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Little is known about the phylogeography of termites in the Neotropical region. 

Here, we explored the genetic patterns and phylogeographical processes in 

the evolutionary history of Nasutitermes kemneri, an endemic termite of the 

South American diagonal of open formations (DOF) formed by the Chaco, 

Cerrado, and Caatinga phytogeographic domains. We sampled 60 individuals 

across the three domains of the DOF, and using the mitochondrial genes 

16S, COI, and COII, as well as the nuclear gene ITS, evaluated the genetic 

diversity and divergence time of the populations, along with their genetic 

structure. The results show a strong genetic and spatial structure within the 

samples, evidencing the existence of two well-differentiated genetic groups: 

the Northeastern and the Southwestern populations, which diverged about 

2.5 Mya, during the Pliocene-Pleistocene boundary. The Northeastern 

population, which encompasses Caatinga and northern portions of Cerrado, 

has an intricate structure and seems to have suffered repetitive retraction-

expansion events due to climactic fluctuations during the Quaternary. The 

Southwestern population, which ranges from central-south Cerrado to the 

northeast peripherical portions of the Chaco, displays a star-shaped haplotype 

structure, indicating that this region may have acted as a refugia during 

interglacial periods.
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1. Introduction

There are more than 3,000 described species of termites 
(Blattaria: Isoptera) (Krishna et al., 2013), and they are one the 
most successful terrestrial organisms on Earth. This success is due 
to a sum of ecologically relevant characteristics. Termites may 
be poor land dispersers and weak flyers (< 2 km; Hu et al., 2007; 
Tonini et al., 2013; Mullins et al., 2015), however, transoceanic 
dispersal events mostly via flotsam (Bourguignon et al., 2017) 
facilitated their near world-wide distribution. Coupled with their 
ability to decompose cellulosic compounds (Jouquet et al., 2016), 
these eusocial insects thrived in new ecological opportunities and 
became keystone species and ecosystem engineers with an 
exceptional biomass in tropical ecosystems (Tuma et al., 2020).

Despite the extension of insects across the world and being the 
largest and most diverse group of organisms on Earth (Chapman, 
2009), their phylogenetic relationships have only recently become 
evident due to advances in next generation technology (Trautwein 
et al., 2012; Yeates et al., 2016). Not much is known about the 
evolutionary history of species and their populations in South 
America, which is poorly studied in comparison to North America 
and Europe (see Tembrock et al., 2019), and what little is known 
mostly focuses on agricultural pests due to their economic 
relevance (i.e., Tembrock et al., 2019; Raszick et al., 2021; Vilardi 
et al., 2021). Phylogeographic studies would help to clarify the 
evolutionary history of species and their populations through the 
use of several resources such as population genetics and 
phylogenetics to understand the geological and climatic processes 
that determined the current geographic distribution of 
genealogical lineages (Avise et al., 1987; Avise, 2000).

Little is known about termites’ species evolutionary history, 
with most articles just focusing on species of the Rhinotermitidae 
family (e.g., Kutnik et al., 2004; Szalanski et al., 2004; Park et al., 
2006; Tripodi et al., 2006; Jenkins et al., 2007; Luchetti et al., 2007; 
Austin et al., 2008; Lefebvre et al., 2008; Li et al., 2009; Scicchitano 
et  al., 2018; Hyseni and Garrick, 2019). Although being the 
evolutionary most recent and most diverse family, the 
phylogeography of the Termitidae remains scarcely studied (Ozeki 
et al., 2007; de Faria Santos et al., 2017, 2022; Singham et al., 2017). 
Among these, there are only two phylogeographic studies for 
Nasutitermes species: N. corniger and N. ephratae (de Faria Santos 
et al., 2017, 2022), up to date. In both species, significant degrees 
of genetic structure were found across the different domains of the 
wide Neotropical region. However, another species of the genus, 
N. kemneri (Figure 1), seems to be restricted to a smaller area 
known as the South American “diagonal of open formations” 
(DOF) (Mathews, 1977).

