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Linking cognitive performance with fitness outcomes, measured using both reproductive
and survival metrics, of free-living animals is crucial for understanding the evolution
of cognition. Although there is increasing evidence showing a link between cognitive
traits and reproductive success metrics, studies specifically exploring the link between
cognition and survival are scarce. We first explore which cognitive traits related to
survival have been investigated in free-living animals. We also discuss the challenges
associated with investigating the links between cognition and survival. We then review
studies that specifically consider survival of animals of known cognitive abilities that
are either free-living or in captivity and later released into the wild. We found nine
studies exploring cognitive traits in wild populations. The relationships between these
cognitive traits and survival were equivocal. We found a further nine studies in captive-
reared populations trained to predator cues and later released into the wild. Training to
recognize predator cues was correlated with increased survival in the majority of studies.
Finally, different individual intrinsic characteristics (i.e., age, body condition, personality,
sex) showed varied effects between studies. We argue that finding ecologically relevant
cognitive traits is crucial for gaining a better understanding of how selection impacts
certain cognitive traits, and how these might contribute to an individual’s survival. We
also suggest possible standardized, easy to implement, cognitive tests that can be
used in long-term studies, which would generate large sample sizes, take into account
intrinsic characteristics, and provide an opportunity to understand the mechanisms,
development and evolution of cognition.

Keywords: cognitive ecology, reproductive success, sample size, survival, fithess

INTRODUCTION

Cognition refers to the processes by which animals collect, retain and use information from
their environment (Shettleworth, 2010). An array of cognitive functions impact an animal’s
behavior in the wild, including perception, attention, learning, memory, decision-making and
executive functions (flexibility, categorization, problem-solving; Cauchoix and Chaine, 2016).
Individuals vary in their cognitive abilities, which likely influences how they react to changes in
their environment (Mazza et al., 2018). Consequently, individual variation in cognitive ability
is a key component of fitness (Morand-Ferron et al, 2015; Pritchard et al., 2016), which is
broadly defined as “the capacity of organisms to survive and reproduce in their environment”
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(Hua and Bromham, 2018). However, the relationship between
cognition and fitness, both survival and reproductive success,
is likely to differ between species, and may depend on
the physical/social environment and/or life-history traits.
Thus, exploring individual variation in cognition, and its
relationship with different fitness components, could aid in
understanding how and why cognitive abilities have evolved
(Boogert et al., 2018).

Several studies have investigated how fitness, estimated
using reproductive success metrics, relates to cognition
(Supplementary Appendix 1). Surprisingly, few studies have
focused on the link between survival, another important fitness
proxy, and cognition. Reproductive success and survival are
inherently linked since individuals with greater survival also
increase their chances of having higher lifetime reproductive
success. Furthermore, there are many competing demands
for resources that may influence the decision making process
on whether to promote growth or reproduction, whether to
invest in protection and survival, or to find an optimal balance
between these competing interests (Abram et al., 2021), all of
which likely depend on cognitive processes. In addition, many
studies state that cognitive traits (e.g., learning) can impact
survival (e.g., Pravosudov and Roth, 2013), yet the majority of
these studies do not specifically test whether this is the case.
One explanation could be that measuring survival itself is
particularly challenging.

