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We reviewed the available climate records for the past 2 millennia based on the analyzed
sediment and speleothem archives from different regions of South Asia. Speleothem
records from the core-monsoon regions of the Indian sub-continent have revealed the
Little Ice Age (LIA) as a climatically dry phase, whereas the same from the western and
central Himalaya recorded LIA as wet. Moreover, the sediment-derived vegetation proxy
records [pollen-spores and stable organic carbon isotope (δ13Corg)] from the western
Himalaya also reported LIA as a dry phase. Heterogeneous results by different proxies
during LIA enhanced our interest to understand the response of the proxies toward
the primary precipitation sources, Indian summer monsoon (ISM) and winter westerly
disturbances (WDs), over the Himalaya. We emphasize that in the Himalayan region,
the vegetation predominantly responds to the ISM dynamics, whereas speleothem also
captures the WD effect.
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INTRODUCTION

The late Holocene is essential in understanding the hydroclimatic conditions with emphasis on
the climate anomalies of the last 2 millennia. Medieval Warm Period (MWP) and Little Ice Age
(LIA) were observed in the Northern Hemisphere primarily impacting the European landmass
and parts of the North Atlantic (Crowley and Lowery, 2000). Globally, the MWP is documented
between 900 and 1300 C.E. (Graham et al., 2011) and the LIA is between 1500 and 1850 C.E. (Grove,
2001). However, the time intervals of their respective peak warm and cold phases and the regional
hydroclimatic variability remain globally debated (Bradley et al., 2003; Wanner et al., 2008; Mann
et al., 2009). Chen et al. (2019) highlighted the anti-phased hydrological variations between the arid
central Asia and mid-latitude monsoonal Asia on different timescales of the Holocene. Dixit and
Tandon (2016) provided a synoptic view of the late Holocene hydroclimate intricacies based on the
57 records from different regions of the Indian subcontinent. They found poorly documented MWP
and LIA signals, either due to age constraints or poor temporal resolution of the studied archives.

The Himalayan region, under the influence of Indian summer monsoon (ISM) and winter
westerly disturbances (WD; Polanski et al., 2014; Dimri et al., 2016), remains highly dynamic
hydroclimatically and ecologically. The region is unique for inferring the climate and monsoonal
variability in time and space. Fluvio-lacustrine sediment deposits, tree-rings of climatically sensitive
tree taxa, and cave deposits (speleothem) are the most extensively used archives for past climate
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reconstructions. A good number of climate reconstructions from
the Himalaya have used sediment archives with the pollen-spores
and organic carbon isotope (δ13Corg) as major proxies (Roy
et al., 2022 and references therein). Only a few sedimentary
records with climate reconstructions at centennial to decadal
time resolution could capture the MWP and LIA anomalies
(Phadtare, 2000; Kar et al., 2002; Chauhan, 2006; Dixit and
Bera, 2013; Bali et al., 2015; Rawat et al., 2015; Srivastava et al.,
2017; Ali et al., 2018; Shah et al., 2020; Sharma et al., 2020; Roy
et al., 2022). The speleothem and tree-rings provided the high-
resolution decadal to annual-scale climate records of the past
few centuries, with speleothem records extending beyond the late
Holocene. But such high-resolution long-term climate records
are less from the Himalayan and other regions of the Indian
subcontinent. This is due to the limited existence of old forest
patches and less number of explored speleothem sites. However,
the biotic and abiotic proxy-based hydroclimatic records from
different regions of the Indian subcontinent lack the comparative
proxy response analysis toward precipitation dynamics.

The regions of Himalaya and peninsular India experienced wet
conditions due to strong ISM during MWP (Dixit and Tandon,
2016 and references in Supplementary Table 1). The sediment
archives from different precipitation zones of Himalaya and
south India inferred moist conditions between 1.8 and 0.5 ka
(Supplementary Table 1 references). The oxygen isotope (δ18O)
records of speleothem from caves of the western and central
Himalaya (Sanwal et al., 2013; Kotlia et al., 2015, 2017; Liang
et al., 2015; Sinha et al., 2015) and in central India (Sinha
et al., 2011a) also exhibited decisive phase of summer monsoon
between ∼1.15 and 0.65 ka. The increasing strength of the ISM
during MWP was attributed to the northward shifting of the
inter-tropical convergent zone (ITCZ; Haug et al., 2001) caused
by the higher solar insolation (Fleitmann et al., 2003; Gadgil,
2003) coupled with the oceanic circulations (Berkelhammer et al.,
2010; Liang et al., 2015).