The DOF consists of three phytogeographic domains (or 
biomes) crossing the South America from southwest to northeast: 
Caatinga, seasonally dry tropical forests of northeastern Brazil; 
Cerrado, the central Brazilian savanna; and Chaco, seasonally dry 
subtropical forests in northern Argentina, Paraguay, and Bolivia 
(Vanzolini, 1963; Zanella, 2010). All these domains are 
characterized by marked seasonality with severe droughts, 

nevertheless, they are different physionomically and in vegetation, 
harboring unique biotas well adapted to such fluctuations 
(Werneck, 2011).

The current geographical arrangement of the DOF is the result 
of the Central Brazilian Plateau uplift since the Cenozoic (Martins-
Ferreira et al., 2020), changing the extensions of the Caatinga, 
Cerrado, and Chaco domains, in addition to the periods of 
climatic fluctuations during the Quaternary, when the Earth 
experienced ice ages interspersed with warmer periods. During 
these fluctuations, dry vegetation would have expanded and 
contracted, respectively, during glacial maximums and minimums, 
while tropical forest regions would have followed the reverse 
pattern (Pinheiro and Monteiro, 2010; Zanella, 2010). Specifically, 
dry regions were connected during glacial periods, while when 
interglacial periods occurred, tropical forests expanded and 
disconnected dry regions (Pennington et al., 2004; Werneck et al., 
2012). Consequently, these events not only shaped the current 
geomorphology of the region, but became important drivers of the 
diversification and distribution of biota across the DOF.

Nasutitermes kemneri Snyder and Emerson, 1949 is a termite 
species endemic to the DOF that feeds on wood in early stages of 
decomposition in a diversity of vegetation types (Mathews, 1977). 
Due to its well delimited area of distribution, this termite is a 
relevant study model to understand how species respond to the 
vegetational, elevational, and climatic shifts between the Caatinga–
Cerrado–Chaco phytogeographic domains. Accordingly, this 
study aims to determine if there are divergences between the 
populations distributed across the DOF, and if these form a spatial 

FIGURE 1

Nasutitermes kemneri. Soldier from Bolivia in dorsal (A) and 
lateral (B) views. Individuals foraging during twilight on a tree 
branch (C) and its nest inside what looks like an abandoned nest 
of Syntermes sp. (D) in the Caatinga phytogeographic domain, 
São Miguel do Tapuio, PI. As scale in (D), the diameter of the 
pickaxe handle is approximately 5 cm.

https://doi.org/10.3389/fevo.2022.1081114
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Kohari et al. 10.3389/fevo.2022.1081114

Frontiers in Ecology and Evolution 03 frontiersin.org

structure in genetic differentiation. Secondarily, through 
demographic and time estimation analyses, we  tested if 
populations of N. kemneri contracted in size and were 
disconnected during interglacial periods but survived in climatic 
refugia. For this purpose, we  used both nuclear (ITS) and 
mitochondrial molecular markers (COI, COII, and16S rRNA).

2. Materials and methods

2.1. Sampling, DNA extraction, and 
sequencing

A total of 60 individuals of Nasutitermes kemneri (Figure 1) 
were sampled, from Bolivia to Rio Grande do Norte state in Brazil, 
covering most of the South American DOF, and the known 
distribution of the species (Supplementary Table S1). Samples 
studied were from the Museum of Zoology of the University of 
São Paulo (MZUSP), the Federal University of Paraíba (UFPB), 
and University of Florida Termite Collection (UFTC).

Genomic DNA was extracted from workers’ head and thorax 
using the DNeasy Blood & Tissue Kit—QIAGEN extraction kit 
following the manufacturer’s instructions. Amplification was 
performed with the Master Mix (Prodimol) for PCR, where 
primers used for PCR are detailed in Supplementary Table S2, and 
cycle settings are specified in references therein. We amplified 
both mitochondrial and nuclear markers for subsequent analyses: 
the mitochondrial genes 16S rRNA, and cytochrome oxidase I and 
II (COI and COII), and the entire ribosomal internal transcribed 
spacer region (ITS1 + 5.8S + ITS2; Supplementary Tables S1, S2). 
Samples with confirmed amplification through agarose gel 
electrophoresis underwent DNA purification using ExoSap (GE 
Technology Infrastructure). Fragments were sequenced forward 
and reverse using the BigDye reagent kit (Perkin-Elmer) in an 
automatic sequencer ABI 3730 XL DNA Analyzer (Applied 
Biosystems), according to manufacturer’s instructions.

