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Restoration of shellfish reefs has increased exponentially over the past two decades,
due in part to increased awareness of widespread oyster habitat loss. Large-scale,
acute disturbances such as hurricanes have the potential to influence restoration
outcomes, but because storm occurrence is unpredictable with respect to restoration
timelines, the responses of restored habitats are not well understood. We quantified the
ecological dynamics of a newly constructed Crassostrea virginica oyster reef and nearby
reference reef in a Texas estuary immediately after Hurricane Harvey, a major category 4
storm. Biophysical structure (e.g., oyster density, shell height, sediment grain size), and
community composition (abundance of reef-associated epifauna, and nearby infauna)
were measured for 18 months. A sharp decrease in salinity and temporary deposition
of fine sediments within the first 3 months corresponded with increases in oyster and
epifaunal recruitment on the restored reef, although densities were generally below
those measured on restored reefs without hurricanes. Criteria for oyster reef restoration
success were met within 12–18 months post-storm. Infaunal densities decreased but
returned to pre-storm densities within 2 months, but bivalves were delayed, returning to
pre-storm levels after 9 months. A lack of historical baseline data on the newly restored
reef limited our ability to assess the magnitude of reef recovery to pre-disturbance levels
or separate the direct effects of the hurricane from the dynamics of early recruitment
and growth. Results provide important information about restored and natural oyster
reef dynamics after large-scale disturbance and can help inform effective management
and conservation measures.

Keywords: Crassostrea virginica, extreme climate event, Gulf of Mexico, habitat, salinity, Texas

INTRODUCTION

High-quality estuarine habitats are essential for supporting reproduction, growth, and persistence
of dense aggregations of estuarine fauna (Boesch and Turner, 1984). Reefs formed by the oyster
Crassostrea virginica are a critical habitat of estuarine ecosystems in the United States. Gulf of
Mexico and Atlantic coasts that provide important ecosystem benefits (Breitburg et al., 1995;
Harding and Mann, 2001; Gutierrez et al., 2003; Grabowski et al., 2012; Beseres Pollack et al.,
2013). Oyster reef restoration has increased exponentially over the past two decades, due in part to
increased awareness of widespread oyster habitat loss (Rothschild et al., 1994; Kirby, 2004; Jackson,
2008; Beck et al., 2011; zu Ermgassen et al., 2012). Because the frequency and intensity of extreme
climatic events has increased in many regions (Wetz and Yoskowitz, 2013), restored habitats are
being increasingly confronted by large-scale, acute disturbances that have the potential to influence
restoration outcomes.
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Disturbance is a central organizing principle in community
ecology (Dayton, 1971; Levin, 1984; Sousa, 1984), with
the timing, magnitude and duration of the disturbance
influencing response and recovery dynamics. Whereas small-
scale disturbances at intermediate frequencies may have
beneficial effects on ecological systems (Connell, 1978), larger-
scale disturbances can negatively affect community composition
and slow recovery rates. Resilient systems can return to
pre-disturbance or near pre-disturbance conditions within a
reasonable time frame following a disturbance (Holling, 1973).
However, because the occurrence of large-scale disturbances is
unpredictable with respect to construction of restored habitats
and monitoring timelines, the responses of restored habitats are
not well understood.

Hurricanes and tropical storms are relatively common
large-scale disturbances along the United States. Gulf and
Atlantic coasts, and are often accompanied by coastal flooding,
erosion, and altered salinities that influence the distribution and
abundance of estuarine organisms (Paerl et al., 2001; Patrick et al.,
2020; Walker et al., 2021). Resulting periods of prolonged low
salinity can lead to increases in oyster mortality and reductions
in oyster reef structure (e.g., oyster size, density; Munroe et al.,
2013; Du et al., 2021). Sedimentation and loss of cultch may
also contribute to high oyster mortality (Berrigan, 1990; Perret
et al., 1999). Alterations to structural habitat complexity can
have significant impacts on biodiversity (Airoldi et al., 2008) and
ecosystem dynamics within oyster reef ecosystems (Jackson et al.,
2001). Physical disturbance can also influence the composition
of adjacent soft sediment infaunal communities (Dernie et al.,
2003). Recovery of natural oyster populations after hurricanes
can vary from shorter (12 months; Livingston et al., 1999)
to longer (∼10 year; Munroe et al., 2013) time scales, but
information from restored oyster habitats is lacking.

