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Accelerated evolution of
dim-light vision-related arrestin
in deep-diving amniotes

Xin Guo?, Yimeng Cui!, David M. Irwin? and Yang Liu*

*College of Life Sciences, Shaanxi Normal University, Xi'an, China, 2Department of Laboratory
Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

Arrestins are key molecules involved in the signaling of light-sensation initiated
by visual pigments in retinal photoreceptor cells. Vertebrate photoreceptor
cells have two types of arrestins, rod arrestin, which is encoded by SAG and
is expressed in both rods and cones, and cone arrestin, encoded by ARR3
in cones. The arrestins can bind to visual pigments, and thus regulate either
dim-light vision via interactions with rhodopsin or bright-light vision together
with cone visual pigments. After adapting to terrestrial life, several amniote
lineages independently went back to the sea and evolved deep-diving habits.
Interestingly, the rhodopsins in these species exhibit specialized phenotypes
responding to rapidly changing dim-light environments. However, little is
known about whether their rod arrestin also experienced adaptive evolution
associated with rhodopsin. Here, we collected SAG coding sequences from
>250 amniote species, and examined changesin selective pressure experienced
by the sequences from deep-diving taxa. Divergent patterns of evolution of
SAG were observed in the penguin, pinniped and cetacean clades, suggesting
possible co-adaptation with rhodopsin. After verifying pseudogenes, the same
analyses were performed for cone arrestin (ARR3) in deep-diving species and
only sequences from cetacean species, and not pinnipeds or penguins, have
experienced changed selection pressure compared to other species. Taken
together, this evidence for changes in selective pressures acting upon arrestin
genes strengthens the suggestion that rapid dim-light adaptation for deep-
diving amniotes require SAG, but not ARR3.
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Introduction

Vision-related arrestins that are expressed in photoreceptor cells regulate both
dim-light (rod arrestin, also called S-antigen, encoded by SAG) and bright-light (cone
arrestin, encoded by ARR3) vision (Lamb et al., 2018). Rod arrestin is expressed in both
rod and cone photoreceptor cells, whereas cone arrestin is expressed at low levels in cone
cells (Craft et al., 1994; Chan et al., 2007; Nikonov et al., 2008). Except for much lower
expression level compared with SAG (Chan et al., 2007), there are also reports of the
pseudogenization of ARR3 in multiple mammalian lineages, including some fossorial,
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nocturnal and aquatic species living in low light environments
(Zhou et al., 2013; Emerling and Springer, 2014; Indrischek et al.,
2017,2022; Zheng et al., 2022).

After binding to visual pigments (rhodopsin for dim-light
vision and cone pigments for bright-light vision), which are light-
sensing molecules in photoreceptor cells, arrestins terminate their
ability to initiate phototransduction (Lamb et al., 2018). Arrestins
can slow the release rate of retinal during the Meta II stage, thus
allowing the reduction of toxic all-trans-retinal and protect
photoreceptor cells (Sommer and Farrens, 2006; Sommer et al.,
2014). At the same time, by accelerating the decay of the
longstanding Meta III state, arrestins can lead to faster visual
pigment regeneration and rod dark adaptation (Frederiksen et al.,
2016). Moreover, visual arrestins have been reported to participate
in other functions, such as the regulation of dopamine receptors
in the circadian cycle (Deming et al,, 2015).

Several groups of amniotes, such as penguins, sea turtles,
pinnipeds and cetaceans, have independently evolved a deep-
diving ability, and correspondingly specialized vision (Levenson
and Schusterman, 1999; Kroger and Katzir, 2008; Reuter and
Peichl, 2008). Some of these species, such as beaked whale and
elephant seal (Robinson et al., 2012; Berrow et al., 2018), can dive
deeper than 1,000m below sea level, into the aphotic zone
(Warrant and Locket, 2004), for predation. Interestingly, the
dim-light visual pigment rhodopsin from these species have been
reported to possess key phenotypic substitutions that allow fast
retinal release rates, which could be adaptive for rapid dim-light
sensing needed during diving (Xia et al., 2021). Both adaptive and
divergent evolution of SAG has been reported in birds, reptiles and
mammals (Wu et al,, 2016, 2018; Schott et al., 2019), including
whales (Chiu, 2019; McGowen et al., 2020), however, the role of
rod arrestin in dim-light adaptation in these deep-diving taxa has
not been fully resolved. Here, we performed extensive sequence
analyses of amniote SAG genes, as well as the cone arrestin gene
ARR3 for comparison, to determine whether adaptive evolution
has occurred in rod arrestin sequences of deep-diving taxa.

