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Aggregative life cycles are characterized by alternating phases of unicellular

growth and multicellular development. Their multiple, independent

evolutionary emergence suggests that they may have coopted pervasive

properties of single-celled ancestors. Primitive multicellular aggregates,

where coordination mechanisms were less e�cient than in extant aggregative

microbes, must have faced high levels of conflict between di�erent co-

aggregating populations. Such conflicts within a multicellular body manifest

in the di�erential reproductive output of cells of di�erent types. Here, we

study how heterogeneity in cell motility a�ects the aggregation process

and creates a mismatch between the composition of the population and

that of self-organized groups of active adhesive particles. We model cells

as self-propelled particles and describe aggregation in a plane starting from

a dispersed configuration. Inspired by the life cycle of aggregative model

organisms such as Dictyostelium discoideum or Myxococcus xanthus, whose

cells interact for a fixed duration before the onset of chimeric multicellular

development, we study finite-time configurations for identical particles and

in binary mixes. We show that co-aggregation results in three di�erent types

of frequency-dependent biases, one of which is associated to evolutionarily

stable coexistence of particles with di�erent motility. We propose a heuristic

explanation of such observations, based on the competition between

delayed aggregation of slower particles and detachment of faster particles.

Unexpectedly, despite the complexity and non-linearity of the system,

biases can be largely predicted from the behavior of the two corresponding

homogenous populations. This model points to di�erential motility as

a possibly important factor in driving the evolutionary emergence of

facultatively multicellular life-cycles.
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1. Introduction

Aggregative life cycles are set to the boundary between
unicellular and multicellular organization. In aggregative life-
cycles, initially sparse cells come together and formmulticellular
groups. Multicellular development following aggregation is
essential for the formation and successive dispersal of stress-
resistant dormant cells. Such cysts or spores seed subsequent
generations, where cells undergo unicellular, vegetative growth
(Raper, 1940). Both in prokaryotes, e.g., Myxobacteria, and
in eukaryotes, e.g., Dictyostelids, multicellular development
is associated with cell differentiation and division of labor,
analogous to organisms whose body derives from clonal
growth. Those two orders, and in particular the model species
Myxococcus xantus and Dyctiostelium discoideum, have thus
been extensively regarded as highly informative on the transition
from unicellular to multicellular organization (Vos and Velicer,
2009; Kraemer and Velicer, 2011; Strassmann and Queller, 2011;
Forget et al., 2021).

A key feature of aggregative multicellular species is
their motility, that allows cells to actively pursue their
bacterial preys during the solitary phase of the life-cycle,
and to engage in a series of collective behaviors, such as
swarming (Shi et al., 1993) and collective taxis (Bonner
et al., 1950). Individual cell movement moreover allows
cells to rapidly coalesce into multicellular aggregates as
a response to stressful environmental conditions, typically
nutrient exhaustion. Attaining collective functions without delay
has been argued to constitute an important adaptive advantage
to aggregative vs. clonal multicellularity (Marquez-Zacarias
et al., 2021).

As a side effect, it is almost inevitable that motility leads
to mixing of heterogenous cells to a much larger extent than
in colonies of sessile microbes or clonally growing multicellular
organisms. Indeed, genetic chimerism occurs naturally in
aggregative multicellular species (Strassmann et al., 2000;
Fortunato et al., 2003b; Gilbert et al., 2007; Vos and Velicer,
2009; Kraemer and Velicer, 2011; Sathe et al., 2014). Within
chimeric aggregates, genotypes reaping group benefits—i.e.,
“cheaters”—are expected to bear a selective advantage relative to
more “cooperative” types. In the absence of positive assortment,
selection favors cheaters over cooperators, as reproductive gains
are amplified across cycles of multicellular aggregation. Such
“tragedy of the commons” scenario (Hardin, 1968; Rankin et al.,
2007) is commonly invoked as a threat to the evolutionary
stability of multicellularity, and of particular relevance close to
the transition from single cells to higher levels of integration
(Clarke, 2014; Rainey and De Monte, 2014).

In the absence of mechanisms that efficiently purge invading
cheaters—such as single-cell bottlenecks in clonally growing
organisms—aggregative life cycles are particularly fragile to
conflicts (Strassmann et al., 2000; Vos andVelicer, 2009). Theory
indeed predicts that a sufficient degree of positive assortment,

or high relatedness, is necessary for cooperation to be
evolutionarily stable (Queller, 1994; Fletcher and Doebeli, 2009).
If cooperators recognize cooperators, for instance through
mechanisms of kin recognition or green beard effects (Hamilton,
1964), then cooperative groups can be advantaged over excluded
cheaters. Even though recognition mechanisms have been
identified in Dictyostelium, high segregation efficiency is only
attained among distant species (Sathe et al., 2014). Moreover,
it is unlikely that highly sophisticated recognition systems
were present before multicellular organization was stabilized,
leaving the question open of how positive assortment was first
established in primitive multicellular life cycles (Clarke, 2014).
More relevant to understanding the independent repeated
evolution of aggregative life cycles (Grosberg and Strathmann,
2007) seem thus to be passive mechanisms of assortment.
Ancestral heterogeneity in individual cell properties, indeed, can
be the source of positive assortment also in the absence of cell-
cell signaling and recognition. Theoretical explorations have for
instance shown that costly adhesive traits are selected if they
enhance group cohesion, even when cells reshuffling at every
generation brakes identity of descent in multicellular groups
(Garcia and DeMonte, 2013; Garcia et al., 2014, 2015; van Gestel
and Nowak, 2016).

Here, we focus on heterogeneity in motility as a possible
source of assortment when multicellular aggregates are
generated by self-organization of moving cells, represented
as self-propelled disks that can stick to one another upon
encounter (Szabó et al., 2006). Heterogeneity in cell motility
is observed both in M. xantus (Vos and Velicer, 2008)
and D. discoideum, where it has been associated to diverse
developmental fates (Azhar et al., 2001) and to efficient foraging
(Rossine et al., 2022). Differences in motility, moreover, have
been proposed to drive the emergence of life cycles with
temporally compartmentalized phases of aggregation and
disaggregation (Miele and De Monte, 2021). A feature of such
cycles, as well as of aggregative life cycles, is the collective
timescale that cells have at their disposal to aggregate. After
a specific time span, multicellular aggregates proceed to
further developmental steps, or are dispersed. Evolution thus
proceeds across a succession of aggregation-dispersal cycles,
whereby a subset of aggregated cells founds the successive
generation. Whenever the aggregated state enhances survival
of the constituent cells, cell types that are over-represented
in aggregates at the final time will in the long run dominate
the population.