Subsequent to the moist MWP phase, the sediment derived
pollen-spores and δ13Corg records from the Himalaya reported
a dry climate between ca. 0.8 and 0.2 ka bracketing the LIA
phase (Supplementary Table 1 references). On the other hand,
the speleothem studies from ISM dominant regions of the central
and western Himalaya such as Dharamjali cave (Sanwal et al.,
2013), Sainji cave (Kotlia et al., 2015), Panigarh cave (Liang
et al., 2015), and Chulerasim cave (Kotlia et al., 2017) revealed
wet conditions during the LIA. Presently these sites receive
around 70% of precipitation during the summer monsoon and
have an influence of the winter precipitation through westerly
disturbances. Hence, there is an observed contrast between
the climatic signals produced by the plant archives (pollen-
spores and δ13Corg) and the cave deposits (speleothem). Most
of the tree-ring records do not extend back to the MWP time
interval but a few older tree-ring chronologies from the Asian
region recorded frequent drought conditions during the last
millennium (Cook et al., 2010). These records highlight the proxy
response heterogeneity toward the Asian summer and winter
monsoon precipitation systems. The earlier records suggested a
considerable variability in the latitudinal monsoon precipitation
during the LIA due to the rapid southward migration of the ITCZ

(Newton et al., 2006; Kotlia et al., 2012; Sanwal et al., 2013). We
carried out a comparative study of the past 2 millennia of climate
records to understand the response behavior of proxies toward
the monsoon systems so as to assess the role of WD and ISM
in the Himalayan region. For this, we reviewed the speleothem
and sediment (pollen and δ13Corg) studies from different regions
of Himalaya (Figures 1A,B and Supplementary Table 1) and
discussed the possible mechanisms behind the observed proxy
response heterogeneity.

PROXY RESPONSE TO
HYDROCLIMATIC VARIABILITIES
DURING THE LAST 2 MILLENNIA

We compared the late Holocene climate records of sediment
derived pollen and δ13Corg proxies from different monsoonal
zones of Himalaya (Figure 2). The limited number of studies
available from the WD dominated Trans-Himalaya, such as Tso
Kar Lake (Demske et al., 2009) and Tso Moriri Lake (Leipe
et al., 2014) showed the commencement of moist conditions,
respectively, since ca. 1.3 and 1.1 ka due to the strengthening
of the southwest monsoon. Moist conditions existed till ca.
0.5 ka followed by dry conditions since ca. 0.4 ka leading to
decline in agro-pastoral activities (Leipe et al., 2014). The pollen
and δ13Corg of peat deposits from WD dominant Lahaul-Spiti
region also revealed moist conditions ca. 1.16–0.65 ka and cool-
dry condition ca. 0.65–0.35 ka (Rawat et al., 2015). However,
from the Lahaul-Spiti region, Mazari et al. (1996) and Chauhan
et al. (2000) recorded warm-moist conditions ca. 1.5–0.9 ka.
The regions of western and central Himalaya under the high
ISM precipitation domain with the additional influence of winter
precipitation through WD such as Rohtang (Bhattacharyya,
1988), Kinnaur (Chakraborty et al., 2006), Dokriani valley
(Phadtare, 2000), Gangotri valley (Kar et al., 2002; Roy et al.,
2022), Nachiketa (Roy et al., 2022), and Pindar valley (Bali et al.,
2015), recorded the increase in moisture since ca. 1.8 ka. Some
studies within the ISM-WD region reported moisture increase
even later, such as since ca. 1.2 ka from Kedarnath, Uttarakhand
(Srivastava et al., 2017), ca. 1.3 ka from Parvati Valley, (Chauhan,
2006), and ca. 1.4 ka from Dewar Taal, Uttarakhand (Chauhan
and Sharma, 2000). Hence in the western-central Himalaya, we
could observe a variability in the commencement of the moist
phase prior to the last millennium. The WD dominant regions
were distinctly moist since ca. 1.3 ka, whereas the ISM-WD
influenced regions remained variable where most studies showed
moist trends since ca. 1.8 ka and few reported the same since ca.
1.4 ka or after (Figure 2 and Supplementary Table 1). Moreover,
available studies from the ISM dominated eastern Himalaya also
showed a maximum strengthening of ISM rainfall ca. 1.3 ka
(Nautiyal and Chauhan, 2009; Agrawal et al., 2015; Ali et al., 2018;
Ghosh et al., 2018).

