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GSC-MIM: Global semantic
integrated self-distilled
complementary masked image
model for remote sensing
images scene classification

Xuying Wang, Yunsheng Zhang*, Zhaoyang Zhang,

Qinyao Luo and Jingfan Yang

School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, China

Masked image modeling (MIM) is a learning method in which the unmasked

components of the input are utilized to learn and predict the masked signal,

enabling learning from large amounts of unannotated data. However, due to

the scale diversity and complexity of features in remote sensing images (RSIs),

existing MIMs face two challenges in the RSI scene classification task: (1) If

the critical local patches of small-scale objects are randomly masked out,

the model will be unable to learn its representation. (2) The reconstruction

of MIM relies on the visible local contextual information surrounding the

masked regions and overemphasizing this local information will potentially

lead the model to disregard the global semantic information of the input

RSI. Regarding the above considerations, we proposed a global semantic

integrated self-distilled complementary masked image model (GSC-MIM)

for RSI scene classification. To prevent information loss, we proposed an

information-preserved complementarymasking strategy (IPC-Masking), which

generates two complementary masked views for the same image to resolve

the problem of masking critical areas of small-scale objects. To incorporate

global information into the MIM pre-training process, we proposed the global

semantic distillation strategy (GSD). Specifically, we introduced an auxiliary

network pipeline to extract the global semantic information from the full

input RSI and transfer the knowledge to the MIM by self-distillation. The

proposed GSC-MIM is validated on three publicly available datasets of AID,

NWPU-RESISC45, and UC-Merced Land Use, and the results show that the

proposedmethod’s Top-1 accuracy surpasses the baseline approaches in three

datasets by up to 4.01, 3.87, and 5.26%, respectively.

KEYWORDS

self-supervised learning (SSL), masked imagemodeling (MIM), self-distillation, remote

sensing images (RSIs), scene classification
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1. Introduction

The propose and development of self-supervised learning

(SSL) has freed conventional supervised learning from the heavy

reliance on large-scale high-quality annotated data, making it

a reality to obtain well-performed interpretation models label-

free (Wang Y. et al., 2022). Compared to supervised learning

(Lu et al., 2022; Zhu et al., 2022a,b) which learn the projection

data to label, SSL aims to find correlations between data and

drive models to learn features by manually constructing pre-

tasks to constitute labels, yielding competitive results in RSI

scene classification (Tao et al., 2020; Wang X. et al., 2022), object

detection (Ding et al., 2021), and semantic segmentation (Li

et al., 2022) tasks.

The dominant self-supervised learning approaches can be

divided into two main categories: contrastive and generative

(Liu X. et al., 2021). The core of the contrastive learning

method (Chen et al., 2020; He et al., 2020) is to pull closer

different views of the same image (positive samples) and push

apart views of different images (negative samples), after which

potential invariant features in the images are prompted to be

learned by the model through the determination of the positive

and negative samples. Currently, the contrastive self-supervised

learning-based approaches obtain promising results in various

RSI interpretation tasks (Wang Y. et al., 2022). Some researchers

(Li et al., 2021a; Akiva et al., 2022) follow the basic idea of

contrastive learning to construct positive and negative samples

to accomplish label-free training of RSI interpretation models.

In addition, since RSIs contain abundant information, some

researchers include geographic features (Ayush et al., 2021; Li

et al., 2021b), time series features (Manas et al., 2021), and audio

features (Heidler et al., 2021) of RSIs in the contrastive learning

process to encourage models to learn the invariance of RS-

specific features. However, contrastive SSL has its own inherent

limitations for RSI interpretation tasks. Specifically, RSI contains

a complex variety of land objects and their corresponding labels

are at the scene level in scene classification task. If the RSI

containing the same type of object is selected as a negative

sample, it will negatively influence the feature learning of such

object in the pushing apart process, and vice versa (Zhang et al.,

2022). Figure 1 shows a brief introduction of the contrastive

learning methods and masked image modeling method. Take

the negative pair in Figure 1 as example, if we push this negative

pair apart, it will inevitably push the feature of orange building

apart, which is clearly not ideal. Therefore, we argue that

the conventional contrastive SSL is suboptimal for the RSI

interpretation tasks.