In aggregative microbes, reproductive fitness of different co-
aggregating types is defined in terms of the fraction of spores
(or cysts) they have produced at the moment of dispersal, as
these are the only cells that resist long-term starvation. In
Dictyostelium, “spore bias” of a given strain, i.e., the deviation
in the proportion of spores of that strain from its proportion
in the initial mix, is thus commonly used as a metric for pair-
wise comparison of the social behavior of different cellular
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populations (Strassmann et al., 2000; Fortunato et al., 2003a;
Gilbert et al., 2007; Buttery et al., 2010; Kuzdzal-Fick et al.,
2010, 2011). If aggregates all had a similar composition (no
segregation), and cells of different types behaved identically
during development, spore bias would be essentially set by the
proportion of cells that did not join the aggregates, the so-called
“loners” in D. discoideum (Tarnita et al., 2013; Dubravcic et al.,
2014; Martínez-García and Tarnita, 2016) or “peripheral rods”
in Myxococcus xanthus (O’Connor and Zusman, 1991). The
propensity of aggregative species to give rise to non-aggregated
cells has been proposed to be key to survival in unpredictably
fluctuating environments, and to the maintenance of diversity in
natural settings (O’Connor and Zusman, 1991; Dubravcic et al.,
2014; Tarnita et al., 2015). If it is known that the propensity of
cells to aggregate depends on context (both on the abiotic and
biotic environmental conditions; O’Connor and Zusman, 1991;
Rossine et al., 2020), the mechanisms determining how many
and what cells are more likely to aggregate are still unknown.

We leverage numerical methods developed in active matter
physics to explore how heterogeneity in motility affects
aggregation biases. Previous studies on Brownian particles
with different activity have focused on dense mixtures, where
Motility-Induced Phase Separation (MIPS) gives rise to the
coexistence of a gas of isolated particles with aggregates, even in
the absence of adhesive forces between particles (Stenhammar
et al., 2015; Kolb and Klotsa, 2020; Rogel Rodriguez et al.,
2020). Within aggregates, moreover, motility differences result
in sorting (Jones et al., 1989; Beatrici and Brunnet, 2011) and
they may contribute, along with cell adhesion and signaling,
to the establishment of dynamics morphological patterns that
structured the evolution of multicellular development (Newman
and Bhat, 2009).

We characterize finite-time aggregation patterns in low-
density binary mixes of adhesive particles that only differ
for their intrinsic motility. Given the potential implications
of such motility differences in the evolutionary origin of
aggregative multicellular life cycles, we propose a criterion to
infer aggregation bias in binary mixes from the properties
of homogeneous populations. Moreover, we address the
dependence of aggregation biases on the frequency of cells
of different motility, showing that non-trivial outcomes are
possible, though not all that could be expected to occur. A
particularly interesting case is the establishment of frequency-
dependent selection associated to the evolutionarily stable
coexistence of different motility types.

2. Methods

2.1. Source code

Simulations were performed using the Python language. The
Pytorch library (Paszke et al., 2019) for tensor computation
allowed us to reduce the computational time while working

with a large number of particles (N = 104). The source code
for the simulation can be found online (https://github.com/
MathieuForget/HeteroSpeed_Aggregation.git).

2.1.1. Identification of aggregates

Aggregates are defined as groups of at least 5 aggregated
particles. To be considered as aggregated, a particle has to be
connected to at least 4 others particles in the final state of
the simulation. Two particles are considered connected if their
pairwise distance is lower than R0, the parameter that defined
their interaction range (see Figure 1B and lines 267–281 of the
code).

2.1.2. Bias in aggregates composition

At the end of each simulation, the mean proportion of
each population in the aggregates is estimated. The bias in
aggregate composition of the focal population is measured as the
deviation between its mean proportion in the aggregates and its
proportion in the mix (line 325 of the code).

2.1.3. Particles connectivity

The number of particles that are closer than R0 to a focal
particle is used as a proxy for its connectivity. We estimated
populations mean connectivity by averaging the connectivity of
aggregated particles of a given type. In binary mixes, the relative
connectivity of this type was estimated as the deviation between
its mean connectivity and that of the other type of particles (lines
332–344 of the code).

3. Results

3.1. A self-propelled particles model for
the aggregation of motile cells

In order for aggregation to bring together cells of different
populations, cells need to be motile. Different aggregative
organisms have different types of motility and different shapes.
Here, we consider a simple representation of moving cells as
persistent Brownian walkers. This representation corresponds to
observations of single-cell motility in Dictyostelium discoideum

(Golé et al., 2011; Li et al., 2011), and was used to model
collective behavior of keratocytes populations (Szabó et al.,
2006). Single cells are represented as self-propelled disks of
equilibrium radius Req/2 (Req being the equilibrium distance
between two interacting particles). Interaction forces only act
within a finite range R0 and determine, together with stochastic
fluctuations, the position of each disk and the orientation of each
particle’s velocity. In order to avoid to define their behavior at
the boundaries, particles are let move in a square of side L with
periodic boundary conditions. In the following, we will study the
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FIGURE 1

Self-propelled particle model for migrating and interacting cells. (A) Finite-range interaction forces F(dij) between two particles of positions ri
and rj and velocities vi and vj (accounting for both auto-propulsion and interaction forces, according to Equation 1) contribute to align n′

i and n′
j

(n′ = n(t+ dt)), the direction of particles’ auto-propelled velocities. These forces only act when the Euclidean distance dij = |ri − rj| ≤ R0. See text

for the definition of the other variables. (B) Radial component of the force between the two particles. When dij < Req, particle i exerts a strong

repulsive force on particle j. Otherwise, within the range of interaction R0, the latter attracts particle j with a weaker elastic force, representing

adhesion between di�erent cells. (C) Typical trajectories of isolated particles during a simulation (tf = 100) using parameters values in Table 1

that, in the absence of interactions, follow a persistent random walk resembling that of Dictyostelium’s single cells. (D) Trajectories of starved

Dictyostelium cells recorded every 30 s during 1 h.

aggregation of particles that are initially distributed uniformly
and randomly in this square.

The equation of motion of a particle i with position ri ∈
[L, L] is:

dri

dt
= v0ni + µ

N
∑

j=1

F(dij). (1)

where v0 is the self-propelled speed of particle i (whose
direction is given by a polarization unitary vector ni) N is
the population size, and F is the interaction force between
particles i and j, that only depends on their Euclidean distance
dij = ‖rj − ri‖. The mobility parameter µ ensures dimensional
consistence, and is set to 1. Equation (1) is adimensional, as
the reference unit of length and time are not specified. If it
were to be applied to a real system, where speed and force are

directly measured, one would have to choose correspondingly
the mobility parameter and to scale appropriately position
and time.