In free-living animals, it is often difficult to discern whether
an individual has died or has merely dispersed from the
area of capture (e.g., Huebner et al, 2018). Indeed, the only
definitive assessment of survival is observed mortality, which
is often not observed directly in nature, and ultimately leads
to missing values in datasets. Calculating survival is therefore
more complicated than assessing reproductive success, and likely
requires data-intensive capture-mark-recapture, which could be
also influenced by individual personality (e.g., neophobia), and
modeling that account for the possibility of dispersal. In addition,
species-specific life history traits, particularly for survival, make
comparative studies difficult. For example, some studies use
juvenile survival (e.g., Sonnenberg et al., 2019), whereas others
use adult survival (e.g., Maille and Schradin, 2016; Huebner
et al., 2018). Nevertheless, survival analyses are used in other
ecological studies (e.g., Santos et al., 2015; MacLeod et al., 2018),
regardless of these limitations, and using data loggers could help
to determine survival (e.g., African striped mice, Rhabdomys
pumilio, Maille and Schradin, 2016; Vuarin et al., 2019), which
begs the question of why studies relating cognition to survival
are not more common. While studying the links between
cognition and survival is challenging, one approach that could
be adopted is to first measure the performance of individuals
in one cognitive test over multiple presentations (i.e., time) or
use several cognitive tests to evaluate several cognitive functions
(Rowe and Healy, 2014). Thereafter, studies could explore how
cognitive ability correlates with a particular survival metric
such as “survivor or non-survivor” or “days of longevity” (e.g.,
Huebner et al., 2018). Using several survival measures should be
considered since only one measure could be misleading through
overestimation or underestimation (Boogert et al., 2018).

Although greater cognitive performance is associated with
fitness benefits, increasing evidence of natural within-species
variation in cognitive ability indicates that cognition is not cost-
free (reviewed in Thornton and Lukas, 2012). For example, in
fruit flies (Drosophila melanogaster) tested in the laboratory,
learning performance was negatively correlated with longevity
(Lagasse et al., 2012), physiological response to food restriction
(Mery and Kawecki, 2005) and larval competitive ability (Mery
and Kawecki, 2003). In addition, whereas some cognitive
traits may be positively or negatively associated with fitness,
not all cognitive traits may affect fitness depending on their
ecological relevance. For example, song repertoire size, an
indirect predictor of various reproductive success measures, in
male song sparrows (Melospiza melodia) is positively correlated
with inhibitory control (detour reaching performance) but not
with learning performance in a motor or color discrimination
task (Boogert et al., 2011).

The different outcomes described above also indicate many
challenges in linking cognitive traits and fitness. For example, the
relationships between cognitive abilities and survival may vary
depending on the study design (e.g., laboratory vs. studies in
the wild, sample size, chosen cognitive and survival metrics) and
individual characteristics of particular species (Huebner et al.,
2018), such as sex (Maille and Schradin, 2016). For example,
a positive relationship between learning (aversive conditioning)
and survival post-release in the wild occurs in black-tailed prairie
dogs (Cynomys ludovicianus, Shier and Owings, 2006) but not
in greater bilbies (Macrotis lagopus, Moseby et al., 2012). This
could be a species-specific response, but it could also be due
to differences in study design; Shier and Owings (2006) trained
prairie dogs with only a single cue, whereas Moseby et al.
(2012) trained bilbies with multiple cues. Survival is also age-
dependent, generally decreasing with increasing age in several
species (Lemaitre and Gaillard, 2020). Senescence is a widespread
phenomenon that is especially pronounced in cognitive abilities
but it may be delayed in species with strong selection on cognitive
abilities, such as food-caching species (Heinen et al, 2021).
Personality traits also influence cognitive abilities (Sih and Del
Giudice, 2012), fitness outcomes (Collins et al., 2019) and add
challenges to measuring survival (e.g., neophobia may decrease
recapture success and may bias estimates of survival). Currently,
links between cognition and survival have generally only been
studied in a small number of free-living species, often focusing on
a single cognitive trait (Huebner et al., 2018), and not taking into
account intrinsic characteristics such as sex, age and personality,
making generalizations on the relationship between cognition
and survival challenging.

In this review, we provide the methods and results obtained
from cognitive studies of (i) different species tested directly in the
wild, (ii) free-living species temporarily held and tested in a field
laboratory and later returned to the wild, and (iii) captive-reared
species later reintroduced to the wild. In these studies, individual
cognitive traits were measured and related to specific survival
metrics as a proxy of fitness. Our aims were to: (1) investigate
whether there is a positive, negative or absence of a relationship
between cognition and survival in animals in nature or studied in
captivity but released into the wild, and (2) discuss the challenges
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of studying this relationship in a natural environment. Finally,
we suggest some experimental approaches to studying cognition
in free-living species to enable us to more accurately assess the
relationship between cognition and survival.