The fundamental concept of generative self-supervised

approaches is to train models to reconstruct and restore

manually corrupted images, which essentially enables the

models to learn to present well representations of the original

image (Liu X. et al., 2021). Mask image modeling (MIM)

as a classical generative self-supervised pre-training paradigm,

which leverages a large amount of data to drive the training of

vision transformer (ViT) (Dosovitskiy et al., 2020), has achieved

competitive results in many image interpretation tasks (Bao

et al., 2021; He et al., 2022; Xie et al., 2022). The core idea of

MIM is to crop the input image into several local semantically

meaningful visual tokens and randomly mask some of them,

then train the vision transformer to reconstruct the masked

parts based on the adjacent visible parts. Based on the above

considerations, we assume that MIM-based generative self-

supervised learning is more suitable for training remote sensing

image interpretation models as it can flexibly acquire various

features embedded inside remote sensing images and obtain

well-formed representations of RSI without relying on data

augmentation methods or negative samples.

However, when MIM is used for remote sensing image

scene classification tasks, it usually encounters the following two

issues:

• Since remote sensing images contain complex multi-scale

land objects, if the critical local patch token containing a

certain type of small-scale object is randomly masked out,

the model will not be able to obtain its features, resulting in

irreversible information loss.

• The reconstruction mechanism of MIM is essentially a

model inference based on local contextual information near

the masked region, which causes the model to ignore the

global semantic information of the whole input image,

which is critical for RSI scene classification.

Considering the above limitations, we proposed a global

semantic integrated self-distilled complementary masked image

model (GSC-MIM) for RSI scene classification, which consist of

two strategies: information preserved complementary masking

strategy (IPC-Masking) and global semantic distillation strategy

(GSD). Existing random masking strategies tend to lose dense

and small-scale features in the RSIs. Two versions of the

complementary visible-mask patch are generated from the same

remote sensing image to maximize the retention of small-

scale RS object information when reconstructing them with

MIM. The reconstruction of masked patches in MIM relies

on local adjacent visible patches and does not emphasize

the global scene semantic information of the whole input

image. To incorporate global information into the MIM pre-

training process, we propose a global semantic distillation

strategy (GSD). As an emerging method of SSL, self-distillation

(Caron et al., 2021; Cino et al., 2022) learning leverages the

network’s past self to distillate needed knowledge to the present

self to achieve discriminative self-learning. In view of this,

we introduce an auxiliary network pipeline to extract global

semantic information from the full input image and transfer the

global knowledge to the MIM via self-distillation.
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FIGURE 1

A brief introduction of the contrastive learning methods and masked image modeling method.

We use GSC-MIM to obtain the fundamental pre-trained

model, and the features obtained by the model can be used

for downstream scene classification tasks. We evaluated the

performance of the model on three RSI scene classification

public datasets, Aerial Image Dataset (AID) (Xia et al.,

2017), UC-Merced Land Use (UCM) (Yang and Newsam,

2010), and NWPU-RESISC45 (NWPU45) (Cheng et al., 2017).

Experimental results show that our proposed GSC-MIM

achieves better results compared to the classical contrastive self-

supervised learning, generative self-supervised learning and self-

distillation learning approaches. The main contributions of this

paper are summarized as follows:

1. We propose an information preserved complementary

masking strategy (IPC-Masking), which aims to reduce the

loss of small-scale features caused by MIM when used for

RSI interpretation tasks. We verified that the information of

the original input image could be maximally preserved by

the simultaneous reconstruction of its two complementary

masked-visible-region views.

2. We highlight the neglect of RSI global semantic information

during the MIM training process. We propose a global

semantic distillation strategy (GSD) to extract the global

semantic information of the input images using additional

network pipeline and distill the knowledge into the MIM

network to compensate for the lack of global information.

3. Experiments on public datasets show that our proposed

GSC-MIM achieves a maximum accuracy improvement of

up to 5.26% on the RSI scene classification task under

the equivalent conditions. Moreover, the network attention

visualization results show that our model captures more

highly detailed features of the land objects and locates the

global scene information regions of the RSI more precisely.

The rest of this paper is organized as follows: Section

2 introduces the details of our proposed method. Section 3

discusses the experimental and visualization results organized

on three public datasets and future work prospects. Section 4

concludes this paper.