Cell-cell adhesion acts only on cells that are not too far apart.
The model considers a radial, finite-range interaction force F

that is piecewise-linear in the distance dij (Figure 1A). If dij ≤
Req, the two particles i and j repulse each other strongly, in order
to account for cell volume exclusion. If Req < dij ≤ R0, the
two particles attract each other with an elastic force of intensity
Fadh that quantifies adhesion strength. This choice reflects the
possibility that cell shape deformation allows cells to be more
distant than twice their equilibrium radius. The radial force is
thus defined as:

F(dij) = eijF(dij) (2)
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where eij =
ri−rj

‖ri−rj‖ is the unitary vector connecting the centers

of the two particles and

F(d) =















Frep
d−Req
Req

d < Req

Fadh
d−Req
R0−Req

Req ≤ d ≤ R0

0 R0 ≤ d

(3)

The force F and its action on particles’ self-velocity
are represented in Figures 1A,B. In the simulations, time
is discretized in steps of (short) duration dt. Between two
successive time steps, interaction forces induce a small
incremental change in the angle θni (t) = arcsin(ni(t)) of particle
self-propelling velocity. Even though there is no direct velocity
alignment in this model, the action of the force is to reduce the
deviation of the particle velocity from the scattering direction
vi = dri

dt
defined by Equation (1). Such a relaxation happens

on the timescale τ . The equation of motion for the angle is
therefore:

dθni
dt

=
1

τ
arcsin

[(

ni ×
vi

|vi|

)

· ez
]

+ η ξi (4)

where ez is a unit vector orthogonal to the plane of motion.
The cross product is null when the velocity and the force are
aligned, case in which the direction of motion will not be altered
by particles interaction.

In isolation (i.e., in the absence of interaction forces
F = 0), particles move as persistent random walkers.
Typical trajectories, shown in Figure 1C, are consistent
with previous (Golé et al., 2011; Li et al., 2011) and our
own (Figure 1D) experimental observation of individual
Dictyostelium discoideum cells trajectories. The orientation
θni of the self-propelled velocity vi = v0 ni (Equation 1)
is described by a Wiener process (Huang and Cambanis,
1978), where a white angular noise term ηξi is added between
successive time steps. ξi(t) is a random variable chosen with a
uniform probability on the interval [−2π , 2π], uncorrelated
across successive time steps. The noise intensity η defines the
characteristic timescale τr = 1/η2 of persistence of the random
motion. The larger the angular noise, the less persistent is the
motion of the particle.

When particles are closer than the radius of interaction R0

(see Figure 1), the radial force causes the velocity vectors to align
on a characteristic relaxation time scale τ . The smaller this is, the
higher the tendency of particles to move collectively in dynamic,
highly polarized, flocks (Grégoire et al., 2003; Casiulis et al.,
2020). In the following, we will consider situations where τr is
small (large η) compared to τ , so that aggregates do not display
collective motility, where groups can merge and fragment. We
focus instead on regimes where particles form long-lived, quasi-
stationary aggregates, as occurs in the early stages of aggregation
of Dictyostelids. These aggregates remain separated even later,

TABLE 1 Model parameters Values.

Parameter Value

N 10,000

tf 100

dt 0.01

v0 8

µ 1

η 10

τ 5

v0 8

Fadh 7

Frep 40

Req 1.1

R0 1.6

L 364

ρ = Nπ(Req/2)2/L2 0.07

when they form distinct slugs. The time scale corresponding to
the formation of separate aggregates, rather than the asymptotic
behavior of the system, is thus what we are concerned with.

The self-propelled particles model was implemented
through a custom Python program (https://github.com/Math
ieuForget/HeteroSpeed_Aggregation.git). Model’s parameters
(collected in Table 1) were set as described in the
Supplementary material to reproduce the aggregation of a
fraction of particles in multiple non-motile aggregates, with
some particles remaining isolated, similar to what is observed
for aggregative multicellular species (O’Connor and Zusman,
1991; Dubravcic et al., 2014).

3.2. Finite-time states of homogeneous
populations

We first explored how the system’s parameters affect the
patterns of aggregation of particles with identical velocities.
Characterizing how particles self-organize in aggregates is
an important first step for understanding how they create
emergent biases in group composition, that are the relevant
quantities to evaluate what cell type would have an advantage
in dispersal, and thus increase its frequency in successive
generations—in the absence of additional biases incurred during
multicellular development.

Particular attention was given to two parameters that can
be controlled or at least measured in experiments, and that are
known to influence encounter rates among particles: the packing
fraction ρ and the particles’ self-propulsion speed v0.

The packing fraction is the ratio between the areas covered
by the particles relative to the total area of the simulation
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space. It is thus proportional to population density, which is
straightforward to tune in experimental settings, and is known
to critically affect collective behavior in aggregative species
(Hashimoto et al., 1975). As motivated in the introduction,
the speed of particle displacement v0 is interesting because
heterogeneity in cell motility was revealed by single-cell
observations (Vos and Velicer, 2008; Goury-Sistla et al., 2012),
and it can be altered by changing growth conditions in the lab
(Varnum et al., 1986; Forget et al., 2022). Particle encounters
become more likely when both packing fraction and velocity
are increased. However, increasing one or the other is not
equivalent, as we will see.

The self-organized patterns reached after a finite time by
a population of identical particles were examined for different
values of speed v0 and packing fraction ρ (Figure 2 and
Supplementary Figure 1). Simulations were run for a fixed
duration tf . This choice reflects the fact that cells do not have
an infinite time at their disposal to complete aggregation. In
biological populations, such a timescale is set by the duration of
different phases of the life cycle or, for ancestral unicellular types,
by environmental variation. In the final state—analyzed whether
the system had converged to its asymptotic configuration or
not—aggregates were defined as groups of at least 5 particles
as described in Section 2. The setting of a size threshold
reflects the observation that in Dictyostelium aggregate speed
is positively correlated to size (Bonner, 1995; Rieu et al.,
2005), so that small slugs have impaired collective motility,
and possibly development. Therefore, their contribution to
successive generations is akin to that of solitary cells. More
generally, size-dependence is a shared feature of many collective
functions, which require a quorum of composing cells for
selection to start acting on them (Cornforth et al., 2012).

At very low packing fractions, the system does not
display any sizeable aggregate, consistently with experimental
observations of Dictyostelium aggregation (Hashimoto et al.,
1975). Indeed, particles do not have the time to overcome the
average distance that initially separates them, or they do not
stay together if they happen to encounter. The same is true for
denser populations when either particles are very slow, or they
are very fast. In both cases, the final state is gas-like, meaning
that particles are mostly found isolated from one another.
For intermediate velocities and larger densities, particles form
aggregates of different geometry, including well-separated
groups of similar size corresponding to the aggregation behavior
of Dictyostelium under standard conditions.