METHODS

Literature Survey

We first conducted a thorough search of the literature using the
IST Web of Science. We started with 32 broad (e.g., cognition
or cognitive trait) and specific (e.g., “working memory” or
“spatial learning”) keywords (Figure 1). Each of these keyword
searches was then refined with five additional keywords (survival,
mortality, longevity, death and fitness; Figure 1). These searches
resulted in a total of 277,438 hits. Therefore, we further refined
each search by including first the keyword “animal” (Figure 1). If
this did not reduce the number of hits to a manageable number
(e.g., 60), we further refined the search by including each of
the following taxonomic groups: mammal, primate, bird, reptile,
amphibian, fish, insect and invertebrate (Figure 1). This resulted
in a total of 6,637 hits. Articles were discarded if they did not
reach three criteria (Figure 1): (1) studies had to be conducted
on animals that were free-living or were wild strains that had
been brought into captivity for a short period for testing and
then released (e.g., studies conducted on laboratory strains, such
as rats, mice and fish, were not considered). (2) Studies had to
explicitly evaluate survival (e.g., some studies merely mentioned
survival as a potential benefit but did not actually test this). (3)
Studies had to explicitly evaluate the relationship between the
cognitive trait and survival.

RESULTS

We found nine studies linking cognition and survival in free-
living animals (Table 1) and nine studies in captive reared
animals reintroduced to the wild (Table 2). Different cognitive
tasks were used in each study as appropriate for the study species.
For example, a Barnes maze was used for spatial learning and
memory in striped mice (Maille and Schradin, 2016), whereas
“spatial arrays” were used for spatial learning and memory in
mountain chickadees (Poecile gambeli, e.g., Sonnenberg et al.,
2019). In addition, tasks were based either on artificial stimuli
(e.g., color discrimination learning, lever pulling problem-
solving, Madden et al., 2018) or natural stimuli (e.g., attention
toward a predator, memory to find a shelter in a predator-
mimicking situation, e.g., Ferrari et al., 2014). Finally, different
individual intrinsic characteristics (i.e., age, body condition,
personality, sex) were included as co-variates that could explain
the link between cognition and survival. However, these varied
between studies.

Literature Survey: Cognition and Survival
in Wild Populations

In the nine studies on the relationship between several cognitive
traits (i.e., problem-solving, spatial and reversal learning, spatial

memory) and survival in wild populations, four (three on
birds, and one on a reptile; Table 1) measured the traits
in situ, and five (two on mammals, one on birds, and two
on fish; Table 1) measured the traits in a field laboratory
before returning the individuals back to the wild. All studies
training individuals to predator cues found a 100% positive
relationship between training/learning and survival (N = 5;
Table 1). Studies testing spatial learning and memory found
contrasting results (Npositiverelationship = 2, but one only with
males; N pon-significantrelationship = 2)- One study testing attention
found a positive relationship only with females. Studies testing
problem-solving (N = 2) or reversal spatial learning (N = 2) did
not find any significant relationship with survival.

Literature Survey: Cognition and Survival
in Captive Reared Populations

We found one study on the common pheasant (Phasianus
colchicus) that aimed to relate the performance of two cognitive
traits (i.e., discriminative, spatial and reversal learning) with
survival when these pheasants were later reintroduced to the wild
(Table 2). The results showed a negative relationship between
survival and reversal learning, that is, pheasants that were
slow to reverse previously learned associations were more likely
to survive, and a positive relationship between discriminative
learning and survival in heavy but not light birds (Madden
et al., 2018). Eight studies (two on mammals, five on birds, and
one on reptiles; Table 2) aimed to train captive-bred animals
to predator-prey stimuli to increase species reintroduction
success later. Five studies found a positive relationship between
training and survival, whereas three studies did not find any
significant relationship.

