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Urbanization, with the acceleration of construction operations in cities, 

is the main reason for in-creasing the absorption of thermal energy in 

urban areas, which leads to climate change, especially urban form has 

responded differently depending on environmental dimension of urban 

context concerning the urban heat island intensity. In the last Studies, 

Researchers have not Codified the effect of urban form on heat islands in 

the form of a comprehensive model. It is necessary to examine each urban 

context according to its own conditions. Accordingly, this study aims to 

identify the effect of building form variability on reducing the intensity of 

heat islands in Ferdous context of Tabriz in the form of comprehensive 

modelling as a new task. The research gap is the effect of the form of 

buildings on the intensity of UHI, and the question will be asked whether 

it is possible to control the intensity of UHI by changing the form by 

influencing the climatic indicators. Our conceptual framework was based 

on urban form typologies in microscale affect the amount of energy intake 

and consumption, especially the intensity of heat islands, and whether the 

use of desirable types can be responsive to reducing the intensity of these 

islands? In this regard, using a quantitative analysis method in Rhinoceros 

software, especially using Grasshopper plugins, urban form is investigated. 

This analysis includes both the coldest and hottest days of the year. The 

results show that the optimal model is the cross typology.
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Introduction

Urban structures, by making changes to spaces and surfaces, 
as well as using materials that are different from existing natural 
materials in terms of thermodynamics and natural cycles of 
energy flow, have caused the formation of special microclimates 
called urban microclimates. These microclimates can have positive 
as well as negative effects (Shoshtari et al., 2018). The increase in 
temperature within cities is a problem that affects every aspect of 
urban life. Ignoring it can lead to irreparable consequences. The 
increase in temperature has various causes. Urban design, as one 
of the responsive disciplines, can provide a vantage point for the 
study of the impact of urban development and its thermal 
reflection, considering different variables such as urban materials 
(Ahmadi Vanhari et al., 2016). Due to the difference between the 
type of energy exchange in the city and in the natural environment, 
the urban climate has a considerable difference in terms of climatic 
variables such as air temperature, surface temperature, humidity, 
wind speed, and wind orientation, compared to its surrounding 
areas and the margins of cities and the countryside. These 
differences have caused the average temperature in cities to be a 
few degrees more than their suburbs and this phenomenon is 
known as the heat island of the city (Pourdeihimi et al., 2019).

Urban heat islands are one of the most common phenomena 
in the city, in which some urban areas, especially the center of 
cities, are a few degrees warmer than the surrounding areas (Zandi 
et  al., 2020). Due to their climatic characteristics, urban heat 
islands have a high impact on climate change; they can reinforce 
fractal disturbances and increase the height of boundary layers 
and cause the release of particulate matter into the air to high 
levels of the atmosphere, and it was found that increasing 
urbanization can lead to increased UHI intensity and decreased 
concentration of surface aerosol materials (Tao et al., 2015). The 
undesirable effects of this heating include environmental 
deterioration, increasing the amount of ozone on the Earth’s 
surface and even increasing the mortality rate (Torkashvand, 
2016), increasing the population, increasing pollution caused by 
industries and increasing the traffic of cars, increasing the 
temperature of some urban areas compared to other areas 
(Matkan et al., 2014), increasing energy consumption (Ahmadi 
Vanhari et al., 2016), increasing water consumption during the 
hottest times of the year as well as thermal discomfort (Hashemi 
Darebadami et al., 2019) and the presence of impermeable levels 
in the city (Alijani et al., 2017). Heat and pollution are caused by 
large vehicles, industries and factories, air conditioning devices 
(Karimi Firozjaei et  al., 2017), and have adverse effects on 
surrounding lands, microclimates (rainfall, temperature and wind 
flow) and changing the pattern of local winds, strengthening the 
growth of clouds and fog, increasing the number of thunderstorms 
and affecting the amount of rainfall (Halabian and Soltani, 2020). 
In order to reduce these adverse effects, several strategies have 
been proposed which are collectively called urban heat island 
reduction strategies. There are currently dozens of strategies (Qi 
et al., 2020), including the use of green spaces (Chow et al., 2010; 