2. Methodology

RSI has complex geographical features and a multi-scale

spatial layout, if the critical patches containing certain types of

features are randomly masked during the MIM training process,

it will lead to information loss; Moreover, the reconstruction

of local patch by MIM may lead the model to emphasize the
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FIGURE 2

The architecture of GSC-MIM.

FIGURE 3

The illustration of IPC-masking.

local information and ignore the global information associated

with the input image’s category. Inspired by the above facts,

the GSC-MIM is developed to preserve information of different

scales’ land objects, and to integrate global meanings into the

training process via self-distillation. The architecture of GSC-

MIM is shown in Figure 2. The architecture consists of two

identical structured ViT backbone networks, which we refer

to as the teacher and student networks. The network includes

two strategies, information-preserved complementary masking

strategy (IPC-Masking) and global semantic distillation strategy

(GSD), which will be described in the following sections.

2.1. Information-preserved
complementary masking strategy
(IPC-Masking)

The IPC-Masking is inspired by the conventional MIM’s

masking strategy. Firstly, for each input image Iin ∈ RH×W×3,

we crop it into N patches and feed into the linear projecting

layer to obtain patch token sequence x = {xi}
N
i=1. After that, we

randomly give each patch token a mask indicator m ∈ {0, 1}N ,

whereN is the number of tokens. Specifically, wherever themask

indicator mi is 1, the corresponding xi is replaced by a mask

e[MASK], which yields vision 1 of the masked image as:

x̂ ,
{

x̂i | (1−mi) xi +mie[MASK]
}N
i=1 (1)

Vision 2 of the masked image is complementary to version

1, i.e., the visible-masked tokens of the two images are opposite.

The illustration of IPC-Masking is shown in Figure 3. In this

work, we perform the IPC-Masking to the input image of the

student network. Through the vision transformer backbone and

decoder, the reconstructed patch tokens {I
[patch]
s1 , I

[patch]
s2 } are

generated for comparison.
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FIGURE 4

Vision transformer encoder.

TABLE 1 Datasets description.

Datasets AID NWPU45 UCM

Classes 30 45 21

Images per class 220–420 700 100

Total images 10,000 31,500 2,100

Spatial resolution (m) 0.5–8 0.2–30 0.3

Image size 600× 600 256× 256 256× 256

Data source Google Earth Google Earth USGS

Published year 2017 2017 2010

In the teacher network, the two different augmented non-

masked views of the same image serve as input to obtain their

projections {I
[patch]
t1 , I

[patch]
t2 }.

We then define the training objective of complementary

MIM as:

Lreconstructed = −

N
∑

i=1

mi · I
[patch]
ti

T
log I

[patch]
si (2)

We symmetrize the loss by averaging with the above CE term

between two pairs of I
[patch]
ti

and I
[patch]
si .

2.2. Global semantic distillation strategy
(GSD)

As a branch of self-supervised learning, self-distillation

dexterously transmits knowledge from themodel’s past itself and

is cast as a discriminative objective. The GSD proposed in this

paper utilized the framework of self-distillation to generate and

integrate global semantic information into the student network.

We followed the self-distillation paradigm proposed in

Caron et al. (2021). We adopt the same architecture for student

and teacher networks, consisting of backbone f and projection

head h : g = h ◦ f . The parameters of the student network θs

are updated by back propagation according to the loss function,

while the teacher’s parameters θt are exponentially moving

averaged (EMA) of the updated θs, which is described as follows:

θt ← λθt + (1− λ)θs (3)

where λ following a cosine schedule from 0.996 to 1 during

training.

For vanilla ViT (Dosovitskiy et al., 2020), [CLS] token is

a learnable embedding to the sequence of embedded patches

whose state at the output of the Transformer encode and

contains the predictive categorical distributions of the input

image x. In GSC-MIM, we utilize [CLS] tokens as a proxy

for global semantic information and to perform knowledge

distillation. For a training set I , an image x ∈ I is sampled

uniformly and applied two random augmentations, yielding

two distorted views t1 and t2. We also applied complementary

masking to the same image to get two corrupted views s1 and s2.

