases the estimation accuracy of vegetation carbon

sequestration in mountainous areas.

KEYWORDS

improve CASA model, ecological carbon sequestration, topographic influence,
maximum utilization of light energy, mountainous areas

Introduction

The CASA model primarily calculates NPP from light
utilization efficiency (ε) and the Absorbed Photosynthetic Active
Radiation (APAR) absorbed by vegetation. Although it is
frequently used to estimate NPP (Field et al., 1998; Hicke et al.,
2002; Singh et al., 2002; Xing et al., 2010), there are still some
drawbacks. The calculation techniques for several parameters
need to be updated because the original CASA model was
built using NPP estimation of different types of vegetation in
North America, which differs slightly from vegetation types in
other countries (Yong et al., 2022). Second, when the same
value of the maximum light use efficiency (εmax) = 0.389
gC/MJ is assigned, the CASA model does not consider the
impact of vegetation types on εmax (Chen et al., 2017). Actually,
different vegetation types have very varying εmax (Chen et al.,
2021). Additionally, the initial CASA model only established
a functional relation with the Simple Ratio index (SR) for
the Fraction of Absorbed Photosynthetically Active Radiation
(FPAR), which was insufficient to identify the internal link
between FPAR and vegetation. Last but not least, it is difficult to
obtain the soil parameters required for CASA model estimation,
with low accuracy and complex calculation, which can easily
affect the estimation results (Wang H. et al., 2019; Zhu et al.,
2019).

Mountainous vegetation is rich and diverse, and improving
the estimation accuracy of the ecological carbon sequestration
in mountainous areas can provide a clearer understanding of the
ecological carbon sequestration capacity of mountain vegetation
(Xu et al., 2020; Jiang et al., 2021; Li H. et al., 2021; Li Y.
et al., 2021; Zhang et al., 2021). Wang et al. (2020) showed that
from 2010 to 2016 in mainland China, the carbon sequestration
of terrestrial ecosystems was 45% of the anthropogenic carbon
emissions during the same period, approximately 1.11 billion
tons, and these carbon sequestration contributions are mainly
due to the strong ecological carbon sequestration capacity in
the southwestern mountainous areas of China. The high slope
and significant fluctuation of mountain areas, however, make
it easy for topographic elements to alter the accuracy of the
assessment of vegetation carbon sequestration (He et al., 2018;
Yu et al., 2020; Li M. et al., 2021; Li Y. et al., 2021; Li et al., 2022;

Wang et al., 2022). The Surface Water Sub-Index was used to
enhance the parameters in the CASA model, which decreased
the influence of terrain elements on estimation accuracy (Pan
and Xu, 2020; Xia et al., 2020). The precision of the data
they used, however, had a significant impact on the estimation
outcomes. To lessen the influence of topographic factors on
the estimation of vegetation carbon sequestration, Chen and
Sun et al. introduced the Shadow Elimination Vegetation Index
(SEVI) into the model (Chen and Zeng, 2016; Sun and Xie,
2021). However, this method was difficult to use to eliminate
the impact of shadows on slopes with large slopes. To some
extent, Geng et al. revised the CASA model’s parameters based
on the Digital Elevation Model (DEM) data to increase the
estimation accuracy of the CASA (Wang H. et al., 2019; Wang
Y. et al., 2019), but this method’s correcting effect on terrain
falling shadow is subpar. Early studies have shown (Sun et al.,
2016; Li H. et al., 2021) that changing model parameters is
challenging when assessing vegetation carbon sequestration at
a wide range of regional scales. They only established the value
range of εmax based on experimental data but did not establish
a functional relation between terrain parameters and the εmax

(Han, 2020; Peng et al., 2021). Therefore, the estimation results
of the improved model are significantly different from those of
previous methods (Liu Y. et al., 2013; Fan, 2018; Jiang et al.,
2019; He et al., 2019; Li et al., 2019a,b).

The primary goals of this paper, which are based on the
aforementioned issues, are to (1) address the issue that the CASA
model’s εmax is uniformly set at 0.389 g C/MJ and (2) establish
a functional relationship between εmax and vegetation types and
terrain factors so that εmax changes as the terrain changes; then,
(3) lessen the effect of topographic factors on the accuracy of
vegetation carbon sequestration estimates in mountainous areas
and establish a functional relationship between topographic
factors and vegetation NPP in conjunction with the fact that
vegetation resources are primarily distributed in mountainous
areas with high relief (Shen et al., 2022; Zhao et al., 2022). As
a result, this paper estimates the NPP value of the study area
using the improved CASA model based on Landsat 8 OLI data
sources in Sichuan mountainous areas, analyses the relationship
between the estimated results in different periods in the same
area and the topographic factors, and confirmes the viability of
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the improved CASA model. Then, the correlation and the fitting
degree of the estimation results of the three methods (CASA
model, improved CASA model, and MODIS data NPP product)
are compared to verify whether the estimation accuracy of the
improved CASA model has been improved.