We successfully amplified and sequenced 55 individuals, but 
not throughout all molecular markers, obtaining 55 sequences of 
16S rRNA, 25 of COI, 53 of COII and 43 sequences of ITS. All 
sequences were deposited on GenBank database (access numbers 
in Supplementary Table S1).

2.2. Population genetics and 
phylogeography

To understand the genetic structure of N. kemneri, 
we performed various analyses with 16S rRNA, COII and ITS 
region sequences. We did not use the COI sequences to avoid 
incorporating many missing data to the matrix alignment.

Median-joining haplotype networks (Bandelt et  al., 1999) 
were reconstructed in the PopART software (Leigh and Bryant, 
2015), one for aligned and concatenated 16S rRNA and COII 
sequences through the MUSCLE algorithm in Geneious v9.1 

(Biomatters Ltd., Auckland, New Zealand), and another for the 
ITS region sequences. Genetic diversity indexes (Hd, π) were 
estimated in DnaSP 5.0 (Librado and Rozas, 2009).

As ITS marker was highly conserved (only two parsimony 
informative sites), a Maximum Likelihood (ML) phylogenetic tree 
was inferred using a final alignment including only the 16S rRNA 
and COII molecular markers. Model optimization was performed 
with the R packages “ape” and “phangorn” (Schliep et al., 2018; 
Paradis and Schliep, 2019). The selected model for the entire 
alignment was GTR + I + G. The phylogeny was transformed into 
an ultrametric tree using the chronos function of the package 
“ape” (Paradis and Schliep, 2019) and plotted in the map using the 
package “phytools” (Revell, 2012).

To estimate the presence of spatial genetic structure within the 
sequences of N. kemneri we used Bayesian Analysis of Population 
Structure (BAPS) v6 (Corander et al., 2008) implementing the 
method of “spatial clustering of individuals,” testing up to 8 
clusters (populations; K = 8). For comparison, we  conducted 
analyses in GENELAND 4.9.2 (Guillot et al., 2008, 2012) using 
both the uncorrelated and correlated allele frequency models 
(1.000.000 iterations, 100 thinning), given that the correlated 
frequency model may be  more powerful at detecting subtle 
differentiations, but is more sensitive to departures from model 
assumptions (i.e., isolation-by-distance) than the uncorrelated 
frequency model. Furthermore, an Analysis of Molecular Variance 
(AMOVA) and Tajima’s D neutrality test were performed with the 
package “pegas” (Paradis, 2010) to evaluate Fst magnitude and 
significance and detect signals of population expansion or 
retraction for the genetic groups of N. kemneri.

2.3. Dating analysis

To estimate the divergence time between the main populations 
of N. kemneri (Figure 2), we performed a phylogenetic analysis 
calibrated with fossils. For that, we  used three mitochondrial 
markers (COI, COII, and 16SrRNA) from one individual of each 
main population, in addition to 32 sequences from GenBank 
(Supplementary Table S3). A GTR + G + I substitution model for 
the concatenated matrix was used.

The phylogenetic analysis was carried out under Bayesian 
inference with BEAST 1.8.0 (Drummond et al., 2012). A Yule 
speciation process (Gernhard et al., 2008), with a random starting 
tree, and an uncorrelated lognormal relaxed clock (Drummond 
et al., 2006), were used as tree priors.

The molecular clock was calibrated using six calibration nodes 
that were set as monophyletic (Supplementary Table S4). The 
fossils were used as minimum age constrains and implemented as 
exponential priors of node time (Supplementary Table S4). Times 
for most recent common ancestor priors were selected to have an 
exponential distribution (Ho, 2007), with mean and offset or 
standard deviation are showed in Supplementary Table S4.

The analysis was performed with Monte Carlo Markov Chain 
searches conducted for 40,000,000 generations. Convergence and 
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stationarity were assessed with Tracer 1.6 (Rambaut et al., 2018) 
and the first 1,000 trees (10%) were discarded as burn-in with 
TreeAnnotator 1.8.0 and visualized using FigTree 1.3.1.