Figure 2 and Supplementary Figure 1 represent, overlaid
to the heatmap of the fraction of aggregated particles,
the final snapshot of simulations and the variation in
time of different population-level statistics. Different possible
qualitative outcomes of the aggregation process illustrated there
are discussed below.

At low packing fraction ρ and low velocity v0, particles
self-organize into a large number of relatively small aggregates

(Figure 2, case A). Within clusters, particle distribution is
isotropic, i.e., it is similar in all directions, reflecting the
homogeneity of the initial particle distribution. At the end
of the simulations, a sizeable fraction of particles are found
outside the aggregates. As indicated by the monotonous
increase in the fraction of aggregated particles over time
(Supplementary Figure 1A), this is a finite-time effect and
every particle would eventually aggregate for higher tf -values
(Supplementary Figure 2). Under these conditions, the fate of
each particle therefore depends on its local environment at the
beginning of the simulation. This parallels the hypothesis by
Rossine et al. that local fluctuations in the concentration of a
quorum signal explains why some Dictyostelium cells end up as
loners at the end of aggregation (Rossine et al., 2020).

At high particle speed and low packing fraction (Figure 2,
case B), the number of aggregates quickly reaches a plateau and
then slowly decreases, whereas aggregate mean size constantly
increases over time (Supplementary Figure 2B). Similarly to
an Ostwald ripening process (Ostwald, 1896), where smaller
droplets in an emulsion progressively merge with larger, more
energetically favorable droplets, particles evaporate (i.e., detach)
from small groups to join bigger and more stable aggregates
(Supplementary Figure 2). Aggregate accretion is essentially
limited by particles evaporation, causing a fraction of particles
to be always found outside the aggregates.

By continuously increasing particle speed at low packing
fraction, the system transitions between the two previously
described states where particle clusters coexist with non-
aggregated particles. The latter have however different origin
depending on particle speed. At low particle speed, aggregation
leaves out “latecomer” particles that did not reach any aggregate
within the finite time of the simulation; at high speed, the “gas-
like phase” is composed by particles that have evaporated from
aggregates. Increasing particle speed, the transition between
these two scenarios occurs through a phase where aggregation
is very efficient. The fraction of aggregated particles, indeed,
first increases and then decreases, and reaches a maximum at
the optimal speed vopt , which depends weakly on the packing
fraction ρ.

At such intermediate velocity and packing fractions
(illustrated in Figure 2, case C), self-organization leads to the
formation of multiple rounded aggregates, that contain almost
every particle. For much longer simulation times, aggregates
would coarsen and progressively merge into one single aggregate
of size N, as indicated by the combined decrease in aggregate
number and increase in mean size (Supplementary Figure 1C).
Such coarsening process however is largely irrelevant for
aggregation over finite times.

Finally, at higher packing fraction, particles rapidly self-
organize into labyrinthine structures (Figure 2, cases D and E).
Similarly to what can be observed at lower packing fractions,
the few non-aggregated particles at low speed are “latecomers”,
whereas at high particle speed, non-aggregated particles are
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FIGURE 2

Finite-time state diagram for a population of identical particles of speed v0 and packing fraction ρ. The fraction of aggregated particles at the

end of the simulation (tf = 100) is illustrated as a heatmap, indicating that the highest fraction of aggregated particles is reached for intermediate

particle speeds. Overlaid, snapshots illustrate the final particle distribution for five cases (A: v0 = 2.5, ρ = 0.05, B: v0 = 17.5, ρ = 0.05, C: v0 = 12,

ρ = 0.2, D: v0 = 2.5, ρ = 0.35 and E: v0 = 17.5, ρ = 0.35), whose aggregation dynamics is discussed in more detail in Supplementary Figure 1.

Fixed parameters values are those indicated in Table 1. The packing fraction was varied by changing L, keeping N constant.

“gas-like particles”, where—as for MIPS (Fily and Marchetti,
2012)—steric interactions limit the coexistence of multiple
independent aggregates. The measure of aggregate size is not
meaningful under these conditions, the packing fraction being
so high that every particle is connected to a large number of
other particles virtually from the start.

3.3. Di�erences in motility bias the
outcome of aggregation

Variation in particle speed gives rise to different finite-time
aggregation patterns in homogeneous populations, leading to
the production of non-aggregated cells through two qualitatively
distinct routes: delayed aggregation (DA) and evaporation (E). It
is thus natural to expect that mixing particles of different speed
would reflect into differential rates of aggregation. It is however
not obvious how the emergent aggregation patterns, which
result from individual interactions, are related to the collective
behavior of each particle types in homogeneous populations.
In order to explore this question, we run simulations of binary
mixes of particles with two different constant speeds v1 and v2.

Let us first consider two 1:1 binary mixes where particles
have self-propelled velocities that are either both to the left

(v1 = 3 and v2 = 6), or both to the right (v1 = 15 and
v2 = 18) of vopt , so that non-aggregated particles stem from the
same of the two previously discussed mechanisms (Figure 3A).
We refer to those as “delayed aggregation” (DA) mix and
“evaporation” (E)mix, respectively, to signify the different origin
of non-aggregated particles.

Aggregation biases can manifest as differential fractions of
particles that aggregate, in aggregate composition, or in the
topology of interactions within aggregates.

We first assessed whether particles of different types
segregated during aggregation. Indeed, if particles assorted
preferentially with those of the same type, aggregate
composition would be bimodally distributed, and the overall
behavior would be close to the superposition of the patterns
of each composing population in isolation. This scenario may
for instance be expected in biological chimeras where cells
are able to discriminate and preferentially aggregate with kins
(Gruenheit et al., 2017). In our case, we did not find evidence of
segregation, and group composition was unimodally distributed
for both mixes around a “typical” value, as displayed in
Supplementary Figure 3.

We further quantified two statistical properties or order
parameters that provide indications on the partition of particles
among the aggregated and free component, and on the internal

Frontiers in Ecology andEvolution 07 frontiersin.org

https://doi.org/10.3389/fevo.2022.1052309
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Forget et al. 10.3389/fevo.2022.1052309

structure of groups (illustrated in Figure 3B): aggregation bias
and connectivity. These metrics are easy enough to be measured
in real populations, as long as there is a way to visually
distinguish two co-aggregating populations.

Aggregation bias was estimated as the deviation between the
mean aggregate composition and the proportion of each type of
particles in the initial mix. This metric indicates to what extent
differences in particle speed skew their ability to aggregate.
In aggregative microbes only cells that manage to partake
multicellular development have a chance to survive prolonged
starvation. The aggregation bias measured in chimeras can thus
be used as a proxy to connect the outcome of one cycle of
aggregation with the long term success of a population, in the
absence of further developmentally-induced divergence in cell
fate (Tarnita et al., 2013; Dubravcic et al., 2014).