Materials and methods

Study area

The study area should have a mountainous distribution to
meet the research objectives. Second, the research region should
also have a reasonably flat area distribution to more clearly
discern the differences in vegetation estimating findings between
the two models for various terrain features. As a result, this
article uses some of the neighboring Sichuan mountain areas
and Chengdu Plain as its research area and chooses high-quality
Landsat 8 OLI data from the geospatial data cloud as its data
source. According to previous research results on mountain
areas in China (Christian and Jens, 2011; Zhang et al., 2013,
2022; Price et al., 2019; Körner et al., 2021; Zhang and Min,
2022), the selected definition criteria for Sichuan mountain
areas are as follows: areas with elevations less than 500m and
degrees of relief greater than 50m; elevations between 500 and
2500 m, degrees of relief higher than 100 m or slopes greater
than 25◦; and elevations greater than 2500 m. According to
GIS calculations, the Sichuan mountainous areas is 328,500
square kilometers, and the plain and hilly area is 157,500 square
kilometers. The distribution range of mountainous areas and the
spatial location of Landsat 8 OLI image data required in this
paper are shown in Figure 1.

The study area is high in the northwest and low in the
southeast, with relatively low elevation in the east and large
topographic relief. The west and north have relatively high
elevations and relatively flat terrain. Affected by topographic
factors, the eastern and southern parts of the study area have
more precipitation and higher temperatures, while the western
and northern parts of the study area have less precipitation
and lower temperature. Therefore, forests, shrubs, and other
vegetation are mainly distributed in the east and south of
the study area, with rich and diverse vegetation types, while
grasslands, shrubs, and other vegetation are mainly distributed
in the west and north, with a single vegetation type.

Data and processing

Landsat 8 operational land imager data
Remote sensing data are mainly used to calculate vegetation

parameters involved in the model. The remote sensing data
required in this paper are Landsat 8 OLI data with good quality
in the second quarter of each year from 2000 to 2020, including

data information from 11 bands. All Landsat 8 OLI data
are downloaded from the geospatial data cloud.1 Before data
processing, radiometric correction, atmospheric correction, and
other preliminary processing work are needed. Then, band 4
and band 5 in the data were used for function calculation to
calculate the vegetation index required by the paper, such as the
Normalized Difference Vegetation Index (NDVI), the Simple
Ratio Index (SR), the Leaf Area Index (LAI), and so on.

Digital elevation model
The DEM data required by the paper are from the geospatial

data cloud, (see text footnote 1) with a spatial resolution of 90 m.
DEM data are mainly used to calculate the spatial distribution,
slope, aspect, and other information of mountain areas. The
DEM data of Sichuan mountainous areas are obtained by
clipping the mountain areas based on the DEM data of
Sichuan Province.

MOD17A3HGF data product
The NPP product data required in this paper are

used to verify the accuracy of the improved CASA model
and the estimated results of the CASA model for carbon
sequestration. Based on the MOD17A3HGF dataset, the MODIS
MOD17A3HGF NPP data of the study area from 2000 to 2020
were generated through the processing of splicing, projection
transformation and cropping of the segmentation images
covering the study area. This dataset has a spatial resolution of
500 m and a temporal resolution of 8 days.

Meteorological data
Meteorological data are mainly used to calculate the

climate parameters involved in the model. The average
daily temperature, hours of sunshine, and daily precipitation
used herein were provided by the National Meteorological
Information Center2 (National Meteorological Information
Center [NMC], 2018). The paper selects 156 meteorological
station data in Sichuan Province (as shown in Figure 1),
interpolates the meteorological data in Sichuan Province using
the Inverse Distance Weight method (IDW) of ARCGIS
software, and then uses the mask data in the mountain area
to cut them, thus obtaining the meteorological data in Sichuan
mountain areas. As seen from Figure 1, meteorological stations
are distributed less in the west and more in the east, and the
overall distribution is relatively uniform, which is conducive to
the accurate acquisition of meteorological data. The processing
consisted of the following sections:

(1) Meteorological data from meteorological stations around
the research area were selected to obtain monthly average
temperature, total sunshine hours and total precipitation.

1 http://www.gscloud.cn/

2 http://data.cma.cn/
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FIGURE 1

Distribution of the study area and meteorological stations in the Sichuan mountainous areas (A) and Landsat 8 OLI data image in the study area
in June 2016 (B).