After feeding t1 and t2, s1, and s2 with learnable [CLS] tokens

into the teacher and student network correspondingly, we get

the global semantically meaningful tokens of h
[CLS]
t1

, h
[CLS]
t2

and

h
[CLS]
s1 , h

[CLS]
s2 . Since the global semantics of the input image is

modeled by the [CLS] token generated via the teacher network

with unmasked input. The global context encoding ability of

the target student masked image model (MIM) is improved by

minimizing the cross-view cross-entropy between the teacher’s

global semantic meaningful [CLS] token and the student’s [CLS]

token, which we assumed to be global semantically deficient,

formulated as:

L[CLS] = −h
[CLS]
ti

T
log h

[CLS]
sj (4)

2.3. Loss function and architecture

With the information preserved complementary masking

strategy and global semantic distillation, we designed the overall

training objective as follows:

Lall = λ1L[CLS] + λ2Lreconstructed (5)
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TABLE 2 Experimental results comparison with SOTA methods.

Method type Method Backbone Params. (M) Top-1 Acc (%)

Datasets

AID NWPU45 UCM

† SimCLR Resnet50 21 61.37 65.16 52.89

MoCo v3 ViT-small 22 63.67 67.11 50.38

△ MAE ViT-base 22 65.33 71.56 50.63

SimMIM Swin-base 88 69.49 73.01 54.89

� DINO ViT-small 22 64.26 69.03 53.63

⋆ GSC-MIM ViT-small 22 65.38 69.54 54.14

GSC-MIM ViT-base 86 68.98 72.47 55.89

GSC-MIM ViT-large 304 72.03 76.04 None

†Contrastive learning with ResNet/Vision Transformer backbone.

△MIM based methods.

�Self-distillation based method.

⋆The proposed GSC-MIM.

The bold values represent the best-performing methods for similar amounts of network parameters.

FIGURE 5

Bar chart of experimental results comparison with SOTA methods.

where λ1, λ2 represent the loss coefficients that

balance the importance of [CLS] losses and

reconstructed losses.

The backbone f adopted by GSC-MIM is vision transformer

(ViT) encoder (Dosovitskiy et al., 2020), shown in Figure 4. We

also evaluated the different amounts of backbone parameters

of ViT-S/16, ViT-B/16, and ViT-L/16. The projection head h of

GSC-MIM is set as 3-layers MLP, which is proven optimal in

both Caron et al. (2021) and Zhou et al. (2021). Moreover, to

further borrow the capability of semantic abstraction obtained

by self-distillation on [CLS] tokens, we share the projection

head parameters for both patch tokens and [CLS] tokens. The

scene classification head takes [CLS] token as input and is

implemented by a MLP projection head with three hidden

layers at pre-training time and by a single linear layer at

fine-tuning time.
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3. Experimentation and results
discussion

Three public remote sensing datasets are used for thorough

tests to assess the efficacy of the proposed GSC-MIM approach,

including parameter analysis, an experimental comparison of

several algorithms, and visualization analysis.

3.1. Experimental setup

(1) Datasets description. In this paper, the Aerial Image

Dataset (AID) (Xia et al., 2017), the NWPU-RESISC45 Dataset

(NWPU45) (Cheng et al., 2017), and the UC-Merced Land

Use Dataset (UCM) (Yang and Newsam, 2010) are selected

to conduct the experiments. With high image size and spatial

resolution diversity, these three datasets are challenging for

RSI scene classification task. More detailed information about

datasets is shown in Table 1.

(2) Hardware and software environment. All experiments

are carried out on NVIDIA A100 Tensor Core GPU with a

software environment of Python 3.7 with PyTorch performing

on the Ubuntu system.

(3) Architecture parameter setup. For the backbone f , we

inherit the ViT models’ parameters from Caron et al. (2021) and

train the network without loading the pretrained weight. For

ViTs, /16 denotes the patch size being 16. We also evaluate patch

sizes 8 and 32 in the following experiment. For the projection

head h, a 3 − layerMLP with l2 − normalized bottleneck is

chosen to generate representations. Since we share h for both

patch tokens and [CLS] tokens, they all get the output dimension

of 8,192.

(4) Data processing and evaluation metrics. The proposed

GSC-MIM uses multi-scale crop, random flip and random

rotation as two different types of data augmentation

methodologies to generate the distorted views of t1, t2 and

s1, s2. For the three datasets, 80% of each category is selected as

the training set and the remaining 20% served as the testing set.