Contemporary to this phase the speleothem records from
the Himalayan caves (Sinha et al., 2007, 2015; Sanwal et al.,
2013; Kotlia et al., 2015) also retrieved strong ISM precipitation
from ca. 950 to 1,250 C.E. (ca. 1.0–0.7 ka). The moist phase
corresponding to MWP existed till ca. 0.8 ka as recorded by
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the majority of the sediment and cave records from Himalaya.
This phase is also comparable to the terrestrial and marine
records from core monsoon regions of peninsular India. Pollen
and phytolith assemblage dataset from the Pookode Lake, Kerala
(Veena et al., 2014) inferred dry climate ca. 2–0.4 ka interrupted
by moist conditions between ca. 1.4 and 0.8 ka. Marine records
from the Arabian Sea and Bay of Bengal (Gupta et al., 2003;
Tiwari et al., 2006; Chauhan et al., 2010; Ponton et al., 2012) also
recorded strong ISM precipitation ca. 950–1,250 C.E. However,
a study from Lonar Lake located in the Indian core monsoon
region (Prasad et al., 2014; Mishra et al., 2018) discussed the weak
influence of ISM between ca. 810 and 1,300 C.E.

Subsequent post-MWP weakening of ISM as evident in the
Himalaya and peninsular India is responsible for the high-
intensity monsoon mega-drought (MMD) events since ca. 1300
C.E. (ca. 0.65 ka). The sediment records of the Himalayan
region showed that the region experienced the weakest ISM
between ca. 0.6 and 0.3 ka (Figure 2 and Supplementary
Table 1), corresponding to the LIA. A network of tree-ring width
reconstructions (Cook et al., 2010) also pointed to a general
weakening of the Asian monsoon during the last millennium,
responsible for mega-droughts in the Asian region. The annual
precipitation reconstruction since ca. 1330 C.E. based on the tree-
ring data of Himalayan cedar (Cedrus deodara) from the Lahaul-
Spiti region, western Himalaya, showed drought conditions
during the 14th and 15th century C.E. (Yadav et al., 2011).
High-intensity MMD events ca. 1300 C.E. (ca. 0.65 ka) were
observed as well in the records from the Arabian Sea (Gupta
et al., 2003; Tiwari et al., 2006) and Andaman (Laskar et al.,
2013). The speleothem records of Jhumar and Dandak caves
located in the Indian peninsular region (C5b, C6 in Figure 1)

and Wah Shikar Cave in north-eastern India (C5 in Figure 2)
also observed the MMD events between ca. 1250 and 1450
C.E. Subsequently, 1400–1700 C.E. was persistently drier with
monsoon breaks followed by the moist conditions with an active
summer monsoon in peninsular India (Sinha et al., 2011b).
Contrary to this, the speleothem records of Sainji cave (Kotlia
et al., 2015), Panigarh cave (Liang et al., 2015), and Dharamjali
cave (Sanwal et al., 2013) from the central Himalaya (C1, C2, and
C3 in Figure 2) experienced wetter conditions around 1450–1750
C.E. (Figure 2). This anti-correlation between the speleothem
records of peninsular India and the Himalayan region during the
LIA has been attributed to the additional role of WD precipitation
in the Himalayan region (Sanwal et al., 2013; Liang et al., 2015;
Kumar et al., 2019). Variability in the hydroclimate records by
the sediment proxies and cave deposits is thus evident from the
Himalayan region for the LIA time period (ca. 1300–1800 C.E.).
Here the speleothem records of caves located in the ISM and
WD influenced region showed wet conditions and the sediment-
based pollen and δ13Corg proxy data recorded the dry climatic
conditions (Figure 2).

POSSIBLE MECHANISMS BEHIND
HYDROCLIMATIC VARIABILITIES AND
PROXY RESPONSES

Precipitation over the Indian sub-continent received from
different moisture sources (Polanski et al., 2014) shows great
diversity due to the seasonal shifting of the ITCZ. The climate
of peninsular India is predominantly influenced by the ISM.
The northward shifting of the ITCZ controls the ISM due to