(2) Assign the spatial coordinate information based on
the longitude and latitude of each station to the
meteorological data.

(3) Meteorological data with a spatial resolution of 90 m
are obtained by the IDW interpolation method of
meteorological station data.

Vegetation types data
Vegetation types data are used to determine εmax of different

vegetation, and ε varies greatly with different vegetation types.
Papers required for vegetation types data from the resources
and environmental science data center of the Chinese Academy
of Sciences.3 According to the data on vegetation distribution
in Sichuan mountainous areas, εmax among different vegetation
types can be calculated.

Improvement of
Carnegie-Ames-Stanford Approach
model

The CASA model is one of the most representative sunshine
energy utilization models (Du et al., 2021) and it is not solely
easy in structure and high in responsiveness; however conjointly

3 https://www.resdc.cn/Default.aspx

widely utilized in vegetation NPP estimation on giant spatial and
international scales (Cai et al., 2018; Yang, 2019). To date, it is
a comparatively mature calculation method that incorporates
a certain theoretical basis, the parameters are straightforward
to obtain (Chen et al., 2021), and the calculable NPP accuracy
is high (Li et al., 2019a; Liu et al., 2020; Zhang et al., 2020).
The CASA model calculates NPP through two variables: APAR
and ε. Therefore, this paper mainly improves their calculation
methods.

Improvement of ε

The calculation method of ε according to the CASA model
is shown in Formula 1(Du et al., 2021), most parameters square
measure the typical air temperature (Tε1 and Tε2) and the
average evaporation (Wε). However, because of the massive
fluctuation of the piece of ground within the study space, the
temperature distinction between the highest and bottom of the
slope is giant, and the evaporation is completely different.

ε = εmax ∗ Tε1 ∗ Tε2 ∗ Wε (1)

In the formula, εmax represents the highest utilization rate
of sunshine energy (gC/MJ), and Tε1, Tε2, and Wε represent
the parameters of εmax at vasoconstrictor, heat, and water
stress, respectively.

This research improves the calculation method of ε

by merging it with other carbon sequestration estimating
models (Vegetation Photosynthesis Model, VPM; Vertically
Generalized Productivity Model, VGPM, etc.) to increase the
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estimation accuracy of the CASA model in mountainous
areas. To lessen the influence of terrain characteristics on the
estimation accuracy, the parameters involved in ε are obtained
using band reflectance as much as feasible. The improved
equation is:

ε = εmax ∗ Tem ∗ Wat (2)

In the formula, εmax represents the maximum light energy
utilization (gC/MJ), Tem is the temperature parameter and Wat
is the vegetation leaf age and water content parameter.

The improvement of εmax

According to previous research results, the size of εmax

depends on vegetation types, NDVI and LAI, and their
geometric relationship (Equation 3) is established (Anikó
et al., 2017). However, the effect of topographic factors on
εmax is ignored. Therefore, based on previous studies, this
paper added topographic factors (slope and aspect) into
the geometric relationship and constructed the functional
relationship between εmax and slope, aspect, vegetation types,
NDVI, and LAI (Equations 3–5). To build a functional
relationship between terrain factors and εmax, first, the point
information of at least 3 points location (PT) should be
determined in the same coordinate system (slope as abscissa,
εmax as vertical coordinate). εmax on sunny and shady slopes
fluctuates depending on the angle of irradiation and the area
of light received under the same sunshine due to the influence
of slope and aspect (Li Y. et al., 2021). For plants on the sunny
slope, when the slope is small, εmax does not change much (PT
1) (Zhang and Ren, 2016). When the slope is larger than 15◦,
εmax will decline exponentially as the slope rises (PT 2) (Xu
et al., 2019); at 30◦, εmax is only 0.5 times the slope’s bottom
(PT 3) (Li H. et al., 2021; Li M. et al., 2021); and until the
slope is approximately 70◦, εmax is essentially zero (PT 4). The
reason is that when the slope increases, the soil water content
and thickness decrease due to the effects of gravity, which has
a direct impact on how well flora use solar energy (Sun et al.,
2014; Wang B. et al., 2021; Wang J. et al., 2021). For vegetation
on shady slopes, εmax decreases with the increasing slope (Zhang
et al., 2021). When the slope increases to 15◦, εmax is only
half of the slope bottom (PT 5) (Zhu and Yuan, 2019), and
when the slope increases to 30◦, εmax is only 0.2 times the
slope bottom (PT 6) (Du et al., 2018). When the slope increases
to 60◦ (PT 7), εmax is 0 (Zhang et al., 2020). The reason is
that with the increase in slope, the soil thickness and water
content decrease, while the shielding areas between vegetation
increase, which reduces the illumination areas of shady slope
vegetation, resulting in εmax decreasing gradually (Zhu et al.,
2006; Li et al., 2022). According to the rules summarized by
predecessors above, for the functional relationship between the
two in a sunny slope area, the formula y = (1.2-x/75)3 can well
couple the relationship between the two. For the shady slope
area, the formula y = (1-x/90)3 is found to be able to couple
the relationships. Therefore, these two formulas were put into