DISCUSSION

We found nine studies specifically focusing on the survival of
free-living animals of known cognitive abilities and nine studies
exploring survival of captive-reared species later reintroduced
to the wild. We found that study designs varied widely in
sample size, chosen cognitive traits and survival metrics, and in
the inclusion of intrinsic characteristics such as sex, age, and
personality. It is challenging practically to link cognition and
fitness proxies in free-living animals for two reasons. First, it is
difficult to find cognitive traits that are aligned with the ecology
of the study species, that are biologically relevant, and that are
likely to explain survival across species. Second, in some species,
it is difficult to distinguish between dispersal and death to be able
to evaluate survival, an often overlooked fitness metric.

The first challenge when studying the effects of cognition
on survival is finding appropriate cognitive traits to test in
relation to fitness proxies. For example, Huebner et al. (2018)
suggested that the absence of a relationship between problem-
solving and spatial learning performance and survival in gray
mouse lemurs (Microcebus murinus) shows that survival might
not be predicted by the specific cognitive abilities addressed in
the study. Some cognitive traits might be under selection in
some species compared to others based on the ecology of that
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species (e.g., memory in food caching birds, Sonnenberg et al.,
2019; problem-solving in non-migratory birds, Sol et al., 2016).
Thus, one solution is to examine cognitive traits related to a
particular hypothesis for an increase or decrease in survival,
and hence choose an ecologically relevant cognitive trait to
disentangle what selective pressures are acting on it (Boogert
et al,, 2018). Alternatively, assessing diverse cognitive functions
in free-living animals, including perception, learning, memory
(short and long-term), attention, decision-making and executive
functions (flexibility, categorization, problem-solving), will help
us understand whether cognitive performance in a particular
context is associated with fitness benefits and/or costs in different
species (Cauchoix and Chaine, 2016). For example, attentional
processes will impact an animal’s behavior in the wild in many
different situations, and it has been suggested that attention
might explain the relationship between general cognitive ability
and survival skills in several species (Matzel et al, 2020).
Ultimately, it would be beneficial to find candidate cognitive traits
that are likely to explain survival across species.

Some studies merely mentioned, but did not actually test for,
survival as a potential benefit, whereas others clearly explore
these relationships. For example, the wealth of literature on
the cognitive ecology of food-storing in birds that has emerged
over the last 30 years suggests that studying spatial memory
abilities and associated neural structures in food-hoarding
animals that rely on food caching and later retrieval of caches
is relevant to understanding overwintering survival (reviewed in
Pravosudov and Roth, 2013). Some meta-analysis studies also
showed a positive relationship between brain size and innovative
propensity as a measure of cognition and survival (Sol et al., 2005,
2007). Nevertheless, only two recent studies in birds empirically
tested the relationship between spatial memory abilities and
survival per se (Tello-Ramos et al, 2018; Sonnenberg et al,
2019). Tello-Ramos et al. (2018) found no significant relationship
between survival to the first year and spatial and reversal learning

performances, whereas Sonnenberg et al. (2019) found increased
survival in individuals performing better in spatial learning and
memory tasks. Considering that an array of cognitive abilities
could impact an animal’s behavior in the wild, it should be noted
that some cognitive traits, such as perception or decision-making,
and some executive functions (e.g., categorization) have not been
studied, either in relation to survival (Table 1) or to reproductive
success (Supplementary Appendix 1).