3. Results

Sequencing efforts resulted in varying lengths: 321, 640, and 
735 bp for 16 rRNA, COII, and ITS, respectively. ITS sequences 
were highly conserved in the 43 sampled individuals, with only 3 
polymorphic sites. On the other hand, 14 polymorphic sites were 
present in the 55 16S rRNA sequences, 43 polymorphic sites were 
present in the 55 COII sequences, and the final alignment of 
961 bp containing both 16S rRNA and COII genes revealed 53 
polymorphic sites.

We used different approaches to estimate the degree of 
population differentiation. The genealogical relationships 
reconstructed by the ML phylogenetic tree evidenced high 
bootstrap support for the two mtDNA genetic groups of 
N. kemneri within the South American DOF, one at the Northeast 
(NE), and another one at the Southwest (SW; Figure 2).

The Median-Joining haplotype network of the two 
mitochondrial gene regions (16S rRNA + COII) also revealed the 
presence of these two groups, and that they are separated by 23 
mutations, with no haplotypes in common (Figure 2). A total of 
11 haplotypes were from the NE group, while 9 haplotypes were 

from the SW group. The ITS haplotype network illustrated one 
genetic group with only 4 closely related haplotypes 
(Supplementary Figure S1).

Furthermore, BAPS v6 and the correlated frequency model in 
GENELAND analyses used to infer population structure separated 
N. kemneri in the same two spatial clusters (Figure 3), further 
affirming the strong genetic differentiation found between these 
two genetic groups.

Notably, some genetic substructure in N. kemneri was 
hinted by the uncorrelated frequency model from GENELAND 
and BAPS non-spatial clustering of individuals. These results 
illustrated 4 clusters, distinguishing the Caatinga from 
northern Cerrado within the NE group, and separating the 
Cerrado from samples near the Paraná biogeographic 
dominion (Morrone et al., 2022; Supplementary Figure S2). 
Moreover, the phylogenetic tree shows high bootstrap 
values(= 97) which support the subtle divergence of the 
Caatinga and Cerrado within the Northeastern group (NE), 
while the easternmost individuals are the most divergent 
samples within the SW group (Figure 2). A 2-level AMOVA 
distinguishing both NE–SW and these four clusters further 
evidences the presence of sub-structure 
(Supplementary Table S5). However, since Cluster B (N = 5) 
and Cluster C (N = 3) are comprised of few individuals, further 
sampling is needed to firmly ascertain the presence of genetic 
sub-structure within Nasutitermes kemneri.

FIGURE 2

The two major groups of Nasutitermes kemneri: Northeastern (NE, in red) and Southwestern (SW, in green). In the left, a Maximum Likelihood (ML) 
phylogenetic tree with corresponding sampling sites, and in the right the haplotype network. Branch support of the phylogeny are bootstrap 
values; number of substitutions between the two major groups are included in the haplotype network. CH, Chaco; CE, Cerrado; and CA, Caatinga.
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Considering the highest level of differentiation broadly 
supported by previous analyses, the AMOVA partitioned in two 
groups (NE–SW) revealed a high variation among groups 
(82.74%) contrasting with a low variation within groups 
(17.26%; Table 1). The high Fst (0.827, p < 0.0001) confirms a 
strong genetic population structure as supported by the 
phylogenetic tree, haplotype network and Bayesian spatial 
clustering. Regarding the genetic diversity across the South 
American DOF, haplotype and nucleotide diversity was overall 
high (Hd = 0.867, π = 0.00107), and high but slightly lower 
within both genetic groups (NE Hd = 0.767, π = 0.00734, SW 
Hd = 0.723, π = 0.00922).

Demographic inferences through Tajima’s D neutrality test 
showed no signal of population expansion or retraction for the 
entire species range (D = 0.395, p = 0.69) nor for each separate 
group (NE, D = −1.496, p = 0.13/SW, D = −1.883, p = 0.059). 
Finally, the dated phylogenetic analyses inferred that the 
divergence between NE and SW lineages occurred around 2.41 
Mya (3.59–1.47, 95% height posterior density), during the 
Pliocene–Pleistocene boundary.