Equation 3 to establish the functional relationship between the
slope aspect and εmax (Equations 4 and 5). However, this is only
an ideal function. εmax is also affected by vegetation types, the
spatial distribution of vegetation types is affected by altitude, and
the vegetation types change regularly with altitude. According to
the above analysis, the relationship between εmax and slope and
facet is shown in Figure 2, and the value of εmax is not fixed but
changes with the change in slope and aspect.

To estimate the carbon sequestration of mountain
vegetation more accurately, it is necessary to establish the
geometric relationship between εmax and slope and aspect.
According to previous studies, εmax varies greatly with different
vegetation types, and its size depends on vegetation types,
NDVI, and LAI (Yang et al., 2015; Yan et al., 2022). In this paper,
the slope and aspect are taken as the influence parameters to
improve the previous calculation method of εmax. The improved
calculation method of εmax is:

The calculation equation of εmax of sunny slope vegetation
is:

εmax = k1 ∗ an
max+k2 ∗ NDVI ∗ LAI, 0 ≤ S ≤ 15,

n = 1, 2, 3... (3)

εmax = k1 ∗ an
max ∗

(
1.2−

x
75

)3
+

k2 ∗ NDVI ∗ LAI, S > 15, n = 1, 2, 3... (4)

The calculation formula of εmax for shady slope vegetation
is:

εmax = k1 ∗ an
max ∗

(
1−

x
90

)3
+

k2 ∗ NDVI ∗ LAI, S > 0, n = 1, 2, 3... (5)

In the formula, an
max is the maximum value of light energy

utilization efficiency of the same vegetation; S is the slope, taking
a positive integer; and n is the species and quantity of vegetation.
k is the adjustment coefficient. When NDVI≤ 0.1, k1 = 0, k2 = 0;
when NDVI > 0.1, k1 = 1, k2 = 0.1.

According to the vegetation distribution data in Sichuan
mountain areas, the spatial distribution of different types of
mountain vegetation can be obtained, and εmax of different types
of mountain vegetation in Sichuan can be obtained by referring
to previous studies (Table 1) (Zhu et al., 2006; Wang B. et al.,
2013, Cai et al., 2014; Wang et al., 2015; Du et al., 2017; Tang
et al., 2017; Lan et al., 2018).

The εmax value of different vegetation will change according
to the external conditions (Zhu et al., 2006; Li et al., 2012).
The functional relationship between εmax and slope and aspect
was established according to Equations 3–5 (Figure 2). On
this basis, according to Landsat 8 data (Figure 3B), the spatial
distribution of hillside vegetation types and the relationship
between altitude (Figure 3A) and εmax values of different
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FIGURE 2

The relationship between slope, aspect and εmax.

TABLE 1 εmax of different vegetation types in the study area under ideal conditions.

Broad-leaved forest Coniferous forest Mixed forest Deciduous shrub Cultivated vegetation Other

1.14 1.05 1.12 0.768 0.89 0.6

vegetation types (Table 1), the functional relation between εmax

values of different vegetation types and slope (Figure 3C) was
calculated through Equations 3–5. In Figure 3A, the vegetation
types are divided into seven categories from low to high altitude,
and their εmax values under ideal conditions are shown in
Table 1. According to the slope size and slope orientation, only
suitable equations are selected from Equations 3–5 to calculate
εmax. The calculation results are shown in c in Figure 3. The
uniform value of εmax of the CASA model is 0.389 (gC/MJ),
while εmax of the improved CASA model changes with the
change in vegetation types, slope, and aspect. This characteristic
of the improved CASA model is more consistent with the actual
situation of vegetation εmax. When the sunny slope is less than
35◦ or the shaded slope is less than 30◦, the εmax value of the
improved CASA model is larger than that of the CASA model.
In this paper, Equations 3–5, and εmax in the ideal state of
vegetation in Table 1 are used to establish the functional relation
between the εmax value of mountain vegetation and vegetation
types, slope, and aspect.