Studies in cognitive conservation biology (i.e., individuals
being aversively conditioned in captivity with olfactory
and/or visual stimuli from predators) could be relevant for
demonstrating the adaptive value of learned information. Some
studies showed a higher proportion of population survival in
captive-bred animals trained to recognized predator stimuli
(Table 2). One study in captivity did not train animals with
predator cues but tested two cognitive traits. Madden et al.
(2018) related discriminative, spatial and reversal learning
performance of captive common pheasants with survival when
these pheasants were later reintroduced to the wild; individuals
that were slow to reverse previously learned associations
(reversal learning task) were more likely to survive to 4 months
old (Madden et al., 2018). We included studies on individuals
reared in captivity in the results of our review but we should
be cautious about the interpretation of fitness consequences
of natural variation in learning ability (Morand-Ferron, 2017).
Indeed, animals reared in captivity are not confronted with the
same environmental challenges compared to their free-living
counterparts, particularly if they are retained in captivity from an
early age. They are often limited in their food diversity, and/or
may be food deprived, forcing participation in a test. In addition,
captive animals may be limited by space, again potentially forcing
participation, or increasing stress that might impact the results.
Consequently, results relating cognition to survival in animals
reared in captivity should be treated with caution since they may
not reflect true patterns seen in free-living animals.
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TABLE 1 | Overview of studies linking cognitive performance and survival in free-living animal populations.

Species Context Cognitive traits Cognitive task Survival metric Statistics Intrinsic Sample Results References
characteristics size
Mammals
African striped Wild tested Spatial memory Barnes maze Survival to breeding season Logistic regression: Litter, sex N =59 Maille and
mouse (Rhabdomys in field lab (lab) Binomial data Schradin,
pumilio) (survivor or non-survivor) 2016
30d + foro
299 - for ¢
Attention Orientation test (lab) N =159 NS
304
299
Moving shadow (field) N =50
2040 NS for &
309 + forQ
Gray mouse lemur Wild tested Problem-solving Food extraction task: lid opening # days surviving between Cox proportional hazards Age, body N =64 NS Huebner et al.,
(Microcebus in field lab (lab) birth and date of last capture models condition, sex 2018
murinus)
Spatial learning Plus maze (lab) N =62 NS
Birds
Mountain chickadee Wild Spatial learning and Smart feeder and spatial array Survival in 1st year Logistic regression: Age N =62 + Sonnenberg
(Poecile gambeli) memory (field) Binomial data (survivor or etal., 2019
non-survivor)
Reversal spatial learning NS
and memory
Mountain chickadee Wild Spatial learning and Smart feeder and spatial array Survival in 1st year vs. adult General linear model Age N =169 NS Tello-Ramos
(Poecile gambeli) memory (field) survival at least 1 year (GLM) etal., 2018
Reversal spatial learning N =098 NS
and memory
Great tit (Parus Wild tested Problem-solving Lever-pulling task (lab) Survived winter or the next General linear model Age, body N =698 NS Cole et al.,
major) in field lab breeding season (GLM): Binomial data condition, sex 2012
(survivor or non-survivor)
Siberian jays Wild Learning: aversive Predator training via visual cues Survival in 1st year GLM: Binomial data Age, brood, group N=109 + Griesser and
(Perisoreus conditioning (wild) (survivor or non-survivor) size, sex Suzuki, 2017
infaustus)
Fish
Coral reef damselfish ~ Wild tested Learning: aversive Predator training via visual and ~ Survival 70-96 h post-release Cox’s proportional Body size N =252 + Lonnstedt
(Pomacentrus wardi) in field lab conditioning chemical (lab) hazard model etal.,, 2012
Whitetail damselfish Wild tested Learning: aversive Risk training from injured Survival to 77 h post-release Cox’s proportional - N=102 + Ferrari et al.,
(Pomacentrus in field lab conditioning conspecific cues (lab) hazard model 2014
chrysurus)
Predator training via visual and +
chemical cues (lab)
Reptiles
Yellow-spotted Wild Learning: aversive Toxic prey training (field) # days survived after training Kaplan—-Meier survival Body size N =47 + Ward-Fear
monitor (Varanus conditioning analysis etal., 2016

panoptes)

Studies are classified according by taxon (mammals, birds, fishes and reptiles). For each cognitive task, we provide details about whether the study took place in a field laboratory or directly in the field. Survival metrics
are provided (# represents number). The relationship between cognitive performance and survival is either positive (+), negative (=) or non-significant (NS). & represents males, @ represents females, 1 represents

increased survival.
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TABLE 2 | Overview of studies linking cognitive abilities in captive animals and their reintroduction success.