Finally, we quantified particles mean within-aggregate
connectivity. For each type of aggregated particles, connectivity
is measured as the number of particles (of any type) to
which a focal particle is connected within an aggregate. Two
particles are considered connected at a given time if they
are closer than the maximal distance of interaction R0 (see
Section 2). High connectivity is associated to a central position
within an aggregate, whereas particles with a lower connectivity
are located closer to aggregates periphery. Connectivity thus
reflects different spatial arrangements within clusters. In extant
aggregative microbes, a more central or peripheral positioning
can be associated to differential exposition to stress (Smukalla
et al., 2008) or to differentiation cues (Julien et al., 2000).

Figure 3C displays these order parameters for two binary
mixes of particles with different speed, as per Figure 3A. In both
cases, the focal population is the slower one.

By analyzing biases in mean aggregates composition relative
to the 1:1 composition of the mix (Figure 3C), we found that
the slower type was under-represented in the aggregates (i.e.,
with a negative bias) in the DAmix, whereas the opposite results
was found in E mix. Heterogeneity in particle speed thus biases
the representation of the two co-aggregating populations in the
aggregates, so that particles that aggregate more efficiently in
isolation are over-represented in the aggregates. These are the
type whose fraction of aggregated particles at t = tf is higher
(Figure 3A), i.e., the faster type in the DA mix and the slower
type in the E mix.

Mean particle connectivity of the two particle types indicates
that, moreover, particles that aggregate more efficiently in
isolation are enriched in the core of the aggregates (Figure 3C).
On the other hand, particles that in isolation are less efficient
aggregators have, within the aggregates, a smaller number of
neighbors, thus are preferentially located at the periphery.
The type whose speed is closer to vopt seems to nucleate
the aggregation of the other type and ends up being over-
represented in the aggregates at the end of the simulation.

3.4. Di�erences in motility result into
three types of frequency-dependent
aggregation biases

The process of self-organization responsible for the
aggregation biases discussed above results from interactions
between particles with different speed. It is hence expected to
be sensitive to the proportion of each type of particles in the
mix, which underpins the probability that particles of the same
or different type encounter. Frequency-dependent biases have
been moreover observed in aggregative multicellular species:
the intensity of spore bias in Dictyostelium, and sometimes
even its sign (Madgwick et al., 2018; Sathe and Nanjundiah,
2018), depend on the proportion of cells in the binary mix.
Such frequency-dependent social interactions can lead, on the
evolutionary timescale, to regimes where contrasting social
strategies coexist, as we will discuss later. In order to identify
the possible paths open to the evolution of aggregation in
populations with heterogeneous cell motility, we investigated the
effect of binary mix composition on aggregation bias.

Let f1 be the proportion of particles with speed v1 in the
binary mix (then f2 = 1 − f1 is the proportion of particles
with speed v2). As indicated in Figure 4, there are only four
qualitative types of biases that are continuous in the frequency
f1 and change sign at most once in the interval [0, 1]. These
scenarios can be classified by looking at the variation of the
bias for extreme values of f1: when the slope of the bias has
the same sign at low and high frequency, the type associated
with negative bias gets excluded over evolutionary times
(Figures 4A,B); when there is positive (negative) frequency-
dependence at low (high) frequency, coexistence of the two
types is evolutionary stable (Figure 4C); when there is negative
(positive) frequency-dependence at low (high) frequency, the
monomorphic populations are two alternative evolutionary
stable solutions (Figure 4D). Assuming that every aggregated
particle has the same probability of being transmitted to the next
generation, which is reasonable for primitive aggregative life-
cycles, the shape of the bias in aggregate composition predicts
the outcome of evolution over repeated cycles of aggregation and
dispersal, as exemplified in Figure 4A.

We examined what types of bias could be observed in binary
mixtures of particles of different speed, and tried to establish a
link to the properties of homogeneous populations of each type
on its own. Aggregate composition was analyzed in binary mixes
of different composition, keeping the packing fraction equal to
0.07. In order to reduce simulation time, we considered only
extreme f1-values (0 < f1 < 0.05 and 0.95 < f1 < 1).

We expect the aggregation process to be influenced both by
the absolute and by the relative value of the velocities of the
two types of particles. We have thus explored separately two
scenarios: first, the speed of the first type was fixed and that of
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FIGURE 3

E�ect of heterogeneity in cell motility on the outcome of aggregation in two di�erent types of binary mix. (A) Two populations of particles with

di�erent motility (DA mix: v1=3 and v2=6, E mix: v1=13 and v2=16) where mixed in equal proportion (N = 104, ρ = 0.07 for the total population).

The focal population is indicated by a full circle. (B) Order parameters allowing to capture the e�ect of heterogeneity in particles motility on the

outcome of aggregation. (C) Aggregation bias and mean connectivity of the focal population within the aggregates estimated at the end of 6

independent simulations as described in (B).

the second type was changed; second, both speeds were changed,
but their difference was kept constant.

In the first analysis, the speed of particles of the focal
population (v1-particles) was set to the “optimal” value (v1 =
vopt = 13) and the speed differential 1v = v1 − v2 between
the two particles types was gradually changed from negative
to positive. This scan (Supplementary Figure 4) confirms the

intuition that the better aggregator is always over-represented
in the aggregates when mixed with particles with a different
speed, whatever the mix composition f1. Indeed, the bias in
aggregate composition of the better-aggregator (i.e., the v1-
population) is systematically positive at both low and high f1-
values. Moreover, the slope of the bias for low and high f1

increases with |1v|, indicating that the bias intensity is positively
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FIGURE 4

Four qualitatively di�erent frequency-dependent aggregation biases correspond to distinct evolutionary stable states. Schematic representation

of the four simplest classes of bias that can be obtained in a binary mix. The evolutionary dynamics of a binary mix composition (f) over many

rounds of co-aggregation is represented by the yellow arrows. Stable equilibria are represented as filled circles and unstable ones as empty

circles. The yellow dotted line in (A) illustrates the construction of the evolutionary trajectory: Each round starts with a mix composition equal to

the aggregates composition at the end of the previous round, that is obtained by adding to the initial composition the aggregation bias. The four

classes of bias give rise to di�erent evolutionary stable solutions: fixation of the focal type (A) exclusion of the focal type (B), coexistence of both

types (C) and bistability (D).

correlated with the level of heterogeneity between the two
particles types.

In the second type of binarymix, where the speed differential
1v is kept constant while particle speeds are simultaneously
increased, the slopes at extreme frequencies instead change
sign (Supplementary Figure 5). Besides the two cases where one
particle type dominates for any frequency (Figures 4A,B), we
observed also the frequency-dependent profile that predicts
long-term coexistence of particles with different motility over
repeated cycles of aggregation and dispersal (Figure 4C). The
latter occurs when binary mixes are composed of particles whose
speed is on opposite sides of vopt (Supplementary Figure 5, third
and fourth row). The bias is in favor of the slower particles when
they are at low frequency in the mix, whereas at high frequencies
they are under-represented in the aggregates.