He and Zhu, 2018), green roofs (Peng and Jim, 2013), vertical 
green systems (Alexandri and Jones, 2008) and green parking lots 
(Park et  al., 2016). Urban Heat Island (UHI) has a significant 
impact on the health of urban residents and energy consumption, 
as well as air quality. UHI research has shown that the combination 
of morphology and urban form such as increasing impermeable 
land cover, the geometry of street canyons, reduced sky visibility 
(wall to street width ratio) has an impact on energy balance, wind 
speed, and long-wave radiation, and results in the elevation of 
temperature in cities. Studies are trying to achieve a healthier 
urban environment and buildings with higher energy efficiency in 
cities (Equere et al., 2020).

With regard to urban planning and morphology, classical 
theories, such as the concentric zone theory (Burgess, 2008), 
which mainly focused on the city structure and the functional area 
of the city can be noted (Lei et al., 2020). In general, urban forms 
can be described as spatial patterns of urban landscapes composed 
of different fundamental elements (Abrantes et al., 2017). Urban 
form usually refers to spatial structure and built environment 
patterns (Lowry and Lowry, 2014), and changes in the spatial 
characteristics of urban areas over time are generally known as 
urban growth patterns (Dahal et al., 2017). A number of designers 
have investigated the relationship between the city form and its 
four factors at the macro level: density, mix land-uses, centrality 
and accessibility of the streets (Changyeon, 2020), the 
transformation of the form and degeneration of old neighborhoods 
and the formation of modern neighborhoods, with the rule of 
automobiles, gentrifications, context rupture, passing from 
collectivism to individualism and, naturally, increasing energy 
consumption and fossil fuels (Lotfi et al., 2016). The effectiveness 
of using urban form to promote sustainable patterns and, 
consequently, the optimization of energy consumption, is 
considerable (Boarnet and Crane, 2001; Stevens, 2017). Urban 
forms (Kaza, 2020) with factors such as compactness, continuity 
(Brownstone and Golob, 2009), walking and travel speed (Liu and 
Shen, 2011), carbon footprint (Jones and Kammen, 2014) and 
demographic variables (Lopez, 2014) can affect energy 
consumption. Many studies have shown that urban form 
indicators have the most important impact on the heat islands of 
the city (Ward et  al., 2016). However, the city form can 
be improved by building performance, thermal environments and 
urban form optimization strategies are a function for optimizing 
thermal environments (Yang et al., 2020). According to These 
Studies (21 to 34), the relationship between and effectiveness of 
form and UHI, in the form of a comprehensive and executive 
conceptual model based on the orientation and typification of the 
urban form, has not yet been investigated. In this research, the 
direct effect of UHI and its forms, types and the calculation of 
UHI intensity in different urban forms has been investigated and 
the aim is to reach a new result from previous research about to 
what extent the variability of parcels and their directions, and 
urban blocks affect the amount of UHI and climate changes? In 
this study, the Ferdous neighborhood of Tabriz (adjacent to Tabriz 
Grand Park (El GOLI) has been investigated in order to measure 
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this relationship. In order to investigate these effects, three types 
of status quo form typologies (L-Type, Rec-Type, Cross-Type) 
with heat islands intensity indices (Dry bulb Temperature (Tdb), 
Dew point Temperature (DP), Relative Humidity (RH), Wind 
Speed (WS)) were measured and analyzed on the coldest and 
warmest days of the year, and the most optimal of these three 
types were presented for the cold and hot seasons in the form of 
two formic matrices.

Theoretical background

The urban heat island was first observed by Oak Howard in 
London in 1820, which was 1.2 degrees Celsius warmer at night 
and cooler than the countryside by 0.19 degrees Celsius in the day. 
Thermal energy injected into the urban environment in different 
ways must be  balanced between two tangible and intangible 
thermal energies and these energies should be returned to the 
atmosphere or stored in the inner system of the city structure 
(Ahmadi Vanhari et al., 2016). The phenomenon of the urban heat 
island refers to the temperature difference between the city and 
the surrounding rural areas, with urban areas having higher 
temperatures than rural areas (Torkashvand, 2016). Li et al. (2018) 
used a new method to quantize the intensity of urban heat islands. 
This method determines the intensity of an urban heat island by 
using the relationship between land surface temperature and 
impermeable surfaces. Remote sensing data and the nuclear 
density method were used to evaluate them; the results showed 
that the linear function of the Earth’s surface temperature was 
consistent with impermeable surfaces and there was a positive 
correlation between ground surface temperature and nuclear 
density (Li et al., 2018). In a study, Li et al. (2020) examined UHI 
levels in the metropolitan area of Berlin and measured the results 
using a hybrid network observation method with the WRF-Chm 
model (Li et al., 2020). Mackie et al. implemented a variety of UHI 
mitigation measures in a Chicago city study that produced a 
significant impact on Albedo citywide (Henao et al., 2020).