Materials and methods

Identification of SAG and ARR3 coding
sequences

Using human and chicken genes as queries, we obtained SAG
and ARR3 coding sequences from 257 amniote species (148
mammals, 90 birds and 19 reptiles) through BLAST searches of
the GenBank database'. For deep-diving taxa, that is, penguins,
sea turtles, pinnipeds and cetaceans, we also explored their
available genome sequences to find additional coding sequences
for SAG and ARR3. Sequence data for these two genes was
obtained for a total of 21 penguins, 2 sea turtles, 10 pinnipeds and
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27 cetaceans. The accession numbers for all of the identified
amniote SAG and ARR3 coding sequences are listed in
Supplementary Table S1.

For ARR3, 43 gene sequences possessing frame-shifting
indels, pre-mature stop codons or large missing segments of their
coding region were identified in mammalian species. Coding
regions containing these mutations should encode malfunctioning
proteins, and thus are considered to be candidate pseudogenes in
this study. The key mutations were also confirmed using raw
sequencing reads from the Sequence Read Archive database
(https://www.ncbi.nlm.nih.gov/sra/). For bats, we further explored
all available genomes in the NCBI database and ARR3 sequences
from a total of 46 species were obtained, covering both
echolocating and non-echolocating species. Detailed sequence
data used for the verification of ARR3 pseudogenes in mammals
is presented in Supplementary Table S2.

Tests of selection pressures

For the SAG gene, coding sequences from the Mammalia (148
species) and Sauria (109 from birds and reptiles) clades were
separately aligned using ClustalW implemented in MEGA X
(Kumar et al., 2018). For ARR3, sequences from 105 mammals
(excluding candidate pseudogenes) and 109 saurian species were
also separately aligned. Species trees for both clades were based on
information from TimeTree (Kumar et al., 2017), with additional
literature (Banks et al., 2002; Gavryushkina et al., 2017; Upham
et al., 2019) used to establish relationships for some unresolved
taxa. Given our sequence alignments and species trees,
we estimated the selection pressures acting on the SAG and ARR3
genes in deep-diving species and their amniote relatives using the
Codeml program (Yang, 2007). The free-ratio model that allows
independent  value (dy/ds) for each branch was used for both the
Mammalia and Sauria clades. The one-ratio model that constrains
 to the same value across all branches was also performed and
compared to the free-ratio model by a likelihood ratio test
(Yang, 1998).

Lineage-specific selection tests were then conducted for the
penguin, pinniped and cetacean clades. The two-ratio model,
which allows different @ values for the SAG gene from the focal
deep-diving lineages and other lineages, was conducted and
compared to the one-ratio model (Yang, 1998). To identify any
potentially positively selected site(s) in the SAG gene, branch-site
model test 2 was applied to the focal ancestral branches leading
to the three groups (Zhang et al., 2005). Furthermore, clade
model C was used to test whether the SAG gene from the whole
clade of penguins, pinnipeds or cetaceans showed a different @
value compared to other species, which was subsequently
compared with the M2a_rel model by a likelihood ratio test
(Bielawski and Yang, 2004; Weadick and Chang, 2012). As
comparison to the SAG gene, the same lineage-specific analyses
were also performed for the ARR3 gene. For penguins, an
alternative species tree (Pan et al., 2019) was also used to perform
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clade model C for both the SAG and ARR3 genes. For mammals,
an additional clade model C test with the combined cetacean and
pinniped SAG sequences together as foreground was conducted.
In addition to the deep-diving taxa, we also tested the molecular
evolution of the SAG and ARR3 genes in the archosaur ancestor
using both the two-ratio and the branch-site models (Yang, 1998;
Zhang et al., 2005).

Sliding window analysis

Using SWAAP software (Pride, 2000), selection pressure was
calculated along positions across the penguin, pinniped and
cetacean SAG sequences to identify site-wise variations within
each clade. The dy/ds values were calculated for each of the dataset,
including SAG coding sequences from penguins, pinnipeds or
cetaceans, according to Nei and Gojobori method (1986). The
window-size and step-size parameters were fixed at 45-bp and
9-bp for all calculations.