Biases in aggregates composition however appear rather
weak and noisy (as indicated by the large confidence intervals in
some of the scans illustrated in Supplementary Figures 4, 5). We

thus ran 20 independent simulations for f1-values ranging from
0 to 1 and using a larger speed differential (1v = 6, as illustrated
in Figure 5A) to confirm that binarymixes composed of particles
whose speed falls on different sides of vopt sustain a bias profile
that is compatible with evolutionarily stable heterogeneity in
particles motility. As expected, this combination yielded a more
conspicuous and less variable bias (Figure 5B).

Mean connectivity of aggregated particles for the two
particles types provides mechanistic information on the
underpinning of such frequency-dependent bias. Figure 5D
shows that particles with higher connectivity—i.e., more central
in the aggregates—are over-represented in the aggregated
fraction, irrespective of their speed, consistent with previous
observations (Figure 3C). When slow particles are in low
proportion in the mix, aggregates are essentially composed
of fast particles. In such aggregates, fast particles have lower
connectivity (Figures 5C,D), i.e., a peripheral location, so that
they can be pushed out of the aggregate by stochastic fluctuations
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FIGURE 5

Heterogeneity in particle speed induces biases whose sign depends on composition of the binary mix. (A) Binary mix of particles with speed on

both sides of vopt. (B) Aggregation bias of the slower population when mixed in di�erent proportion (f1) with the faster population. (C) Zoom on

snapshots of the final state of the system for f1 = 0.1 and f1 = 0.9. (D) Mean connectivity of the two types of aggregated particles as a function

of f1. (B,D) Twenty independent simulations were run were for each f1-value. The shaded area represents the 95% confidence interval.

and detach, joining the population of isolated cells. Slow
particles, on the other hand, have a high chance of being
integrated in an aggregate quickly formed by fast particles, hence
the positive bias in aggregates composition is in their favor.
When slow particles are in high proportion in the binary mix,
they prevail in the aggregates. Due to their higher speed, fast
particles join aggregates earlier and are thus located closer to
the aggregates center than slow particles (Figure 5C). The central
location of fast particles prevents their evaporation, and delayed
aggregation simultaneously causes slow particles to be under-
represented in the aggregates. On longer timescales, however, all
slow particles join an aggregate, and fast particles are expected
to sort to the periphery of aggregates (Jones et al., 1989). The
bias against particles that are too slow to aggregate is therefore
expected to progressively vanish as the time tf available to
aggregate increases.

Numerical simulations of the binary mix of Figure 5 were
run for twice and five times longer time spans (tf = 200
and tf = 500). As predicted, the range of f1-values for which
the slower particles are under-represented in the aggregated
fraction decreases accordingly, and vanishes for the longest
period (Figure 6).

FIGURE 6

Prolonged aggregation mitigates the frequency-dependent

inversion of bias. Aggregation bias of the v1-population as a

function of its frequency f1 in a binary mix of particles (v1 = 10

and v2 = 16), estimated after di�erent simulation time (tf ).

Twenty replicates were performed for each f1-value. The shaded

area represents the 95% confidence interval.

When aggregation lasts long enough, so that all particles
end up aggregating, evaporation of fast particles is thus the
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only source of aggregation biases. Hence, only the bias in
favor of slower particles (Figure 4) is asymptotically observed.
As a consequence, the existence of life cycles that bound
the duration of the aggregation phase could support the
evolutionary maintenance of highly motile cells, being otherwise
counter-selected, and simultaneously the establishment of a
polymorphic equilibrium.

Alongside particle speed, adhesion strength is certainly a
parameter that plays a key role in determining the outcome of an
aggregation process. Moreover, it is likely to be heterogeneous in
cellular populations. The complete examination of the interplay
of speed and adhesion heterogeneity is beyond the scope of this
work, however it is important to consider the extent to which the
conclusions drawn so far keep holding when adhesion strength
is varied.

3.5. Biases induced by heterogeneity in
particles motility depend predictably on
particles adhesion strength

In addition to particle speed and packing fraction (Figure 2),
particle adhesion strength is also expected to affect aggregation
efficiency. This parameter indeed determines the probability that
two particles stick together when they encounter. Increasing
particles adhesion strength can thus be expected to reduce the
rate at which particles detach from aggregates, hence affect the
balance between evaporation and delayed aggregation.

The fraction of aggregated particles at the end of the
simulation was estimated for a range of particle speeds and
adhesion strengths in a population with homogeneous speed
in order to obtain a quantitative understanding of how
particle adhesive strength influences the outcome of aggregation.
Supplementary Figure 6 displays the proportion of aggregated
particles for packing fraction ρ = 0.07.

Variation in Fadh does not affect the outcome of aggregation
for small particle speeds. In this regime, aggregation over a finite
time is indeed limited by the low encounter rate of isolated slow
particles. As soon as particles are fast enough to interact, almost
any adhesion strength except the weakest leads to aggregation.
The fraction of aggregated particles increases with their speed to
the point where evaporation starts being important. The higher
v0, the higher the force intensity required to counterbalance the
effect of evaporation. In the Supplementary material, we present
a model for the interaction between two particles that predicts
the quadratic relation between Fadh and particle speed observed
in the simulations (Figure 7A).

Let us now consider a binary mix of particles with different
speed, where adhesion strength varies uniformly for both
particle types, while other parameters are the same as for
Figure 5 (v1 = 10, v2 = 16, ρ = 0.07). We previously proposed
that the type of bias in aggregate composition depends on the

position of v1 and v2 relative to vopt . We can now check that this
assumption correctly predicts the change of the bias when vopt

changes as a function of Fadh. For any fixed couple of velocities
v1 and v2, there are three possible ranges of Fadh where vopt

is located to the left, to the right, or in between their values,
as illustrated in Figure 7. By choosing adhesion strengths that
belong to such intervals, we can retrieve the same qualitative
form of bias as predicted: for low adhesion strengths, where
both velocities are larger than vopt , slower particles are positively
biased (Figure 7B, orange); for high adhesion strengths, the
opposite occurs because of delayed aggregation (Figure 7B,
purple); for intermediate adhesion strengths, positive frequency-
dependence is observed (Figure 7B, blue).