FIGURE 1 | (A,B) Locations of archives as mentioned in Figure 2. Detailed information about the sedimentary and cave archives can be found in the
Supplementary Table 1. Maps are modified after Chen et al. (2019); they have been plotted by using GeoMapApp v.3.6.10.
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FIGURE 2 | Climatic episodes in sedimentary records of (S1) Demske et al. (2009); (S2) Leipe et al. (2014); (S3) Mazari et al. (1996); (S4) Rawat et al. (2015); (S5)
Chauhan (2006); (S6) Bhattacharyya (1988); (S7) Chakraborty et al. (2006); (S8) Phadtare (2000); (S9) Srivastava et al. (2017); (S10) Kar et al. (2002); (S11) Chauhan
and Sharma (2000); (S12) Bhattacharyya and Chauhan (1997); (S13) Bali et al. (2015); (S14) Ghosh et al. (2018); (S15) Nautiyal and Chauhan (2009); (S16) Prasad
et al. (2014); (S17) Veena et al. (2014). All inferences are derived based on pollen assemblages additionally with δ13Corg (*), Environment magnetism (∧), Other
geochemical proxies (+), and other biotic proxies (#) as indicated in the figure. Palaeoclimate data of cave deposits; (C1) δ18O Sainji Cave (Kotlia et al., 2015); (C2)
δ18O Panigarh Cave (Liang et al., 2015); (C3) δ18O Dharamjali Cave (Sanwal et al., 2013); (C4) δ18O Sahiya Cave (Sinha et al., 2015); (C5) δ18O Wah Shikar Cave
(Sinha et al., 2011b); (C6) δ18O Dandak Cave (Berkelhammer et al., 2010). The 22 years average Total Solar Irradiance (TSI) dataset from Steinhilber et al. (2012) and
sunspot minima activities: Oort (Om), Wolf (Wm), Spörer (Sm), Maunder (Mm), and Dalton (Dm) compared with the datasets. C1–C4 are influenced both by ISM and
WD whereas C5–C6 are from ISM dominant regions.

low pressure over the Indian landmass after drawing moisture
from the Bay of Bengal (BoB) and the Arabian Sea (AS). Earlier
studies have found the role of the North Atlantic sea surface
temperatures (Berkelhammer et al., 2010) and the solar irradiance
in governing the Indian monsoon system by controlling the
north-south migration of ITCZ (Agnihotri et al., 2002; Fleitmann
et al., 2003; Kathayat et al., 2016). The strength of the ISM is
determined by the variations in solar irradiance that controls
the frequency of the El Niño and La Niña events over time
(Terray and Dominiak, 2005). The eastern Himalaya is strongly
influenced by the BoB branch (Mooley and Parthasarathy, 1982).
The western and central Himalaya receives summer precipitation
from the AS and BoB branches from June to September and from
extra-tropical WD from December to February (Sinha et al., 2015;
Dimri et al., 2016). Moreover, total annual precipitation over the
Himalaya shows an inverse correlation with precipitation over

the core monsoon areas of the Indian subcontinent (Kripalani
et al., 2003). This inverse relationship between the winter/spring
and the summer monsoon precipitations is clearly visible over the
peninsular India and the Himalayan region by the speleothem
δ18O records for the LIA phase (Dimri et al., 2016; Dixit and
Tandon, 2016; Kumar et al., 2019). Drought conditions in the
core monsoon area of the south Asian region were the result
of more frequent El Niño events during the LIA (Sinha et al.,
2011a; Shi et al., 2017). But the same triggered more “monsoon
breaks” in the Himalayan foothills thus bringing in the higher
winter precipitation as recorded by the cave deposits in the
Himalaya (Kotlia et al., 2012, 2015, 2017; Sanwal et al., 2013).
The high El Niño conditions during the LIA (Henke et al.,
2015) also reduced the flow of warm ocean water to higher
Northern latitudes causing cooling of the North Atlantic Ocean
and the Eurasian landmass. This resulted in high snow-cover over
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Eurasia and the Himalaya due to the strengthened WD. Enhanced
winter-time precipitation over northwest India is observed within
a phase of the warm equatorial sea-surface temperature and
vice-versa (Dimri, 2013; Yadav et al., 2013). Managave et al.
(2020) also reconstructed cool-wet conditions ca. 1300–1560
C.E. and ca. 1650–1800 C.E. based on tree-ring δ18O from
Lahaul-Spiti region of Himalaya, comparable to a demonstrated
expansion of Himalayan glaciers between ca. 1300 and 1600
C.E. by Rowan (2017).