Results and discussion

After obtaining SAG and ARR3 coding sequences from 257
amniotes, we identified additional ARR3 genes, that were potential
pseudogenes, from 43 mammal species, some of which had
previously been reported, especially those in species with degraded
color vision (Supplementary Table S1). In detail, ARR3 candidate
pseudogenes were identified in 6 cetaceans, 13 rodents, 3 sirenians,
Loxodonta africana, Dasypus novemcinctus, Erinaceus europaeus,
Sorex araneus, Condylura cristata and Manis javanica that have
frame-shifting indel(s) and/or pre-mature stop codon in their
coding regions. Additionally, gene sequences from Chrysochloris
asiatica, Elephantulus edwardii and Sarcophilus harrisii contain
missing exon(s) segments, and in a few species, including
Choloepus didactylus, Echinops telfairi, Trichosurus vulpecula and
Tachyglossus aculeatus, no evidence for the gene could be found
(Supplementary Figure S1; Supplementary Table S2).

In cetaceans, apart from the reported losses of ARR3 in Lipotes
vexillifer and Physeter catodon (Zhou et al., 2013; McGowen et al.,
2020), our searches revealed that the ARR3 genes in Balaenoptera
musculus, Kogia breviceps, Mesoplodon bidens and Ziphius
cavirostris are likely pseudogenes. Notably, some of these species
have also lost their SWS1 and M/LWS opsin genes (Meredith et al.,
2013). In baleen whales, except Balaenoptera musculus, all three
other species from this genus possess intact ARR3 coding
sequences. In another fully aquatic group Sirenia, we found that
all three species, including the extinct Hydrodamalis gigas and the
reported pseudogene in Trichechus manatus (Emerling and
Springer, 2014), have lost their ARR3 gene, likely in their common
ancestor as they share an inactivating mutation in exon 8
(Supplementary Figure S1). Given that dichromatic color vision
exists in sirenians, in contrast to cetaceans and pinnipeds
(Newman and Robinson, 2006), the loss of ARR3 in their cones is
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potentially compensated by the functional SAG, similar to the case
in some other mammals (Emerling and Springer, 2014).

Interestingly, we report that most echolocating bats also have
candidate pseudogenized ARR3 genes. We investigated a total of
46 bats and found that 35 species have likely lost this gene (7 of
which need further verification), with almost all of them being
echolocating bats (Figure 1). As two molossid species (Tadarida
brasiliensis and Molossus molossus) have intact ARR3 coding
regions, the loss of ARR3 in echolocating bats likely occurred
multiple times. On the other hand, Old World fruit bats that do
not have laryngeal echolocation generally have intact ARR3
coding regions, with four species (especially Eonycteris spelaea)
needing further verification. In addition to the evidence from
opsin sequences (Zhao et al., 2009), our findings for bat ARR3
strengthens the link between visual gene loss and sensory trade-
offs in bat vision and hearing.

After excluding candidate pseudogenes, we estimated the
selection pressure acting on SAG and ARR3 genes across both
mammals and saurians and tested for evidence of positive
selection on SAG in deep-diving lineages. For the SAG gene,
multiple lineages, in both Mammalia and Sauria, have w values
greater than one when the free-ratio model was applied (p <0.001),
suggesting potential positive selection. These lineages included the
deep-diving penguins, pinnipeds and cetaceans, but not the sea
turtles (Figures 2A,B). Varied site-wise selection pressures for the
SAG sequences in the penguin, pinniped or cetacean clades
suggest diversified evolution for their dim-light related arrestin in
each of the groups (Figure 2C). However, in-depth lineage-specific
branch-site and two-ratio model tests on the ancestral penguin,
pinniped and cetacean lineages failed to obtain evidence for
positively selected sites on these three ancestral lineages
(Supplementary Table S3), with only the cetacean ancestral branch
having significantly different selection pressure (p=0.02) from the
background lineages (Table 1). Interestingly, in addition to
validated the reported divergent evolution found in cetacean SAG
(Chiu, 2019), clade model C tests further revealed that the SAG
sequences from two other deep-diving groups also have
significantly higher @ values compared with non-deep-diving
lineages (Table 1; Supplementary Table S4). The divergent
evolution of cetacean SAG has been suggested to be associated
with their deep diving, and a key substitution (Q69R) has been
verified for having a role in increasing the formation of rhodopsin
Meta I (Chiu, 2019). In addition to their specialized rhodopsins
(significantly faster retinal release rates and possibly faster dark
adaptation; Xia et al., 2021; Dungan and Chang, 2022), SAG could
be another gene contributing to the acute dim-light vision of
deep-diving species, by regulating Meta II formation and thus
possibly accelerating the rod dark adaptation (Frederiksen et al.,
2016). Since the key substitution found in whales (Chiu, 2019) is
not shared with penguins and seals (Supplementary Figure S2),
their potential fast adaptation to deep-diving visual perception via
rod arrestin might be due to different molecular mechanisms.