Overall, when the two co-aggregating populations are on
both side of vopt , aggregates composition is biased because of
the interplay of two counteracting processes: evaporation of fast
particles and delayed aggregation of slow particles. The relative
contribution of these two factors determines the sign of the bias
and depends on the proportion of the types in the binary mix.
When the speed of both particle types is smaller than vopt , the
slower is under-represented in the aggregates due to delayed
aggregation. When both speeds are larger than vopt , the slower
type is over-represented in the aggregates due to the higher
evaporation of faster particles. Finally, when v1 < vopt < v2, the
competition between delayed aggregation of the slower particles
and evaporation of the faster particles provides different results
if one or the other particle is at low frequency, giving rise to a
bias that changes sign at intermediate frequencies. As long as the
duration of the aggregation phase is finite, then, the evolutionary
dynamics is predicted to stabilize the coexistence of different
types of particles. Interestingly, the frequency-dependent bias
associated to bistability (Figure 4D) was not observed. This
scenario would require particles faster than vopt to be over-
represented in the aggregates when abundant (low f1-values),
which can only be achieved if differential evaporation in favor of
fast-particles can be compensated. Theoretically, this may occur
if fast particles were surrounded by a “shell” of slow particles,
which, for initially uniformly assorted particles, would require
additional mechanisms of spatial sorting. It may, for instance,
be achievable if slower particles were also less adhesive (Garcia
et al., 2014).

These results show that, somehow unexpectedly given the
complexity of the self-organized dynamics and the transient
nature of aggregation patterns, biases in binary mixes can be
predicted once the behavior of the two populations in isolation
is characterized.

4. Discussion

When multicellularity emerged from unicellular ancestors,
a transition occurred from populations under selection for
individual properties to a higher level of biological organization,
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FIGURE 7

Particle adhesion a�ects the outcome of aggregation in binary mixes of particles with heterogeneous speed. (A) Particle speed vopt for which the

proportion of aggregated particles at t = tf is highest increases with the intensity of adhesive forces Fadh (see Supplementary Figure 6). The curve

vopt ∼
√
Fadh (see Supplementary material for a derivation from microscopic principles) was fitted to the optimal speed obtained from

simulations (gray dots). Three Fadh ranges can be defined depending on the relative position of v1, v2, and vopt (indicated by di�erent colors), as

previously discussed for varying v0. (B) Aggregation bias of the slower population measured at the end of simulations of the binary mix described

in Figure 5, for adhesive strength within the ranges indicated in the left panel (Fadh = 3, Fadh = 7 and Fadh = 12).

where collective adaptation became possible. Aggregative
multicellularity, one of the two routes followed in this transition,
involves the integration of cell aggregation into a life-cycle
that also encompasses free living. Cell aggregation offers
a mechanism of fast and transient grouping, that may be
adaptive for coping with rapidly and unpredictably changing
environments (Marquez-Zacarias et al., 2021). As a side-
effect of fast grouping, multicellular aggregates are however
generally composed of a mosaic of cells in different phenotypic
states. Also observed in extant aggregative species (Fortunato
et al., 2003b; Gilbert et al., 2007; Sathe et al., 2010), single-
cell heterogeneity between co-aggregating cells may have been
particularly important for the early steps of the transition to
aggregative multicellularity, as it can promote the recruitment
of ancestral functions toward incipient division of labor. On the
other hand, before mechanisms of assortment evolved to reduce
it, intra-group heterogeneity might have caused widespread
genetic conflicts that threatened multicellular organization.

Differences in cell properties between co-aggregating cells
is known to bias their probability to differentiate into

dormant phenotypes at the end of multicellular development
(Forget et al., 2021). However, understanding the evolutionary
implications of such single-cell heterogeneity on the outcome
of aggregation is currently limited by a lack of mechanistic
explanations, in particular of how initial diversity translates into
biases in the composition of multicellular aggregates. Among
the many features that display cell-to-cell variation, cell motility
can be expected to directly impact the probability that a cell
joins a multicellular aggregate, and therefore to affect spore
bias. Indeed, as already pointed out for D. discoideum loners
(Dubravcic et al., 2014; Tarnita et al., 2015) only aggregated cells
can differentiate into spores and survive the dispersal phase of
the life cycle.

We used individual-based simulations to confirm the
intuition that heterogeneity in cell motility affects the outcome
of aggregation. Heterogeneity in single-cell properties is known
to act within multicellular aggregates, where cell sorting can be
a source of bias in the developmental fate of cells (Houle et al.,
1989; Jones et al., 1989; Umeda and Inouye, 2004; Strandkvist
et al., 2014). We showed that biases can also emerge during
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aggregation, before cells experience proper “social” interactions.
In primitive aggregative life-cycles, before the evolution of cell
coordination mechanisms susceptible of reshuffling or canceling
out aggregation biases, cell motility properties inherited from a
unicellular ancestor may therefore have been recruited for their
effects on group adaptation.

Numerical exploration of different binary mixes highlighted
three types of aggregation biases resulting from heterogeneity
in particles motility. Notably, when particles that are too slow
to join a group before the end of aggregation are mixed
with particles that are fast enough to leave an aggregate,
the sign of the bias in the aggregated fraction changes
with frequency. Slow particles are over-represented in the
aggregates when they are rare in the population, but the
opposite is true when they are in high proportion. This type
of frequency-dependent bias allows to stabilize polymorphism
in populations of interacting genotypes (Hudson et al., 2002;
Brännström and Dieckmann, 2005). Frequency-dependent
spore bias has been invoked (Parkinson et al., 2011; Madgwick
et al., 2018) as a possible mechanisms for the maintenance
of the diversity of strains observed in natural populations
of aggregative species, such as Dictyostelium (Francis and
Eisenberg, 1993; Fortunato et al., 2003b) or M. xanthus (Vos
and Velicer, 2009; Kraemer and Velicer, 2011). However, it is
typically associated to developmental biases that emerge in the
course of the multicellular stage of the life cycle (Parkinson
et al., 2011; Madgwick et al., 2018). We have shown that
such biases can also emerge passively from heterogeneity in
single-cell properties during aggregation. As such, they may
have stabilized genetic chimerism early in the transition to
aggregative multicellularity, even before development became
highly regulated and contributed to limit genetic conflicts in
primitive aggregative life-cycle.