Species Context Cognitive traits Cognitive task Survival metric Statistics Intrinsic Sample Results References
characteristics size
Mammals
Greater bilby Captive, Learning: aversive Predator training via Survival 6 months Fisher test Body condition, N =20 NS Moseby
(Macrotis lagotis) released to wild conditioning learning multiple cues post-release sex 7 (o = 0.160) etal., 2012
(field) 13¢
Black-tailed prairie Captive, Learning: aversive Predator training via Survival 1 year Multiple logistic Body condition, N=18 Trained = 1 survival Shier and
dog (Cynomys released to wild conditioning auditory cues (lab) post-release regression litter, sex 84 (o = 0.004) Owings,
ludovicianus) 109 2006
Birds
Blue-fronted Captive, Learning: aversive Predator training via visual ~ Survival to 12 months  Kaplan-Meier survival Personality, sex N =31 NS Lopes et al.,
Amazon parrot released to wild conditioning cues post-release analysis 17 & (o =0.670) 2017
(Amazona aestiva) (lab) 14 ¢
Common pheasant Captive, Spatial learning and Food-rewarded wells Survival to 60 days GLM: Binomial data Body condition, N =154 + for heavy birds Madden
(Phasianus released to wild color discrimination according to location (lab) post-release (survivor or personality, sex (o = 0.060); —for etal, 2018
colchicus) non-survivor) light birds
(p=0.018)
Reversal spatial -
learning and color (o = 0.036)
discrimination
Greater rhea (Rhea Captive, Learning: aversive Predator training via visual Survival to 8 months Chi-square N =21 NS Vera Cortez
americana) released to wild conditioning cues post-release Sex Mg (o = 0.280) etal., 2015
(lab) 109
Houbara bustards Captive, Learning: aversive Predator training via model  Survival to the breeding Fisher test NA N =44 Trained = 1 survival ~ Van Heezik
(Chlamydotis released to wild conditioning and live animals season (p < 0.05) etal., 1999
macqueenif) (lab)
Little owls (Athene Captive, Learning: aversive Predator training via visual Survival to 6 weeks NA NA N=16 Trained = 1 survival Alonso et al.,
noctua) released to wild conditioning and auditory cues post-release 2011
(lab)
Red-legged Captive, Social learning Predator training via visual # days survived after Mantel-Cox test N =284 Trained = 1 survival Gaudioso
partridges (Alectoris  released to wild cues release Age, brood, sex (o < 0.05) etal., 2011
rufa) (lab)
Reptiles
Velvet gecko, Captive, Spatial learning Find a shelter (lab) Survival to 9 months ANOVA Body size and N =64 Cold-incubated Dayananda
(Amalosia lesueurii)  released to wild post-release mass hatchlings = faster ~ and Webb,
learners 2017
(o < 0.001)

Cormack-Jolly-Seber
models

Better learners = 1
survival (lower AIC)

One study related problem-solving and spatial learning to survival, and eight studies related learning of predator cues to reintroduction success. & represents males, @ represents females, 1 represents increased