The study of Yang et al. (2020) aimed to assess the impact of 
a neighborhood-scale urban heat island (UHI) on the energy 
performance of buildings. Hourly air temperature and relative 
humidity were continuously measured for 3 years in 10 
neighborhoods of Nanjing, China, which were selected based on 
the Local Climate Zone (LCZ) scheme. Data collected from the 
LCZ sites and suburban meteorological stations were analyzed 
and used as inputs for building energy simulations. Analysis of 
the warmest and coldest days showed that the average daily peak 
cooling load of residential (office) buildings was increased by 
6–14% (5–9%), and the average daily peak heating load was 
decreased by 4–15% (3–14%). The study indicated that the 
spatial–temporal variability of UHI at the local scale can exert 
different effects on the energy performance of buildings (Yang 
et al., 2020). In an article titled “Urban form and transportation 
energy consumption, Effect of Land Use Policies such as City 
Form Change and Density,” this has been discussed. Rich data 

collected from different sources have been used to test the effect 
of the city’s form on energy consumption in the transportation 
sector and, using demographic and economic characteristics, the 
effect of different dimensions of the city form on energy 
consumption was measured (Kaza, 2020). In research about the 
relationship between urban form and the intensity of heat 
islands and its impact on urban development, considering the 
intensity of appropriate light, population density and area size, 
they classified different levels of urban development and found 
that horizontal and continuous growth of the city (scale and 
density) increases the intensity of heat islands (Liang et  al., 
2019). A study titled “Effects of urban growth spatial pattern 
(UGSP) on the land surface temperature (LST): A study in the 
Po Valley (Italy)” concluded that the spatial structures of 
artificial land uses play an important role in the local thermal 
pattern and that the form base patterns of the city have a 
significant relationship with day, night, climatic and temperature 
conditions (Zullo et al., 2019). Finally, by reviewing the previous 
research and results, in this study, we investigate the effect of the 
form and typologies of parcels on the intensity of heat islands in 
the hope that a new door can be opened to strategies to reduce 
energy consumption.

Building form typology
Combining the typology of the form approach initiated by 

Martin and March and the typology of the function approach, 
we define typology by three characteristics: function, footprint 
shape and building height. The function category includes office, 
residential, mixed use and commercia buildings. The shapes of 
building footprints are divided into three typologies based on the 
basic categories defined by Martin and March: rectangle, court, 
and cross (Li et al., 2016).

Effects of urban form on heat islands and 
temperature of urban environments

Elements of urban form include building height, building 
type, floor area ratio (FAR), segmentation, block size, block shape 
and building density. Urban form can be  defined, for urban 
morphological studies, as variables that affect ambient 
temperature, such as elevation to width ratio (H/w), sky view 
factor (SVF), building wall materials, roof cover and ground. It 
can have a significant effect on ambient temperature due to the 
level of access to sunlight, wind flow, air temperature and surfaces; 
meanwhile, the ratio of height to width (H/w) and the orientation 
of passageways affect the intensity of environmental conditions in 
cities. It also causes the modification of microclimatological 
conditions in different directions of urban streets so that cities, 
because of the difference in the climatic variables of the city (air 
temperature, humidity, speed and wind direction, the amount of 
rainfall) with the less compact areas around it, experience certain 
climatic conditions and the urban form is a factor that plays an 
important role in determining the urban microclimate and 
environmental temperature (Sanagar Darbani et  al., 2020). 
Conceptual framework is demonstrated in Figure 1.
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Materials and methods