The improvement of tem

Tem indicates the stress parameter of the external
temperature on light energy utilization. Its calculation formula

is (Wang Y. et al., 2019):

Tem =
(T−Tmin) (T−Tmax)

(T−Tmin) (T−Tmax)−
(
T−Topt

)2 (6)

Tmin, Tmax, and Topt are also known as the three
fundamental temperatures, which are the lowest, highest and
best temperatures of vegetation during photosynthesis. The
three fundamental temperatures of different vegetation types are
usually obtained by a literature collection (Chen et al., 2014).
After consulting relevant documents (Peng et al., 2000; Zhang
et al., 2012, 2014; Li, 2013; Wang L. et al., 2013), the three base
temperatures of the main vegetation in the study area are shown
in Table 2.

The improvement of wat

Wat is the product of vegetation leaf age and leaf water
content parameters, indicating the impact of vegetation leaf age
and water content on light energy utilization. The calculation
formula of Wat is (Zhang and Zhang, 2017; Yan et al., 2018):

Wat =
(1+LSWI)2

2 (1+LSWImax)
, LSWI =

(NIR−SWIR)

(NIR+SWIR)
(7)

In the formula, NIR represents the reflectance of vegetation
in the near-infrared band, and SWIR represents the reflectance
of vegetation in the infrared band.
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FIGURE 3

Relationship between the εmax value and slope, aspect, and vegetation types in the improved CASA model and the CASA model. (A) Shows the
distribution relationship between altitude and vegetation type. (B) Is the position of figure a in the remote sensing image. (C) The blue line is the
distribution curve of e calculated with the change of vegetation type, slope and aspect in the improved CASA model, while the yellow line is
fixed value of e determined with the change of vegetation type, slope and aspect in the original.

TABLE 2 Three benchmark temperatures for the main vegetation in the study area.

Vegetation types Minimum
temperature (◦C)

Optimum
temperature (◦C)

Maximum
temperature (◦C)

Coniferous forest 10 19 27

Broad-leaved forest 13 21.5 29

Mixed forest 11.5 20.7 31

Deciduous shrub 11 22.6 32

Cultivated vegetation 12 25 35

Other 11 22 30

Improvement of absorbed photosynthetic
active radiation

In this paper, the calculation method of APAR is improved,
and the improvement of the calculation method of APAR is
mainly the improvement of FPAR (Zhu et al., 2019). In the
CASA model, the functional relationship between the FPAR and
SR index (Equation 9) is used to calculate the FPAR. However,
according to the research findings, the calculated results of FPAR
based on SR are usually lower than the measured values because
the NDVI index is inconsistent with the measured values due
to the shadow caused by the ground potential factor (Chen
et al., 2018; Wang H. et al., 2019; Wang et al., 2020; Xia et al.,

2020). Therefore, in the calculation of FPAR, instead of using
the CASA model to calculate the formula of FPAR, the paper
selected the average value of the calculated results (Equation 12)
of the SR index, EVI index, and NDVI (Equations 9–11) that had
a functional relationship with FPAR as the final FPAR value (Li
H. et al., 2021; Li M. et al., 2021; Li Y. et al., 2021).

APAR = SOL ∗ FPAR ∗ 0.5 (8)

FPARSR = min
(

SR−SRmin

SRmax−SRmin
, 0.95

)
, SR =

NIR
R

(9)
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FIGURE 4

Discrepant data and profile line distribution of the improved CASA model and CASA model estimation results.
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FPAREVI = a ∗ EVI (10)

FPARNDVI =

(NDVI−NDVImin) (FPARmax−FPARmin)

(NDVImax−NDVImin)
+FPARmin(11)

FPAR =
(FPARSR+FPARNDVI+FPAREVI)

3
(12)

In the formula, a is the empirical coefficient, FPARmax and
FPARmin are the maximum and minimum values of FPAR, and
the values taken as are 0.95 and 0.001.

Validation of the model

To verify the feasibility of estimating vegetation carbon
sequestration by the improved CASA model, it is necessary to
verify the spatial relationship between slope, slope aspect, and
the difference in estimating carbon sequestration by the two
models (the improved CASA model and the CASA model).

Verification of slope
In this paper, the improved CASA model and CASA model

are used to estimate the vegetation NPP of Landsat 8 OLI
image data in the same area at different periods (2015 and

FIGURE 5

Superposition diagram of the profile line of discrepant data and
slope.

T
A

B
LE

3
St

at
is

ti
ca

lt
ab

le
o

f
th

e
d

is
tr

ib
u

ti
o

n
o

f
d

is
cr

ep
an

t
d

at
a

o
n

sh
ad

y
sl

o
p

es
an

d
su

n
n

y
sl

o
p

es
.