4. Discussion

Results show a strong genetic and spatial structure within 
N. kemneri (Figure  2), evidenced by two highly differentiated 
groups, henceforth called populations. These populations are not 
restricted to the phytogeographic domain where they were 
sampled (Caatinga, Cerrado, and Chaco), instead, the NE 
population encompasses Caatinga and northern portions of 
Cerrado, while the Southwestern (SW) population ranges from 
central-south Cerrado to the northeast peripherical portions of 

A B

FIGURE 3

(A) Voronoi tessellation produced by the Bayesian spatial clustering analysis of 961 bp (16S rRNA + COII) sequences from Nasutitermes kemneri, as 
implemented in BAPS v6. resulting in K = 2, (ln(P) = −563.0329). (B) GENELAND map of posterior probabilities of cluster membership, correlated 
allele frequency model. CA, Caatinga; CE, Cerrado; and CH, Chaco.

TABLE 1 Analysis of molecular variance results for Northeastern (NE) 
and Southwestern (SW) populations inferred by markers 16S rRNA and 
COII.

Source of 
variation

d.f.
Variation 

(%)
Fst p value

Among populations 1 82.74 0.827 < 0.001

Within populations 46 17.25 – –

d.f. = degrees of freedom; Fst = fixation index.
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the Chaco (Figure 2). This Northeast–Southwest pattern of spatial 
differentiation is shared with other taxonomic groups distributed 
along the DOF such as squamates (Werneck et al., 2012b; Recorder 
et  al., 2014; Fonseca et  al., 2018), amphibians (Oliveira et  al., 
2018), flies (Moraes et  al., 2009), bees (Miranda et  al., 2016), 
marsupials (Carvalho et al., 2011), trees (Resende-Moreira et al., 
2017), and, to some extent, birds (Rocha et al., 2020).

Estimates suggest that these populations diverged ~ 2.5 Mya, 
during the Pliocene-Pleistocene boundary. During this period, the 
Cerrado plateaus were already uplifted to their present-day 
elevations while other areas within the Cerrado subsided, forming 
peripheral depressions (Del'Arco and Bezerra, 1989). The 
depressions inhibited gene flow between east and west of the 
plateau, and promoted diversification of subsequently isolated 
populations of flora and fauna. As discussed by Bonatelli et al. 
(2021), while several species across the DOF experienced range 
shifts, there is no single demographic response to Pleistocene 
climatic fluctuations. Some species experimented demographic 
expansion, others exhibited the opposite response, and some, like 
N. kemneri, underwent different processes since the separation of 
both populations (i.e., 59), where each experienced different 
evolutionary histories, illustrated by the different structures 
displayed by the haplotype network.

The NE population network has an intricate structure, with 
many “missing” haplotypes, which could be due to repetitive 
extinction-expansion events. Demographic inferences do not 
offer statistical support for this hypothesis, however, the 
geoclimatic history of northeastern Brazil does. During the 
Quaternary, major paleoenvironmental changes occurred during 
wet periods throughout the Pleistocene (Auler et  al., 2004). 
Increased rainfalls facilitated the expansion of semi-deciduous 
forest to the Caatinga (Auler et  al., 2004; Wang et  al., 2004; 
Werneck, 2011), which possibly provided new ecological niches 
for N. kemneri to exploit besides xeric shrublands and an 
increase in biomass. On the contrary, arid periods led to regional 
extinction of taxa adapted to wet forests such as herpetofauna, 
as discussed by Gehara et al. (2017), and the cyclic nature of 
these humid-drier events left its mark on the NE population, 
accounting for the high genetic diversity and complex haplotype 
network. Moreover, recent studies have shown that termites are 
resistant to temperature shifts (Woon et al., 2019; Janowiecki 
et al., 2020; Woon et al., 2022), but precipitation would be the 
main factor in determining termite distribution, abundance, and 
survival rate (Woon et  al., 2019; Pozo-Santiago et  al., 2020). 
Although we did not measure this, it seems that N. kemneri is 
more abundant in the most humid phytogeographic domain, the 
Cerrado, than in the semiarid ones, Caatinga and Chaco. In the 
same way, elevation plays important roles in both restrictive and 
non-restrictive effects of temperature and humidity, as well as in 
the interaction between these factors, and while the Caatinga is 
composed mostly by flattened surfaces between 300 and 500 m 
above sea level (Silva et  al., 2017), the Cerrado has higher 
plateaus in central and northeastern regions (Werneck 
et al., 2012).