The Ferdous neighborhood is one of the newly developed and 
built neighborhoods with a regular context in district 2 of Tabriz 
city. This neighborhood is economically one of the most 
prosperous neighborhoods and, in terms of regional value, is one 
of the most valuable areas of Tabriz. In terms of climate and 
micro-climate, due to its proximity to El GOLI Park and the soft 
existence of abundant spaces and vegetation, it has high 
desirability. The physical density of this neighborhood is very high 
and, despite the existence of one-floor and two-floor duplex 
houses, 9–12 floor residential towers are within the range 
(Figure  2). The research method for this study is based on 
quantitative methodology. In this research, library and 
documentary studies were collected through reviewing books, 
articles, reports, documents and designs in the field of heat 

islands, the forms and factors affecting it and the relationship 
between them. Then, by identifying the existing form typologies, 
a UHI indicator of heat islands in the three forms of rectangular, 
Cross and L-typed was analyzed and the intensity of the heat 
islands in each form was measured according to the current 
situation on the coldest and warmest days of the year. Heat islands’ 
intensity modelling and form parcel coding were performed for 
analysis in RHINOCEROS software using Urban Weather 
Generator (UWG) engine which is used by Dragonfly as 
the interface.

Nakano et al. (2015) developed UWG using a building energy 
model based on the Town Energy Balance scheme and energy 
balances applied to control volumes in the urban canopy and 
boundary layers. UWG calculates the hourly values of urban air 
temperature and humidity based on reference weather data 
typically measured outside a city. It requires an Energy Plus 
weather (EPW) file and an Extensible Markup Language (xml) file 
describing the urban and rural site characteristics. The process of 
creating the xml file is further broken down into four different 
parts: (1) building construction; (2) internal loads from occupants, 
equipment, and lighting; (3) geometric parameters and 
anthropogenic heat defining the urban space; and (4) information 
concerning the measurement of the weather data at the rural site. 
The template library is included to facilitate quick parametric 
simulations using different building construction, schedules, and 
so forth. The UI takes in multiple building templates and weighs 
their effects on the urban climate by the distribution of building 
types. The Rhino version shares a similar UI as the standalone 
version. It takes advantage of Rhino’s and UMI’s functions to 
automatically extract the site coverage ratio, façade-to-site ratio, 
average building height (weighted by building footprint) and 
characteristic length (√site area), as well as the average window-
to-wall ratio and the U-value (weighted by facade area) to further 
reduce user inputs and the extra step previously required to 
manually calculate or use the Grasshopper definition provided 
above to obtain these parameters (Nakano et al., 2015).

The process of analyzing and reviewing the present study is 
summarized as follows:

 1. Step 1: Modelling 3 form typologies. In the first Step, the 
plan form, number of floors, land uses, life of buildings, 
green spaces and parking lots, trees, lighting and balconies 
of the desired areas were designed and prepared by 
observational and experimental studies in Autodesk 
AutoCAD and Arc GIS software. Then, in order to model 
them, the data were entered into RIHNOCEROS software, 
and were coded, designed with the GRASSHOPPER plugin 
(in all three forms of Rectangular-Type, L-Type and 
Cross-Type).

 2. Step 2: Input data & Geometries. At this point, the desired 
data were added to the plugins, Grasshopper, Ladybug, 
Honeybee and Dragonfly. In the desired area, the number 
of floors of residential units, 1 to 12 floors, commercial 
units, number 1, 2, 4 and 5 floors, as well as a 3.2 × 2(A × B) 

FIGURE 1

Conceptual framework.
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m parking space for each unit and a radius of 3 m for trees 
were considered.

 3. Step  3: Building Typologies. Then, according to the 
inputted data (residential, commercial and parking units), 
the type of building form was run in three forms: 
Rectangular-Type, L-Type and Cross-Type (Figure 3).

 4. Step 4: City Parameters. In this step, the city parameters 
(Traffic, Vegetation and Pavement Parameters) were 
entered as inputs in order to construct the city model. Each 
of these parameters requires a number of data that have 
been entered by observational and experimental studies 
and global standards. These parameters are presented in 
Table 1.