Y
ea
r

A
re
a

T
ot
al
O
fD

va
lu
e

Su
nn

y
sl
op

e
Sh

ad
y
sl
op

e
D
R
S1

/D
R
S2

A
re
a

A
re
a
ra
tio

D
va
lu
e
of

su
nn

y
sl
op

e
D
va
lu
e

ra
tio

(D
R
S1

)
A
re
a

A
re
a
ra
tio

D
va
lu
e
of

Sh
ad

y
sl
op

e
D
Va

lu
e

ra
tio

(D
R
S2

)

20
15

37
20

6
17

46
08

18
50

5
49

.7
4

11
51

27
65

.9
3

18
70

0
50

.2
6

59
48

1
34

.0
7

1.
93

5

20
16

24
66

36
16

27
56

65
.9

9
83

88
0

34
.0

1
1.

94
0

Frontiers in Ecology and Evolution 09 frontiersin.org

https://doi.org/10.3389/fevo.2022.1048607
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1048607 November 30, 2022 Time: 13:43 # 10

Huang et al. 10.3389/fevo.2022.1048607

2016). The CASA model estimation result (2015B and 2016B
in Figure 4) is subtracted from the improved CASA model
estimation result (2015A and 2016A in Figure 4) to obtain the
discrepant data (2015D and 2016D in Figure 4) between the two
model estimation results. Then, the profile line (a, b, c) of the
discrepant data and slope (S in Figure 4) and the boundary line
(i,m) of high and low values are established by ArcGIS software
to analyse the change rule of slope and discrepant data.

The discrepant data between 2015 and 2016 show that while
the negative value of the discrepant data is primarily dispersed
in the east and northwest of the research region with a modest
slope, the positive value is primarily concentrated in the area
with a high slope. The reason is that, as seen in Figure 3, the
εmax value of the improved CASA model is greater than that of
the CASA model when the sunny slope is less than 35◦ or the
shady slope is less than 26◦ and smaller than that of the CASA
model when the slope is greater than 35 or 26◦. As a result, the
area with a large slope is where the positive value of the resulting
discrepant data is primarily spread, whereas the area with a
small slope is where the negative value is disseminated. Second,
the high value areas of the discrepant data are concentrated
in the areas with a large slope, as can be observed from D
(2015), D (2016), and slope data (S), but the eastern parts
with relatively smooth terrain are rarely distributed. Despite
having a considerable slope, the northwest study area has a low
value of different data due to the greater altitude and colder
temperatures, which cause less vegetation and lower discrepant
data. The borderline (i) west of the discrepant data is the same,
showing that other factors, such as climate, have taken the place

of the topographic component as the progressive rise in altitude
has affected the estimation results. The borderline (i) east of
the discrepant data is essentially consistent with the boundary
line (m) of the slope, indicating that slope is one of the main
factors affecting the estimation results and that the change in
the discrepant data is positively correlated with the slope in the
easternmost areas of the study area.

It can be seen from the profiles of the three profile lines
(Figures 5a–c) that when the slope rises for the first time or
drops to 15◦ for the last time, the boundary line (K line) of
the discrepant data fluctuation will be generated. On the left
side of the K line, the discrepant data between 2015 and 2016
and the undulation of the slope are large; on the right side
of the K line, the discrepant data and gradient between 2015
and 2016 fluctuate slightly. It shows that the variation value of
discrepant data is larger in areas with larger slopes and smaller
in areas with smaller slopes. At the same time, the improved
CASA model also uses 15◦ as the dividing point to divide the
impact of slope on the εmax. Therefore, Figures 4, 5 show the
distribution characteristics of the estimation results and slopes,
which shows the feasibility of the improved CASA model in
carbon sequestration estimation.

Verification of slope aspect
The second difference between the improved CASA model

and the CASA model is that the improved model divides the
slope aspect into the shady slope and the sunny slope and
establishes the functional relationship between the shady slope,
sunny slope, and εmax. To verify the relationship between the

FIGURE 6

Relationship between slope and εmax.
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FIGURE 7

(Continued)

Frontiers in Ecology and Evolution 11 frontiersin.org

https://doi.org/10.3389/fevo.2022.1048607
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1048607 November 30, 2022 Time: 13:43 # 12

Huang et al. 10.3389/fevo.2022.1048607

FIGURE 7

Improved CASA model and CASA model estimation results 2000–2020.

discrepant data and the slope aspect, the study counts the area
of sunny slopes and shady slopes of the study area, superimposes
the discrepant data with the slope aspect map of the study area,
and counted the distribution of the discrepant data on the sunny
slopes and shady slopes. According to statistical Table 3, the
areas of shady slopes (50.26%) and sunny slopes (49.74%) in the
study area are the same. If the influence of the slope aspect on
εmax is not considered, the distribution of discrepant data on the
shady slope and sunny slope should also be the same. However,
the geometric calculation formula of slope aspect and εmax was
established by the improved CASA model, and the sum of εmax

values of the sunny slopes is 1.57 times the sum of εmax values
of the shady slopes (Figure 6). Therefore, without considering
the influence of other factors, the ratio of the data value of the
discrepant data on the sunny slopes to the data value of the
discrepant data on the shady slope is greater than 1.57 because
vegetation coverage on the sunny slope is higher than that on

the shady slope. According to the data statistics, the distribution
discrepant data value of the sunny slope in the study area is 1.94
times that of the shady slope, which proves the influence of the
improved slope aspect of the CASA on the estimation result of
carbon sequestration.