After pretraining, we perform the linear evaluation using 1% of

each category in the training set to elaborate on the effectiveness

of the proposed GSC-MIM among the compared methods. The

linear evaluation metric is the same as the works in Chen et al.

(2020); Caron et al. (2021), and Zhou et al. (2021). Furthermore,

the Top-1 Accuracy (Top-1 Acc) with visualized histogram

is employed to illustrate the classification performance of the

proposed method on the three datasets.

(5) Parameter optimization setup. We by default pre-train

GSC-MIM on the above training datasets and set 16 as default

patch size for IPC-Masking. The batch size is set to 64 for

ViT-S and ViT-B, and 16 for ViT-L due to the limitation of

GPU. For both teacher and student networks, the AdamW

(Loshchilov and Hutter, 2017) is employed as the optimizer

for better convergence, the corresponding momentum is set to

TABLE 3 Experimental results comparison with patch size as

hyperparameter.

Method Patch size Top-1 Acc (%)

GSC-MIM

(ViT-Base/p16)

32 66.91

16 72.47

8 77.60

0.996, and the weight decay is 0.004. For the student network, we

employ random MIM, with prediction ratio r uniformly chosen

from the range [0.1, 0.5] with a probability of 0.5 and set as 0

with a probability of 0.5. Moreover, we set λ1 and λ2 equal to 1 in

Lall, i.e., we sum L[CLS] and Lreconstructed up without scaling.

Finally, we train and evaluate the GSC-MIM for 300 epochs as

default. During the first 10 epochs, the learning rate is linearly

ramped up to its base value scaled with the entire batch size:

lr = 5e−4 × batch_size/256.

3.2. Results and discussion

3.2.1. Performance results

Various state-of-the-art (SOTA) approaches are presented to

compare with GSC-MIM on the three datasets to highlight the

advantages of the proposed method. The results obtained from

the linear evaluation are summarized in Table 2. The training

and testing ratios for all listed methods remain the same for

a fair comparison. Furthermore, all methods are divided into

four categories to show the results effectively, including classical

contrastive learning approaches (†) (Chen et al., 2020; He et al.,

2020), classical MIM-based methods (△) (He et al., 2022; Xie

et al., 2022), self-distillation method (�) (Caron et al., 2021), and

the proposed GSC-MIM (⋆). We also provide a bar chart for a

more intuitive illustration, as shown in Figure 5. Several analysis

can be drawn from these results.

Firstly, the results of GSC-MIM (ViT-S) are significant

compared to the conventional contrastive learning approaches

with roughly the same amount of parameters such as SimCLR

(ResNet50) (Chen et al., 2020) andMoCo v3 (ViT-S) (Chen et al.,

2021). These observations suggest that the proposedMIM-based

method benefits from the internal signal generated from the

image itself compared to the handcraft supervision signal such

as data distortion.

Secondly, we compared the classical MIM-based methods

such as MAE (ViT-B) (He et al., 2022) and SimMIM

(Swin-B) (Xie et al., 2022). The proposed GSC-MIM (ViT-B)

outperformed MAE by 0.91–5.26%. The improvement for Top-

1 Acc indicates that the global semantic integrated strategy can

help the model better acquire the input image’s global long-

dependence features and achieve higher classification results.

Concerning no significant increments found betweenGSC-MIM
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FIGURE 6

Attention map visualization diagrams with patch size of 8 (top), 16 (middle), and 32 (bottom).

and SimMIM, we suppose it is due to the advancement of Swin

Transformer (Liu Z. et al., 2021) as a backbone network.

Thirdly, another observation from the results is the

accuracy increment compared to DINO(ViT-B) (Caron et al.,

2021), which is attributed to the information preserved

complementary masking strategy of GSC-MIM that prevents

the network from losing detailed information. We will provide

visualization results in subsection 3.2.3. to further support

our suggestion.

It also should be mentioned that under the scenario of

limited training samples of UCM dataset, it is easy to overfit for

the proposed GSC-MIM based on large amounts of parameters

backbone such as ViT-L (Params. 304 M), and leads to

unauthentic results.