 5. Step 5: Run City. In this step, using the Dragonfly plugin, 
city form models were run using their parameters (Traffic, 
Vegetation and Pavement Parameters). City model inputs 

including the parameters Building Typologies, Terrain, 
Trees, Grass and Climate Zone (Climate Zone for Tabriz: 
7) were entered.

 6. Step  6: Run UWG (Urban Weather Generator). At this 
point, an Urban Weather Generator was built according to 
the city model and open space (Rural) Energy Plus Weather 
file. Considering that the intensity of heat islands is 
calculated by the difference in the temperature of the city 
and the surrounding rural environments, the Energy Plus 
Weather file (EPW) is considered as an open space or rural 
area for analysis without any construction. According to 
the construction of the city model using parameters and 
form typologies, an Energy Plus Weather file was created 
for each form of the city, each of which contained 
microclimate data proportional to the typification and 
orientation of the construction form. UWG requires a 

FIGURE 2

Case study area.

TABLE 1 Parameters (Nakano et al., 2015).

Traffic parameter Vegetation parameter Pavement parameter Parking space Floor

Sensible Heat (10; This value for 

residential-commercial areas is 

10 W/M2)

Albedo (0.35) Albedo (0.20) 3.2 * 2 meter for each unit Case study buildings had 

1,2,4 and 45 floors and 

calculate each floor to 3 m 

HeightEPW site parameters inputs: Boundary layer parameters: Analysis period:

Vegetation coverage (0.85): Export to run UWG Input monthly 1 to 12 input 

daily 1 to 30
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number of data that have been added according to 
observational and experimental studies and global 
standards. These parameters are presented in Table 1.

 7. Import EPW (Rural and Urban). At this point, the Energy 
Plus Weather files of the village and city were inputted into 
the model to provide the latest prerequisites and data to 
simulate and capture the outputs of UHI indicators.

 8. Step 8: Export Data and Charts (Tdb, DP, RH, WS). Finally, 
UHI indices (Tdb, DP, RH, WS) were taken as raster charts 
and raw Excel data as hourly, daily, weekly and annual 
averages (it should be noted that, using these raw data, the 
coldest and warmest days of the year were determined 
for analysis).

 9. Step 9: Extracting data on the warmest and coldest days of 
the year. After extracting the statistics in Excel tables and 
raster diagrams and charts, the hourly average during the 
whole year, the monthly average and the coldest and 
warmest days of the year were determined and the four 
indices were analyzed for these 2 days.

 10. Step 10: Calculating UHI intensity (in 3 form typologies) 
at the warmest and coldest day of year and logarithmic 
Diagrams. As a result, after extracting UHI indices, using 
the Oak Howard formula to calculate the intensity of UHI, 
this rate was investigated in all three models and displayed 
in logarithmic diagram (on the coldest and warmest days 
of the year).

 11. Step 11: Drawing the matrix on the warmest and coldest 
days of the year to determine the optimal model. In order 
to select the optimal model, two matrices were prepared 
and displayed for the warmest and coldest days of the year, 
in which the four UHI indices and their intensity for all 
three forms were investigated and the optimal model was 
selected and presented in the results.

Results

According to the research method and the presented steps, the 
data of the coldest and warmest days of the year were taken from 
the annual and monthly average output charts. Using UWG and 
UHI Intensity functions, three form types of analysis and results 
were presented in the form of logarithmic tables and diagrams, 
and in order to achieve the optimal model among these three 
models, two matrixes were prepared for the coldest and warmest 
days of the year and the optimal model was selected (Figure 3).

Statistical analysis and structural 
equation model

Figure  4 presents the full structural equation model, 
examining the relationships between the urban typologies and 
urban heat islands’ intensity. The model is based on the theoretical 

background and the model of the method presented in Section 3 
above. Personal characteristics are also included in the model as 
UWG indicators linked to the three main form typologies and 
UHI intensity indicators of the study: UWG characteristics, form 
typologies and UHI intensity indicators. The UWG characteristics 
that are examined in the study are: traffic, vegetation, pavement 
parameters and energy plus weather data (EPW). The placement 
of UWG characteristics in our model derives from the model of 
the method and empirical studies from the Ferdous neighborhood 
of Tabriz. In cases such as Ferdous, form typologies can influence 
UHI intensity and cities’ parameters and therefore these variables 
are considered.