Beyond its constructive role on fostering polymorphism
during aggregation, heterogeneity in cell speed can also play
an active role in later developmental stages. Motility-induced
cell sorting within multicellular aggregates (Jones et al., 1989;
Beatrici and Brunnet, 2011) indeed paves the way toward the
exploitation of morphogen gradients for establishing differential
cell fates. Hence, heterogeneity in cell speed during aggregation
could have concomitantly fueled the evolution of division of
labor, and played a role in establishing dynamical patterning
modules during multicellular development (Newman and Bhat,
2009). In extant aggregative species such as D. discoideum

and M. xanthus, position within an aggregate is known to
determine cell probability to form a spore (Araki et al., 1997;
Huang et al., 1997; Julien et al., 2000). In a model describing
cell arrangement within Dictyostelium slugs, slower cells sort
to the back during migration (Umeda and Inouye, 2004),
thus populating preferentially the region that will eventually
turn into the spore mass. Developmental sorting can act in
the same or opposite direction relative to aggregation biases.
In the evaporation-limited region, faster particles are doubly

disadvantaged, as they would be both over-represented in the
loners and in the stalk. Motility differences instead act in
opposite directions, and could even cancel out, when non-
aggregated particles are mostly slow particles delaying their
aggregation. In this region, slow particles are indeed under-
represented in the aggregates, but once they have joined an
aggregate, they are expected to sort to the back of the slug
hence to differentiate into spores. Combining aggregation and
multicellular development delineates an evolutionary trade-off
between being sufficiently fast to join an aggregate during
aggregation on the one hand, and sufficiently slow to sort to the
back of the slugs on the other hand.

When cell motility is a heritable trait, aggregation biases
induced by heterogeneity in single-cell properties underpin its
evolutionary trajectory over multiple cycles of aggregation and
dispersal. We can imagine that cell motility evolves by the
appearance of mutant cells whose speed is a small variation of
the resident population. The bias in aggregate formation then
determines the likelihood that the mutant trait substitutes the
resident, as illustrated in Figure 4. Our results indicate that, as
long as both the mutant and the resident traits are on the same
side of vopt , selection will push particles to approach the optimal,
intermediate velocity for which aggregation is maximally
efficient. Indeed, the better aggregator in isolation is always over-
represented in the aggregates, so that evolution would climb
the gradient of the proportion of aggregated particles, that is
concave and has a unique maximum (Figure 3A). However, if
the resident and the mutant fall on the opposite sides of vopt—
which is increasingly likely, as the optimal value is approached—
polymorphic solutions become available, where particles with
different motility can coexist. Evolutionary branching is possible
in such a situation, as predicted in models for the adaptive
dynamics of social strategies (Doebeli, 2004). As discussed
above, and argued elsewhere (Miele and De Monte, 2021),
coexistence of slow and fast cells may be integral to the
establishment of aggregative life cycles, perhaps even before the
two phenotypes were unified as plastic manifestations of one
single genotype.

During the last decades, emergent patterns of populations
of self-propelled particles have been at the core of research
in active matter physics (Marchetti et al., 2013). In particular,
motility-induced phase separation has been evidenced as a
state where steric interactions generate, in sufficiently dense
populations, the coexistence of gas and aggregated phases (Fily
and Marchetti, 2012). We focused instead on lower densities,
where we could observe the emergence of multiple particle
aggregates, similar to a field of aggregation of slime molds.
At these packing fractions, adhesion plays a fundamental role
in determining the aggregation pattern. The probability that
cells remain together upon encounter indeed derives from a
balance between adhesive forces and self-velocity, modulated by
fluctuations. Several qualitatively different particle arrangements
have been identified as steady-states of populations whose
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particles are both adhesive and align their motion (Grégoire
et al., 2003). Before stabilizing their distribution on asymptotic
patterns, active particles also display transient clustering
(Ostwald, 1896; van der Linden et al., 2019). Such long-
lasting regimes can be relevant for biological populations,
where aggregation occurs over a finite timescale. Including
non-stationary patterns led us to identify two possible regimes
where clusters coexist with isolated particles. At low speed,
non-aggregated particles are “latecomers” that did not have
the chance to interact with other particles by the end of
the simulation. Their proportion in the aggregated fraction
depends on the duration of aggregation, other than on particle
density, and is expected to converge to one as the system
reaches its stationary state. A consequence of time-constrained
aggregation is that, when they are rare, slow particles are
overrepresented in aggregates relative to particles fast enough
to evaporate, but have a negative bias when common. Such
a frequency-dependent bias is not found in simple models
where diversity among interacting agents is depicted in terms
of fixed social strategies. Game theoretical representations of
interactions within multicellular bodies indeed typically predict
that “cheater” types, that have by definition a positive bias,
would be evolutionary stable in the absence of mechanisms
favoring interactions among kins (Strassmann et al., 2000;
Strassmann and Queller, 2011). Complementing explanations
based on strategic decision-making of cells during multicellular
development (Madgwick et al., 2018), we propose here that
frequency-dependent biases can also be established by passive
mechanisms, based on individual heterogeneity. It will be the
subject of future studies whether such dependence is robust to
heterogeneity in other parameters. In particular, adhesion on
top of velocity could be chosen as a heterogeneous trait, possibly
correlated with speed.

These extensions can be informed by experimental
observations of aggregative multicellular microbes, where
parameters—at least those controlling single-cell motility—may
be estimated for specific populations. The possibility that
frequency-dependent biases are induced during the aggregation
phase could be tested in extant aggregative microbes. The
aggregation dynamics of populations with different motility
could be assessed when they aggregate separately, and in
chimeras with different proportions of two types. We are not
aware of non-invasive methods to modulate Dictyostelium

motility. One possible strategy to generate populations with
differential motility is to apply contrasting selective pressures in
a directed evolution experiment, as realized for cell adhesion in
Adiba et al. (2022).

More generally, a better understanding of the mechanical
properties of unicellular organisms may prove essential to
capture the diversity of paths leading to current forms of
multicellular organization.

5. Conclusion

In aggregative life cycles, multicellular aggregates encompass
a much higher degree of heterogeneity than clonally growing
bodies, and therefore face a degree of conflict that can
be deleterious to the evolutionary stability of multicellular
functions. The maintenance of such functions is commonly
explained by the existence of mechanisms that allow cells
to recognize kin, so as to direct the benefits of cooperation
toward them. Such recognition mechanisms may however not
have been present in primitive forms of aggregative life cycles,
where former unicellular organisms were not yet adapted to
group living.

Here, we have explored the possibility that evolutionarily
relevant biases in aggregate composition may follow from
heterogeneity in a physical property of cells that involves no
coordination with other cells. Cell speed may have varied among
unicellular ancestors well before multicellular organization
emerged. We therefore asked how cells of different motility
would be represented inside and outside aggregates that formed
by adhesion after cell encounter.

Simulations of an individual-based self-propelled particles
model indicates that as long as aggregation occurs on a finite
time scale—as it does in extant aggregative microbes—velocity
differences reflect in compositional biases of the self-organized
groups. Such biases suggest that particle-level selection may
act as to keep cell motility bounded, and simultaneously lead
to an optimal aggregation efficiency that can be attained at
an intermediate particle speed. Moreover, in binary mixes of
particles whose speed is below and above the optimal value,
frequency-dependent biases can give rise to the evolutionary
convergence toward a polymorphic state, where coexistence
of different velocities may be exploited during successive
developmental stages.
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