As a comparison to the findings for SAG, the same analyses
were performed for the amniote ARR3 genes, which show much
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FIGURE 1

Pseudogenization of ARR3 in bats. Coding sequences of ARR3 in both non-echolocating Old World fruit bats (brown background) and
echolocating bats. Pseudogenes verified by examining raw sequencing data are shown as “¥,” whereas potential pseudogenes without verification
evidence are shown as "P?" and sequence of uncertain status as indicated by “?". Reported pseudogenes are indicated by checkmarks (Indrischek
et al., 2022). Lengths of indels in exons are indicated by the black and red (frame-shifting) numbers, with “~" indicating deletion and “+" insertion.
Red asterisk (*) indicates location of pre-mature stop codon. Losses of start or stop codons are indicated by red circles. Missing regions of partial

exons are shown in gray and completely missing exons are indicated by “/". Sequencing assembly gaps are shown as dashed lines.

lower levels of expression in cones than the SAG (Nikonov et al.,
2008). No evidence for positively selected sites in the ancestral
lineages for deep-diving species was found for ARR3
(Supplementary Table S3). Interestingly, ARR3 sequences from
both penguins and pinnipeds, but not cetaceans, had @ values not
significantly different from those from other lineages, adding
further evidence that only dim-light vision, and not color vision,
is the key factor for their acute visual perception during deep
diving (Table 1; Supplementary Table S5). For cetaceans, since
ARR3  pseudogenes were found in some species
(Supplementary Figure S1), and they have experienced
widespread losses of opsin and some other visual genes (Meredith

et al., 2013; Springer et al., 2016; McGowen et al., 2020), the
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significantly higher  value for the ARR3 sequences is unlikely
due to adaptation to color vision.

Apart from phenotypic evolution of rhodopsin in deep-diving
vertebrates (Xia et al., 2021), rhodopsin function has also been
measured for the ancestor of Archosaur, which was shown to have
a similar transducin activation rate as that of bovine rhodopsin
(Chang et al., 2002). We therefore carried out evolutionary analyses
of the archosaur SAG and ARR3 sequences to determine whether
their visual arrestins experienced adaptive evolution. Interestingly,
SAG showed signals for positive selection, but not ARR3 (Table 2),
suggesting that their rod arrestin might be an important molecule
involved in their rhodopsin-mediated adaptation to dim-light. The
results from both deep-diving taxa and the archosaur ancestor
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TABLE 1 Tests for selection on SAG and ARR3 genes in deep-diving clades.