survival.
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The second challenge when studying the effects of cognition
on survival will be to accurately distinguish between dispersal and
death, which will permit evaluation of survival in some species.
Calculating survival likely requires data-intensive capture-mark-
recapture and modeling that account for the possibility of
dispersal. Thus, survival could be better estimated in species with
no breeding dispersal. For example, food-caching Parids, such
as mountain chickadees, are permanent residents that have just
one post-natal dispersal movement during their first year of life,
enabling the study of test birds for several years (Sonnenberg
et al., 2019; Heinen et al., 2021). However, some authors
have managed to assess the relationship between cognition and
survival in species showing dispersal. For example, Maille and
Schradin (2016) found that wild male African striped mice that
performed better in a long-term spatial memory task survived
for longer. Survival was measured as the number of days alive
before the onset of the breeding season and hence before long-
distance dispersal. A mouse was considered to have died when
it had not been trapped or observed for at least two consecutive
months. Survival could also be estimated in individuals where
one sex does not disperse. However, this will lead to biased
assumptions about how and why cognitive abilities have evolved
in a species (Boogert et al., 2018). Furthermore, dispersal and
survival are often inter-linked (e.g., an animal that disperses from
the natal nest has a higher probably of being predated than one
that does not, Clobert et al., 2009). It would be interesting to
investigate differences in cognitive abilities between dispersing
and non-dispersing species in the same taxonomic group. This
could highlight specific cognitive traits that will enhance survival
according to the presence/absence of dispersal in phylogenetically
closely related species, allowing us to better understand the
adaptive value of cognitive traits.

Intrinsic characteristics, such as age, sex and personality, are
not always known or considered in studies related to cognition
and survival in the wild. These intrinsic characteristics can impact
inter-individual variation in cognitive performance and survival.
For example, in striped mice, faster attention toward a predator
stimulus was positively linked with survival in females but not
males, yet male, but not female, survival co-varied positively with
better spatial memory of shelter locations (Maille and Schradin,
2016). Survival is also strongly age-dependent (Lemaitre and
Gaillard, 2020). Therefore, it is important to control for age
either during data collection or statistically by taking into account
age as a covariate in statistical models. Senescence in specific
cognitive traits could also be delayed in species with strong
selection on certain cognitive traits, such as in food-caching
species, and hence could influence survival outcomes (Heinen
et al., 2021). Personality can also influence key behaviors for
survival in the wild (e.g., Aplin et al., 2013). Bold animals can
adopt risky behaviors toward predators but will also be more
willing to explore their environment and increase their chances of
finding food or mates (MacPherson et al., 2017). Thus, individual
differences in personality might drive individual differences in
cognitive abilities, and together they might drive responsiveness
to environmental change (Griffin et al., 2015) and ultimately
survival. From a practical point of view, personality traits add
challenges to accurate survival measurements. For example,

neophobia may influence recapture success, and hence may bias
estimates of survival. We suggest that studies attempting to link
survival or other fitness proxies (such as reproductive success)
to cognition should always consider other possible influencing
factors, such as sex, age, or personality.

It is also challenging to find the appropriate task to test a
particular cognitive trait. For example, individual variation in
problem-solving performance could be related to motivational
variation rather than cognitive mechanisms per se (Van Horik
and Madden, 2016). This leads to issues of either capturing
animals and testing them in a field laboratory for short-term
tests or testing them directly in the field under spontaneous,
but less controlled, conditions (e.g., with the possible impact
of social learning). Furthermore, assessing the survival of wild
animals of known cognitive abilities requires tracking the same
individuals in space and over time (Tello-Ramos et al., 2018). The
cognitive test should then be standardized between studies and
easily applied to be used permanently for long term studies (e.g.,
Morand-Ferron et al., 2015; Cauchoix et al., 2017). Automated
operant devices placed directly in the field could be appropriate
for cognitive tests, since animals can participate in a task
spontaneously, increasing the probability of generating a large
sample size (Morand-Ferron et al, 2016). One could argue
that experimental protocols involving novel objects may elicit
avoidance in neophobic individuals (Stuber et al., 2013) or those
that have better access to other resources (e.g., adults compared
to juveniles, Morand-Ferron et al., 2011). However, a longer
duration of the experiment could lead to a familiarization to the
devices, allowing novelty responses to reduce with time, thereby
eliminating personality biases, such as has been observed in
great tits (Parus major, Morand-Ferron et al., 2015). In addition,
the device could be adapted to different species while still
assessing the same cognitive response. For example, automated
devices have been used in studies of passerine species but are
difficult to create and modify. Thus, creating simple, ecologically
relevant tasks, such as mimicking a predator shape in order to
measure attention, setting a novel object in the field to measure
habituation (basis of learning), or documenting the technique
and time required for nest building as a measure of problem-
solving could also be relevant in studying the evolution of
cognition (Keagy et al., 2011).