Heat islands are in fact different from the temperature of 
urban and rural areas; in rural spaces it is assumed that there are 
no buildings in the area, and in urban areas the status quo of the 
buildings in the area with the desired form has been investigated 
and the intensity of UHI has been used according to the oak 
formula 1981 (Formula 1):

 
∆TU R Ln H W− ( ) = + ( )max . . / .7 45 3 97

 
(1)

Formula (1): Oak 1981 formula to calculate UHI intensity 
(Alijani et al., 2017; This formula applied in these studies, see 
Table 2).

In the Formula (1) of ΔTU-R(Max), the maximum heat island 
intensity and H/W is the ratio between the average height of the 
building and the average width of the street. The intensity of the 
heat island is calculated according to the data extracted from the 
UHI model (Rural and Urban (Rec, L, Cross) and is displayed in 
the form of tables and logarithmic diagrams.

At first, the raster files of dry bulb temperature (Tdb), dew 
point temperature (DP), relative humidity (RH) and wind speed 
(WS) were output. The above diagram shows the dry bulb 
temperature in rural spaces, and the below diagram shows the 
urban space indicators with the desired pattern (with the 
number of floors and orientation and type of the current 
situation in three forms L, Cross, Rec) taken out. Then, according 
to the data extracted from the analysis of the model, the warmest 
and the coldest days of the year were determined—2 January is 
the coldest day and 3 August is the warmest day of the year 
(Figure 5).

After reviewing the four indices in the three models, the heat 
island intensity was calculated in the coldest (2 January) and 
warmest (3 August) days of the year. In the intensity of the heat 
island, the higher the temperature difference between the urban 
space and the village, the higher the need for energy consumption 
and the use of cooling devices in summer and heating devices in 
winter, meaning the amount of energy consumption increases. 
In order to investigate the amount of energy loss in each of these 
three models, the intensity of UHI is measured and displayed in 
the form of tables and diagrams (Table 2). On the warmest day 
of the year, this intensity is higher in Rec-type and energy 
consumption is higher than that of the L-type and Cross -type, 
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and Cross -type has the lowest energy loss in terms of UHI 
intensity. On the coldest day of the year, this intensity is higher 
in the L-type model and energy consumption is higher than that 
of the Rec- type and Cross-type, and Cross-type has the lowest 
energy loss in terms of UHI intensity (Figure 6).

Discussion

The increase in temperature is especially noticeable for urban 
areas. One of the urban problems that has arisen as a result of 
unplanned growth in cities is the heat island, especially in 

FIGURE 3

3D modeling.

FIGURE 4

Statistical analysis and structural equation model.
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metropolises. Urban heat Islands (UHIs) are the product of urban 
climate and are considered one of the most important environmental 
problems of the 21st century. In fact, heat island refers to the increase 

in air temperature, but can also be considered as relative surface heat, 
so studying urban heat islands can lead to many problems (Dadashi 
Roudbari and Aliabadi, 2017; Table 3).

Urban heat island is the increase in the temperature of cities 
compared to rural and suburban areas. Contrary to regional 
climate differences, the cities of the world have a special feature 
called the heat island of the city. In fact, urban areas have higher 
temperatures than rural areas (Shirvani Moghadam and Saeedi 
Mofrad, 2018). Heat islands increase energy consumption, reduce 
thermal comfort and pose a threat to human health. In urban 
areas, heat is enclosed within impermeable surfaces such as 
concrete and asphalt, and when cities are faced with high 
concentrations of air pollution and increased human activity, heat 
islands are intensified, generally providing tall buildings with 
shade and reducing ambient temperature. However, at the same 
time, they also absorb a lot of sunlight and this causes the ambient 
temperature to be closely related to the urban form (Sanagar 
Darbani et al., 2020).

TABLE 2 UHI intensity (in 3 form typologies) on the warmest and 
coldest days of the year.