10.3389/fevo.2022.1069088

Gene Hypothesis 4 Estimated parameters p value
SAG Two-ratio —20,458.75 @, =0.25, w, =0.51 0.124
Penguin ancestor
One-ratio —20,459.93 w,=0.25
Clade model C —19,731.79 Po=0.52,p,=0.13, p,=0.35 0.010%*
Penguins @,=0.03, w, =1, ®,=0.31, w; =0.64
M?2a_rel —19,735.11 Po=0.51,p, =0.13, p, =0.36
@, =0.03, w, =1, w,=0.31
ARR3 Two-ratio —20,433.89 @, =0.09, w, =0.2 0.054
Penguin ancestor
One-ratio —20,435.74 ,=0.09
Clade model C —19,678.53 Po=0.72, p, =0.05, p, =0.23 0.359
Penguins @, =0.02,w, =1, ®,=0.23, 03 =0.17
M2a_rel —19,678.95 Po=0.72, p; =0.05, p, =0.23
@, =0.02,w, =1, w,=0.23
SAG Two-ratio —30,189.22 w,=0.12, v, =0.22 0.17
Pinniped ancestor
One-ratio -30,190.16 w,=0.12
Clade model C —28,846.22 Po=0.64, p, =0.07, p, =0.29 <0.001%*
Pinnipeds @,=0.02, 0, =1, w, =0.24, ®3 =0.61
M2a_rel —28,852.81 Po=0.64, p, =0.07, p, =029
@, =0.02,w, =1, w,=0.24
ARR3 Two-ratio —15,954.44 @y =0.25, 0, =0.17 0.584
Pinniped ancestor
One-ratio —15,954.59 w,=0.25
Clade model C —15,534.88 Ppo=0.51, p; =0.14, p, =0.35 0.173
Pinnipeds @, =0.04, 0, =1, ®, =0.3, 03 =0.49
M2a_rel —15,535.81 po=0.5,p,=0.14, p, =0.35
@, =0.04, w, =1, w,=0.31
SAG Two-ratio -30,187.24 w,=0.12, w;, =0.3 0.016*
Cetacean ancestor
One-ratio —30,190.16 @, =0.12
Clade model C —28,841.25 Po=0.63, p, =0.07, p,=0.3 <0.001%*
Cetaceans @, =0.02, v, =1, ®,=0.23, w; =0.5
M2a_rel —28,852.81 Po=0.64,p, =0.07, p, =0.29
@, =0.02, 0, =1, w,=0.24
ARR3 Two-ratio —15,954.5 @, =025, @, =0.2 0.671
Cetacean ancestor
One-ratio —15,954.59 ,=0.25
Clade model C —15,518.72 Po=0.34,p, =0.14, p, =0.52 <0.001%*
Cetaceans w,=0.32, w, =1, ®, =0.04, ®; =0.25
M?2a_rel —15,535.81 Po=0.5,p,=0.14, p, =0.35

@) =0.04, »;, =1, w,=0.31

suggest that SAG is a critical gene for dim-light adaptation, possibly
aiding in responding speed to low light environments, although
functional assays are essential to fully explain the adaptations.

Conclusion

Widespread pseudogenization events were observed for
mammalian ARR3 genes, but not SAG, suggesting a stronger
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functional importance for rod arrestin. Thus, accelerated evolution
of SAG in penguins, pinnipeds and cetaceans could be a visual
adaptation for prey seeking in quickly changing dim-light
environments due to deep dives. These findings add more
evidence that in addition to the dim-light visual pigment
rhodopsin, rod arrestin is another critical molecule underlying
their unique dim-light adaptation. Furthermore, the finding of
degenerated ARR3 genes in echolocating bats and positive
selection on SAG in the ancestral Archosaur suggests that the
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TABLE 2 Tests for selection on archosaur SAG and ARR3.

10.3389/fevo.2022.1069088

Gene Hypothesis 14 Estimated parameters p value
SAG One-ratio model —20,459.93 w,=0.25
Two-ratio for Archosauria —20,452.56 w, =0.24, w, =0 <0.001%**
Two-ratio for Archosauria —20,454.15 w,=0.25 w,=1 0.075
(withw =1)
Branch-site null model for Archosauria —19,862.46 Po=0.09, p, =0.03, p,, =0.64, py, =0.23
(withw =1) Background: w, =0.09, w, =1, @,, =0.09, @, =1
Foreground: w, =0.09, 0, =1, 0, =1, 0y, =1
Branch-site for Archosauria —19,860.15 Po=0.66, p, =0.24, p,, =0.08, py, =0.03 0.032%
Background: @, =0.09, @, =1, ®,, =0.09, w,, =1
Foreground: @, =0.09, @, =1, ®,, =0, @y, =0
Site(s) under positive selection: 29 & 228
ARR3 One-ratio model —20,435.74 @, =0.09
Two-ratio for Archosauria —20,434.11 @, =0.09, , =00 0.071
Branch-site null model for Archosauria —19,920.48 Po=0,p; =0, p,,=0.88, py, =0.12
(withw =1) Background: w, =0.05, @, =1, @,, =0.05, @, =1
Foreground: m, =0.05, 0, =1, w,, =1, wy, =1
Branch-site for Archosauria —19,920.47 Po=0,p, =0, p,,=0.88, py, =0.12 0.888

Background: w, =0.05, o, =1, @,, =0.05, 0, =1

Foreground: w, =0.05, @, =1, ®,, = 15.66, w, =15.66

evolution of arrestins underly, at least in part, visual adaptations
in diverse taxa.
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