3.2.2. Patch size as hyperparameter

Since small-scale features usually occupy relatively small

areas in the RSI, the patch size theoretically affects the ability

of the model to capture the small-scale features and the

detailed information in the RSI. To further evaluate the impact

of different patch sizes on the network effects, we conduct

patch-size-specific experiments on the NWPU45 dataset. All

experiments follow the default hyperparameters excluding patch

size. The results are shown in Table 3. It is a rather evident

tendency that classification accuracy is increasing with the

decreasing of patch size. It is also worth noting that the training

time of the network also increases substantially. This result is

probably caused by two reasons:

• A small patch size will force the model to reconstruct more

detailed information and thus learn fine-grained features of

RSI.

• Smaller patch size is more suitable for small-scale objects.

When very small-scale objects, such as cars, are in remote

sensing images, only a smaller patch size can retain

adequate information.

We also provide attention map visualization diagrams to

support our statements, shown as Figure 6.

3.2.3. Visualization analysis

This section uses two visualization methods to interpret

the network effects. We also perform the same visualization

experiment for DINO (ViT-B) (Caron et al., 2021) for a

comparison. All the images are randomly selected from

NWPU45 Dataset. As mentioned before, the mask of critical

patches will cause information loss, so we proposed an

information-preserved complementary masking strategy to

mitigate this negative impact. To illustrate the effectiveness, we

visualize the attention map of the last layer of each attention

head in ViT. The results are shown in Figure 7. Note that the

colorful images are the visualization of [CLS] tokens. It can be
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FIGURE 7

Attention map visualization for GSC-MIM (left) and DINO (right).

seen that GSC-MIM shows visually more vital ability to detect

multi-scale land objects and can separate different land objects

or different parts of one land object apart, while DINO tends to

capture the ambiguous semantic boundaries of land objects.

Since scene labels are highly related to key areas and objects

for RSI classification task, and accurately locating the attention

regions is conducive to improving classification results, the

proposed GSC-MIM integrates the input image’s global semantic

information into the network. To better reflect the key attention

regions, we generated the energy map of the selected samples.

As shown in Figure 8, it is evident that the GSC-MIM-generated

distribution of attention regions is accurate than DINO model.

3.2.4. Discussion and future work

In this paper, we propose GSC-MIM, aiming to address

two main problems encountered when applying MIM-based

generative self-supervised learning to RSI scene classification

tasks: the small-scale information absence problem and the

global semantic information neglect problem, for which we

propose the information-preserved complementary masking

strategy (IPC-Masking) and semantic distillation strategy

(GSD). Experimental results show that our model can obtain up

to 5.26% accuracy improvement on the RSI scene classification

task compared to the benchmark approaches.

We find that by introducing IPC-Masking, the network’s

ability to capture small-scale and fine-grained features is

improved, and this ability is further enhanced as the patch size

is reduced. Intuitively, the effectiveness of the network shows

an inverse relationship with the patch size. However, when

the patch size is excessively small (taking a single pixel as an

example), the contained semantic information is lost; when the

patch size is excessively large (assuming a whole input image as

an example), the MIM mechanism loses its ability to work, so

how to find the appropriate patch size for different RSI datasets

is a problem worth further investigation.

Moreover, our experiments demonstrate that the model

has accurate responses for the scene semantically meaningful
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FIGURE 8

Energy map visualization for GSC-MIM (left) and DINO (right).

regions when global information is introduced as a supervised

signal. This proves the significance of global knowledge for using

MIM in RSI scene classification tasks. Due to the specificity of

the RSI imaging view, the critical information that determines

the semantics of RSI scenes is often mixed with the background.

When the global scene information of the field is not well-

defined, it might not bring significant gain. Further clustering of

the obtained global semantic futures to get more accurate scene

information is a possible beneficial direction for future work.

4. Conclusion

This paper proposed a global semantic integrated self-

distilled complementary masked image model, called GSC-

MIM, for RSI scene classification. In GSC-MIM, the information

preserved complementary masking strategy is proposed to

prevent the information loss of local patches. The global

semantic distillation strategy is employed to integrate the input

image’s global semantic information into the network and

achieve label-free training. Experiments on the AID, NWPU-

RESISC45, and UCM datasets indicate that the proposed GSC-

MIM can better catch features of multi-scale land objects and

achieves competitive classification accuracies.
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