Standardized and easy to use tests will help to generate
sample sizes with better statistical power. Generally, an acceptable
statistical power is only associated with very large sample sizes,
which are often difficult, if not impossible, to obtain in the wild.
The practical challenge will then be to conduct long term studies
over several years, such as in Cole et al. (2012). However, to reach
a sample size with better statistical power in the wild would likely
require several years of study, particularly for species that are rare
or cryptic. Conducting studies across years comes with additional
potential confounding effects, such as seasonal changes, weather
effects (e.g., temperature and humidity changes), unexpected
catastrophic events (e.g., bushfires or floods) and human impacts
(e.g., deforestation and land degradation).

Some taxa appear to be good study candidates for obtaining
adequate sample sizes for linking fitness proxies and cognitive
abilities. The few studies conducted on mammals indicate that
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rodents may be appropriate because of their small body size, short
longevity, ease of study and ability to obtain large sample sizes
in general (e.g., Maille and Schradin, 2016). Short longevity can
add a practical advantage to measuring survival. For example,
in striped mice, it is possible to measure several cognitive traits
during their 1-year lifespan. Similarly, among birds, most work
has been done on short-lived passerines, generating large sample
sizes (e.g., Cole et al., 2012). Fish could also be promising
candidates for future studies. For example, experimental studies
on guppies (Poecilia reticulata) showed that individuals with
larger brains had improved cognitive abilities (spatial learning
tested in a sample of N = 450; Kotrschal et al., 2013), and
large-brained females had higher survival compared to small-
brained females (N = 794; Kotrschal et al., 2015), which was
related to predation pressure in a wild population (N = 160;
Kotrschal et al, 2017). Some other model species relating
cognition and fitness in the wild are absent in the literature.
For example, cephalopods, known for their complex cognitive
abilities such as flexible decision-making and future planning
(Billard et al., 2020), could be relevant models of study. Some
insect species could be candidates for obtaining adequate sample
sizes, and linking cognitive performance and fitness (e.g., Raine
and Chittka, 2008); however, it may be challenging to study them
in the wild and measure their survival. Overall, more studies are
needed on survival in a diverse range of free-living animal species
of known cognitive abilities. This will allow for comparative
studies, highlight potential differences in which cognitive traits
are important for survival in some taxa but not in others, and
finally will allow us to better understand the factors shaping the
evolution of animal cognition.

Because there is no standardized approach to link survival
and cognition, the differing results of previous studies could
also indicate that the outcome depends on the conditions under
which fitness proxy metrics are assessed. Depending on the study
species, survival can be evaluated in days from birth to death,
in days from birth to dispersal (e.g., Maille and Schradin, 2016),
or as seasonal or annual survival vs. death (e.g., Sonnenberg
et al., 2019). Madden et al. (2018) determined a threshold for
survival at 60 days in common pheasants by using a putative
survival curve based on previous observations and according
to anthropogenic activity (pheasant shooting). Studies in fish
monitored survival from 70 to 96 h post release (Lonnstedt
et al., 2012; Ferrari et al., 2014). These different measurements
suggest that it is essential to consider a species’ characteristics
to determine the relevant survival metric to use as a fitness
proxy. It is also important to potentially define the baseline
longevity of a population and then measure deviations related to
cognition to generate continuous data rather than simple binary
(yes/no) outcomes and, hence, explore how survival relates to the
evolution of cognition.
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