Form type Coldest day Warmest day

Rec-Type Tdb Urban: −7.80 Tdb Urban: 32.60

Tdb Rural: −9 Tdb Rural: 30.9

ΔTU-R: +1.20 ΔTU-R: +1.70

L-Type Tdb Urban: −7.79 Tdb Urban: 32.59

Tdb Rural: −9 Tdb Rural: 30.9

ΔTU-R: +1.21 ΔTU-R: +1.69

Cross-Type Tdb Urban: −7.82 Tdb Urban: 32.58

Tdb Rural: −9 Tdb Rural: 30.9

ΔTU-R: +1.18 ΔTU-R: +1.68

FIGURE 5

Raster charts − Hourly Average quadruple Indicators (Tdb) for the year and the time averaged chart of the coldest and warmest months of the year 
(data from the coldest and warmest days of the year are extracted in this chart). It should be noted that red color represents heat and blue color 
represents cold.
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Variable descriptions

The four indices of UHI intensity measurement—Dry 
Bulb Temperatures, Dew Point Temperature, Relative 
Humidity and Wind Speed—were investigated in order to 
understand their effect on the type and form typologies and 

then these indicators were introduced for statistical analysis 
and structural equation modeling. It should be noted that the 
two indicators of relative humidity and wind speed have been 
measured and evaluated using psychrometric chart and EPW 
data (Wind speed and relative humidity data are available in 
the EPW file of the studied area) (Table 3).

FIGURE 6

UHI intensity Ln Chart (in 3 form typologies) on the warmest and coldest days of the year and its matrices. It should be noted that this classification 
is based on Table 2 and evaluation of 4 climatic indicators.
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Dry bulb temperatures
Dry bulb temperature is ambient air temperature, which is 

what the normal air temperature is called with a thermometer 
(Parsons, 2015). Dry bulb temperature, commonly called air 
temperature, is the air property that is most commonly used. It 
is called “dry temperature” because the temperature is 
represented by a thermometer that is not affected by the 
humidity of the air. Dry bulb temperature (Tdb) is measured 
using a conventional thermometer that is freely exposed to air 

but protected from radiation and humidity. Temperatures are 
usually measured in degrees Celsius or Fahrenheit (0F). The Si 
unit is Kelvin (K). Zero Kelvin is −273oC. Dry bulb temperature 
is an indicator of heat (National Oceanic and Atmospheric 
Administration, 2020).

Dew point temperature
A dew point is the temperature at which water vapor 

condenses from outside the air (a temperature at which the air is 

TABLE 3 Psychrometric Chart (in 3 form typologies) on the warmest and coldest days of the year.

Times Psychrometric chart (Annual)

Rectangle Type

L-Type

Cross-Type
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completely saturated). Above this temperature, humidity stays in 
the air.

 • If the dew point temperature is close to the dry bulb 
temperature, relative humidity is high;

 • If the dew point temperature is below the dry bulb 
temperature, relative humidity is low.

Dew Point temperature is always lower than dry bulb 
temperature and is identical to 100% relative humidity (air is in 
the saturation line). When the steam in the air starts to condense 
outside the can, the thermometer’s temperature is almost close to 
the dew point of the actual air (Dry Bulb, 2001).

Relative humidity
Relative humidity is the percentage (or ratio) of water vapor 

in the air relative to the amount needed to saturate the air at the 
same temperature. Although commonly used, relative humidity 
is not the best measure of humidity as it depends on air 
temperature. Hot air has more water vapor than cool air 
(Parsons, 2015).

Wind speed
Air velocity plays an important role in the amount of heat and 

how a body’s surface heat is transmitted through evaporation. A 
speed of less than 19.7 fpm (0.1 m/s) creates a throbbing or 
generally brewed state so that, due to a lack of air flow, the air 
around the surface of the body reaches saturation and prevents 
evaporation (Soltandoost, 2013).

In our studies, after reviewing the four indices in the three 
models, the heat island intensity was calculated for the coldest (2 
January) and warmest (3 August) days of the year.

The pattern of wind direction has been changed according to 
the form of the buildings. The pattern of the buildings is currently 
a rectangular pattern, and in order to investigate and measure the 
effect of the shape of the buildings on the intensity of UHI, all the 
buildings have been replaced with two patterns, L and + (there 
were buildings with these patterns in the whole context). And the 
change in the form of buildings has controlled the flow of wind 
movement. 2 factors Tdb and DP independently and RH and WS 
are dependent on the intensity of UHI.