The pollen and δ13Corg data recorded dry LIA in the
Himalayan region when the ISM (WD) was weak (strong).
Vegetation primarily gets affected by hydroclimatic changes,
which is evident in the present vegetation distribution across
the Himalayan arc (Champion and Seth, 1968; Rawat, 2017).
Moisture availability during the growth season of vegetation
(spring to pre-winter months) is vital for the annual phenological
activities of plants (Pangtey et al., 1990; Rawal et al., 1991).
The interannual climate variations could affect the phenological
activities of the plants as they depend on climatic factors
such as air and soil temperature, precipitation, solar radiation,
snow cover, etc. (Walker et al., 1995; Bijalwan et al., 2013).
The strong and weak phases of WD and ISM over the
mountain regions could alter the growth period of vegetation by
affecting the phenological cycle of seasonal ground vegetation.
The enhanced WD during the LIA brought in more winter
precipitation to the Himalayan region in the form of snow
resulting in relatively cool conditions with an increased number
of snow stand days. This might have created prolonged freezing
soil conditions, thus shortening the growth cycle of warm
and moist ground vegetation. The weak ISM precipitation
resulted in low soil-moisture during summers that remained
suitable to support the growth of dry steppe taxa. On the
other hand, the wetter conditions corresponding to LIA phase
indicated by speleothem records of caves (C1, C2, C3 in
Figure 2) located in the ISM-WD influenced zone could be
the result of “amount effect” as the δ18O of rainfall is also
influenced by the rainfall amount (Kotlia et al., 2017). The
LIA time-period ca. 0.5–0.25 ka with higher precipitation due
to strong WD maintained comparatively lower δ18O values
(Sanwal et al., 2013; Kotlia et al., 2015) due to higher
humidity with minimum evaporation under reduced kinetic
fractionation (Kotlia et al., 2015). Sinha et al. (2015) also
highlighted the role of humidity, evaporation and soil moisture
saturation conditions influencing the 18O fractionation as a
classic amount-effect. Also, wet signals in the speleothem records
(C4 in Figure 2) during MWP were the effect of strong
monsoon circulation with an enhanced flux of isotopically
depleted moisture from the BoB branch and a reduced flux of
isotopically enriched moisture from AS branch (Sinha et al.,
2015). In the Himalayan region, vegetation thus responds to
the weak (strong) ISM by the expansion of dry (moist) taxa.
Vegetation, therefore, highlights the ISM dynamics, whereas
speleothem could provide the signatures of winter precipitation
dynamics as well.

Pollen assemblage could also refer to land-use activities. Land
use could further be influenced by climate change as has been
the case for the agricultural pattern in some regions (Li et al.,

2008; Demske et al., 2009; Yang et al., 2012). The Himalaya
remains inhabited since the Neolithic time period with 80% of
agriculture being practiced in terraced fields (Mittal et al., 2008;
Demske et al., 2016). Primary crops cultivated include Cerealia
and species of Amaranthus, Chenopodium, Moraceae, Rumex,
Solanum, Viburnum, Fagopyrum, Polygonatum, Rhododendron,
etc. (Tiwari et al., 2010; Joshi et al., 2018). Amaranthaceae,
a ruderal community (Behre, 1981) is intermediate between
cultivated and grazed areas; both indicate human activities
(Court-Picon et al., 2005). Some studies (Li et al., 2014;
Mishra et al., 2018) showed that at times the pollen inferred
climate dataset could be an artifact of the possible human
interferences and not completely reflect the climate-induced
vegetation dynamics. It is difficult to dissociate the respective
parts of climate and land-use on a vegetation dataset based
on pollen, as vegetation, land-use and climate are greatly
interconnected in the region over the last centuries to millennia.
The present review discusses the climatic aspects while further
works should be done to explore the land-use as a proxy for
change. Comparison between the regional pollen assemblages,
other environmental proxies and regional land-use/archeological
data could help to differentiate the climate and human
signals on vegetation.

CONCLUSION

A comparison between the responses of sediment based biotic
proxies (Pollen and δ13Corg) and speleothem (δ18O) records
toward the Indian monsoon system showed heterogeneity among
proxies even within the Himalayan region. The pollen and
δ13Corg records derived from sedimentary archives inferred dry
climate during the LIA attributed to weak ISM precipitation.
Whereas speleothem records showed wet climatic conditions
due to the enhanced winter precipitation resulting from
the strong WD. Thus, vegetation could be taken as an
indicator of ISM variations while speleothem records the
WD variability as well. Moreover, the comparison of the
sediment records also represented temporal incongruence for
the MWP among the sites within the Himalayan region.
This could be the response time to capture the signals
of changes in climate variability at different precipitation
regimes. However, errors in the interpolated ages due to
less number of absolute dates or a small sample size in
most of the available sediment-based proxy studies could also
be the factors for diluting the finer scale climate signals
and hence decadal to centennial-scale incongruence amongst
the proxy records.

Assessment of the heterogeneous behavior of various
proxies toward the different monsoonal systems on the spatial
and temporal scales is important to significantly facilitate
understanding of the monsoonal complexities over the South
Asian region. This requires more high-resolution decadal-scale
climate datasets generated from biotic and abiotic proxies
of sediments and other archives from different monsoonal
regimes of the South Asian region. The influence of land use on
vegetation patterns should also be explored and quantified.
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