The SW population displays a star-shaped haplotype group, 
which is characteristic of refugia with later population expansion, 
yet demographic inferences lack statistical support. Nevertheless, 
during the Quaternary climatic and vegetation fluctuations, the 
general area currently occupied by Cerrado appears to have been 
drier (Collevatti et al., 2020; Oliveira et al., 2020), paleoclimatic 
model reconstructions predicted areas of historical climatic 
stability (Werneck et  al., 2012). These stable areas (the higher 
plateaus in central and north-eastern Cerrado) were important 
refugia for taxa such as trees (Ramos et al., 2007; Buzatti et al., 
2017; Resende-Moreira et al., 2017; Camps et al., 2018), and may, 
consequently, also serve as refugia for wood feeding termites.

Finally, while the spatially explicit Bayesian clustering 
programs BAPS and GENELAND reached a consensus in 
dividing N. kemneri in two populations, the uncorrelated 
frequency model in GENELAND and the non-spatial BAPS 
clustering are also worth noting and briefly discussed. These less 
robust approaches hint at subtle population substructure within 
both the NE and SW populations, wholly distinguishing Caatinga 
(Cluster A) and northeastern Cerrado (Cluster B) in NE, and 
separating central western Cerrado (Cluster C) from the rest of 
Cerrado (Cluster D) in SW. Tree species with a similar 
distribution across the DOF (and some that extent to the Parana 
dominion), show fairly recent (~ 800.000 years BP) fine-scale 
genetic structure within the Chaco-Cerrado-Atlantic Forest, from 
3 to up to 7 haplogroups/lineages (Collevatti et al., 2009; Novaes 
et al., 2010, 2013). These lineages present a similar pattern of 
distribution to Clusters A, B, C, and D of N. kemneri, and the 
recent divergence time between the main populations (NE/SW) 
at the Pliocene-Pleistocene transition (with confidence intervals 
spanning from Late Miocene to Middle Pleistocene) may explain 
the low resolution of these analyses, where subtle climatic or 
geographic differences within these phytogeographic domain 
may be  driving this incipient or shallower population 
sub-structuring. In fact, biogeographic districts based on tree 
species (Françoso et al., 2020) partially match the distribution of 
these clusters, citing different temperatures, seasonal variation, 
radiation and the degree of cover transformation as responsible 
for the floristic differences. However, further sampling is needed 
to determine the extent and significance of these patterns in 
N. kemneri.

This study provides important inferences about the general 
panorama of the evolutionary history of N. kemneri in the DOF, 
its endemic region, offering important contributions to the 
understanding of biogeographic and phylogeographic issues in 
the Neotropics. Our results support an ancient divergence 
between two well-defined lineages (NE and SW) for N. kemneri, 
which occurred during the Plio-Pleistocene transition, 
reinforcing the role of climatic and vegetation variation events in 
the diversification of the DOF biota (Del'Arco and Bezerra, 1989; 
Wang et  al., 2004). Further climatic fluctuations during the 
Quaternary had pronounced effects on the Caatinga biota 
(Bonatelli et al., 2021) and could have facilitated the expansion 
and diversification of N. kemneri across the NE region of the 
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DOF, while refugia zones in the Southeastern region may account 
for the constricted diversity patterns within the Cerrado, and 
altogether explain the unique evolutionary history of these two 
separate populations. The findings presented in this work, 
however, came from a few mitochondrial markers, and the 
investigation using multi-locus nuclear data can reveal other 
relevant patterns in the population genetic structure in 
this species.

Most of the integrative phylogeographic and predictive studies 
in the DOF rely heavily on data from herpetofauna and plants, 
where insects are less than 15% of the species considered (Del'Arco 
and Bezerra, 1989). In this sense, data presented in this study not 
only aids the understanding of the evolutionary history of 
N. kemneri and add evidence to the response patterns described 
for this area (Del'Arco and Bezerra, 1989; Wang et al., 2004), but 
also partly accounts for our knowledge gap. Furthering our 
knowledge on biotic variables that influenced the demography 
and distribution of DOF endemic species is key, and especially 
insects (Wilson and Fox, 2021) for future decisions in conservation 
strategies of the DOF threatened phytogeographic domains and 
potential effects linked to climate warming.
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