We calculated UHI intensity (in three form typologies) for 
the warmest and coldest days of the year and used logarithmic 
diagrams. As a result, after extracting UHI indices and using the 
Oak Howard formula to calculate the intensity of UHI, this rate 
was investigated in all three models and was displayed in a 
logarithmic diagram (on the coldest and warmest days of 
the year).

On the warmest day of the year, this intensity is higher in 
Rec-type and energy consumption is higher than in the L-type and 
Cross -type, and the Cross -type has the lowest energy loss in 
terms of UHI intensity. On the coldest day of the year, this 
intensity is higher in the L-type model and energy consumption 
is higher than in the Rec- type and Cross-type, and the Cross-type 

has the lowest energy loss in terms of UHI intensity (as displayed 
in Figure 6).

Therefore, a matrix is drawn for the warmest and coldest days of 
the year to determine the optimal model (Figure 6). In order to select 
the optimal model, two matrices were prepared and displayed for the 
warmest and coldest days of the year, in which the four UHI indices 
and their intensity for all three forms were investigated and the 
optimal model was selected and presented in the results.

Thus, the Cross model is more favorable in terms of energy 
consumption and low UHI index than the Rectangular and 
L-typed models, and the L-typed model has a more favorable 
status than the rectangular model for warm days and seasons. 
Finally, two matrices were formed for the coldest (2 January) and 
warmest (3 August) days of the year in order to determine the 
optimal form pattern with the microclimatic conditions of the 
region. According to the analysis and in the matrices, the 
conditions and indicators of heat islands and the effect of (Rec-L-
Cross) forms on the intensity of the islands were investigated.

Conclusion

As mentioned earlier, in previous studies, the relationship and 
effectiveness of form and UHI, in the form of a conceptual and 
executive model based on the orientation and typification of the 
urban form, has not yet been investigated. In this research, the 
direct effect of UHI and its forms and types, and the calculation of 
UHI intensity in different urban forms, has been investigated and 
the aim is to understand to what extent the variability of typologies 
and the direction of form base, parcels and urban blocks affects the 
amount of UHI changes and climate changes? Form and physical 
typologies have a direct effect on the distribution of temperature in 
cities. According to the analysis in the study area, form typologies 
were Rectangular, L and Cross types, and for each of these patterns 
the intensity of the heat islands (UHI Intensity) was analyzed. The 
most appropriate model for the current situation is in terms of 
controlling the cooling and heating of the building and to some 
extent controlling the energy consumption of the Cross model.

Using the desired form and typologies and, proportional to the 
microclimatic conditions, the amount of cooling and heating of the 
building, to some extent the amount of energy consumption can 
be controlled. Two matrices have been prepared to analyze the three 
patterns (Rec-Type), (L-type) and (Cross -Type), on the coldest and 
warmest days of the year (Figure 6). According to the matrices, the 
intensity of UHI in the L-typed model (coldest day) and the 
Rec-Type model (the warmest day) is higher than the other two 
models and the rate of increase in the temperature of the city 
environment is higher. High dry bulb temperatures (larger than dew 
point temperatures) and low wind speeds exacerbate this, causing 
energy loss. If you take a closer look at the matrices, the humidity 
difference is 0.1 per model for a warm and a cold day, indicating 
that, by changing the form and physical typologies, the intensity of 
the heat islands can be partially controlled. Among these three types 
of patterns, the desired type on both cold and warm days of the year 
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is the Cross -type, because the intensity of UHI is lower and the 
humidity will be higher to increase the range of winter and summer 
comfort. Of course, the form alone cannot control the amount of 
energy consumption and microclimatology changes, but it is an 
important factor and, along with using the design of the form and 
desirable types of building, passive strategies can also be used, such 
as passive solar solutions and green materials, which can be very 
desirable for energy storage and increasing the thermal comfort of 
the environment. Future research will investigate how much 
climatic comfort, cooling and heating of buildings and energy 
consumption will be controlled by using passive solutions in these 
forms and typologies, and whether the combination of these forms 
and typologies can lead to more energy storage or not.
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