Results

To verify the accuracy of the estimation results of the
improved CASA model, the results of vegetation carbon
sequestration (IC and C in Figure 7) estimated by the improved
CASA model and CASA model in the study area from 2000
to 2020 were compared with the calculation results of NPP
products from MODIS data. It should be noted that the
estimation result here is not the annual NPP value of the study
area, but the author selects remote sensing images with good
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quality each year according to the quality of remote sensing
images in the study area from 2000 to 2020 to estimate the
carbon sequestration in the study area. In contrast, MODIS NPP
data are synthetic data of 8 days that overlap with the acquisition
time of remote sensing images to reduce the estimation error.
The accuracy of the improved CASA model was verified by
analysing the correlation and the degree of fit among the three.
Figure 7 shows only the estimates for 2000, 2005, 2010, 2015,
and 2020.

According to the basic principle that chloroplasts need to
absorb 1.63 g of carbon from the air for every 1 g of organic
material produced during photosynthesis (Liu X. et al., 2013;
Liu Y. et al., 2013), the total forest carbon sequestration in
Sichuan mountain areas from 2000 to 2020 can be estimated
by the CASA model, improved CASA model and MODIS data
products (Table 4).

Table 4 shows that the calculated value of MODIS
data (M) > estimated value of improved CASA model
(IC) > estimated value of CASA model (C), the estimated
average value of improved CASA model is 554,48 tons, the
estimated average value of CASA model is 538,800 tons, and the
mean value of MODIS data is 583,000 tons. The improved model
increased the estimated mean value by 2.92%. This assumes
that the estimated value of MODIS data is the measured value
and compares the improved CASA model and the relationship
between the estimated value of the CASA model and MODIS

data to determine the accuracy of the estimation of the improved
CASA model.

Because the impact of slope and aspect on vegetation carbon
sequestration estimation is relatively stable, its impact will
not be affected by the external temperature and precipitation.
Therefore, if the difference in the estimation results of the three
methods is relatively stable and the variation trend is the same, it
can show the accuracy of the improved model in the estimation
of forest carbon sequestration in mountainous areas. As shown
in Figure 8, the trend lines of vegetation carbon sequestration
estimated by the three methods are consistent, and the changing
trend is consistent. The trend line fitting degree index of the
improved CASA model (R2 = 0.5531) is the largest and the
fitting degree is the best.

Assuming that the MODIS data are measured values, the
correlation between the improved CASA model, the estimated
results of the CASA model, and the calculated results of
the MODIS data is calculated to determine whether the
estimated results of the improved CASA model are accurate.
In Figure 9, the correlation between the estimated results of
the improved CASA model and MODIS data (R2 = 0.9596)
is higher than that between the estimated results of the
CASA model and the calculated results of MODIS data
(R2 = 0.9465). Thus, the accuracy of the improved CASA model
in estimating forest carbon sequestration in mountainous areas
was illustrated.

TABLE 4 Estimation of vegetation carbon sequestration in the study area from 2010 to 2020 (unit: 10,000 tons).

Year/Carbon
sequestration

Estimated value of
MODIS (M)

Estimated value of
improve the model (IC)

Estimated value of
CASAmodel (C)

(IC-C)/C*100

2000 52.854 50.078 48.887 2.44

2001 54.239 51.507 50.328 2.34

2002 57.179 54.153 52.91 2.35

2003 57.372 54.32 53.116 2.27

2004 53.961 50.921 49.782 2.29

2005 55.447 52.497 51.271 2.39

2006 59.64 56.828 55.515 2.37

2007 58.501 55.518 54.226 2.38

2008 58.049 54.937 53.622 2.45

2009 60.246 57.227 55.816 2.53

2010 55.321 53.204 51.086 4.15

2011 59.465 56.039 55.158 1.60

2012 54.488 52.907 50.138 5.52

2013 63.253 59.975 58.517 2.49

2014 59.464 56.647 54.765 3.44

2015 62.157 59.572 57.27 4.02

2016 62.095 58.434 57.347 1.90

2017 59.543 57.554 54.886 4.86

2018 57.148 55.777 52.536 6.17

2019 62.734 59.1 57.977 1.94

2020 61.151 57.205 56.337 1.54

Average Value 58.3 55.448 53.88 2.92
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FIGURE 8

Trends of forest carbon sequestration estimated by the three methods from 2000 to 2020.

FIGURE 9

Correlation of the NPP value of the improved model with the
estimated value of the CASA model and the NPP value of the
MODIS products.

Discussion

Compared with other improved CASA models, the
improved CASA model’s biggest characteristic is to build the
εmax and vegetation types, slope, and slope to the function
relation, overcome the CASA model for the εmax unified
assigned to estimate the precision of the impact of makesup

for the CASA model to estimate does not consider terrain
factors. After verifying the feasibility of the improved CASA
model through statistical analysis of the data and comparing the
estimation results of the improved CASA model, CASA model,
and MODIS NPP product, it is found that the calculation
results of the improved CASA model are between the CASA
model and MODIS data product. Because MODIS data apply
to the global-large scale spatial range, the estimated result
of carbon sequestration is larger than the actual (Steinberg
et al., 2006; Chen et al., 2008; Li et al., 2010; Zhu et al., 2018).
However, the estimation results of the CASA model are mainly
combined with climate conditions such as temperature and
precipitation, and due to the influence of mountainous terrain
factors, the estimated results are slightly smaller than the actual
carbon sequestration value (As-syakur et al., 2010; Li et al.,
2019a,b; Meraj et al., 2022). Therefore, the estimation results
of the improved CASA model have the best fitting degree
and good correlation between the CASA model and MODIS
data products, indicating that the improved CASA model has
improved the estimation accuracy of the model to a certain
extent.

However, the improved CASA model also has shortcomings:
the improved CASA model requires high-quality remote sensing
image data, especially a low proportion of cloud pixels in
the image (Kuang et al., 2020; Yong et al., 2022). Because
cloud pixels have a great impact on the acquisition of the
vegetation index, the number of cloud pixels directly affects
the accuracy of estimation, and remote sensing images more
or less have cloud pixels. Therefore, to improve the accuracy
of carbon sequestration estimation, it is necessary to select
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remote sensing images with fewer cloud pixels and good
quality to estimate vegetation sequestration, which increases
the workload to a certain extent; Second, in mountainous
areas with a large degree of relief, there are large differences
in temperature, humidity, and precipitation between the top
and bottom of the slope (Wang et al., 2018). Therefore, when
the improved CASA model is used to analyse meteorological
data, it is easy to cause inconsistencies and uncertainties in
the accuracy of interpolation results. The greater the degree
of relief is, the greater the uncertainty. The improved CASA
model has improved the accuracy of carbon sequestration
estimation of vegetation in mountainous areas with a large
degree of relief but has not significantly improved the accuracy
of carbon sequestration estimation of vegetation in plains and
hills with a relatively high degree of relief. The solution to this
problem also depends on appropriately increasing the number
of meteorological stations and the reasonable spatial layout of
meteorological stations. Moreover, the change in land use types
will lead to the change in vegetation types in space (Li, 2021;
Wang et al., 2022), thus leading to the change in the maximum
light energy utilization rate of vegetation. On a short time scale,
due to the small change in vegetation types, the estimated result
image of the improved CASA model is small. If it is on a longer
time scale, it will have a greater impact on the estimation results.
The impact of slope on the carbon sequestration of vegetation
is the impact of soil properties on the carbon sequestration of
vegetation. Soil properties include soil organic matter content,
soil thickness, soil moisture, and other factors. In general, the
greater the slope is, the smaller the soil thickness and the lower
the soil organic matter and soil water content. Due to the
flourishing vegetation in mountain areas, it is difficult to obtain
soil property information by using remote sensing technology.
However, the spatial resolution of soil information today is low,
and the precision is not high, which cannot meet the research
needs. Therefore, the paper uses slope to reflect the impact of
soil properties on the carbon sequestration of vegetation from
the side, which will also affect the estimation accuracy to a
certain extent. The next step will be to strengthen the research
of remote sensing technology in information acquisition of high
vegetation areas to overcome the shortcomings of the improved
CASA model.

Conclusion

The improved CASA model overcomes the shortcomings
of the CASA model in that the εmax is uniformly assigned
and the influence of terrain factors is not considered. The
calculation method of key parameters is improved, and the
functional relation between vegetation, aspect, slope, and εmax

of vegetation is established. After verifying the feasibility of the
improved model, and comparing the estimation results of the
three methods, it is found that the improved CASA model has

the best fitting degree and high correlation. The improved CASA
model is helpful to more accurately grasp the ecological carbon
sequestration capacity of mountain vegetation.
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