Hurricane Harvey made landfall as a Category 4 storm near
Rockport, Texas, United States on 26 August 2017, accompanied
by heavy rainfall, storm surges 2–3 m above sea level and
catastrophic coastal flooding (Blake and Zelinsky, 2018). The
goal of this research is to evaluate dynamics on a newly
constructed Crassostrea virginica oyster reef and natural reference
reef after the hurricane. Biophysical structure (e.g., oyster density,
shell height, sediment grain size), and community composition
(abundance of reef-associated epifauna, and nearby infauna) were
measured for 18 months. Results were compared with those from
prior reef restorations without hurricanes to identify potential
differences in early recruitment and growth and help inform
management and conservation decisions.

METHODS

St. Charles Bay, Texas, United States, is a relatively shallow (less
than 2 m) secondary bay within the Mission-Aransas Estuary
in the northwestern Gulf of Mexico (Longley, 1994; Figure 1).
The estuary is microtidal with low mixing efficiency (< 0.05)
and long residence times (∼360 days; Solis and Powell, 1999),
with an average annual rainfall of 81 cm y−1 (1941–1999; Tolan,
2007). The surrounding watershed is approximately 530 km2 and

is relatively undeveloped (Asquith et al., 1997). Pre-construction
samples were collected in May 2017 (macrobenthic infauna) and
July 2017 (macrobenthic infauna and sediment grain size). On
28–29 July 2017, ∼1.83 ha of oyster reef complex (∼610 linear
m) was constructed in St. Charles Bay (N 28◦ 9′ 14′′ W 96◦
58′ 20′′) using reclaimed oyster shells. Shells were deployed by
barge as a series of seven rectangular mounds 40 m long × 10 m
wide × 0.33 m high, oriented parallel to the shoreline along the
1-m depth contour.

Sampling trays of dimensions 45 × 30 cm (0.135 m2) were
deployed at four sites within the restored reef and nearby
reference reef habitat on 7 and 8 August 2017. Restored reef
trays were filled with reclaimed oyster shells from the restored
reef, and reference reef trays were filled with cultch from the
natural reef. Monitoring of the reef was conducted monthly
from September 2017 (3 weeks after the hurricane) to November
2017 and then quarterly to February 2019. During each sampling
event, one haphazardly selected sampling tray was removed from
each site, and all resident epifauna (> 1 mm) were collected.
Oysters were enumerated, and shell heights of 20 live oysters
from each tray were measured. Macrobenthic infauna (≥ 0.5 mm)
and sediment grain size samples were collected using replicate
35.4 cm2 cylindrical cores to a depth of 10 cm at three adjacent
sites (< 5 m from the restored reef) and three distant sites
(30 m from the restored reef). The distant and adjacent sites
were combined in the results because there were no differences
in infauna densities and grain size between the two site types.
Temperature and salinity were measured every sampling date
using a YSI Pro DSS multiparameter sonde (YSI Incorporated,
Yellow Springs, OH, United States). Sediment grain size was
analyzed in the laboratory following the methods of Folk (1966).
Data management and analysis were performed using SAS 9.4
(SAS Institute Inc., 2013).

RESULTS

Heavy rains over the bay and watershed (∼39 cm; Blake and
Zelinsky, 2018) during Hurricane Harvey (26 August 2017) were
associated with a sharp decrease in salinities from 24.4 ± 0.2
[mean ± standard error (SE)] on 8 August 2017 to 6.0 (no
replication) on 8 September 2017 (Figure 2). Salinities slowly
increased to pre-disturbance levels 9 months after the storm, in
May 2018. Salinities decreased a second time to 7.5 ± 0.2 in
November 2018 following an extended period of high rainfall in
September 2018 (∼51 cm; National Estuarine Research Reserve
System, 2021). Mean temperature displayed expected seasonal
patterns, ranging from 10.3 ± 0.1◦C in November 2018 to
29.8± 0.2◦C in August 2017.

In the 2 months following the hurricane, spat (≤ 25 mm)
densities were relatively high on the restored reef (188 ± 72
m−2 in September 2017 and 174 ± 53 m−2 in October 2017)
compared to the reference reef (0± 0 m−2 in September 2017 and
49.4± 20.4 m−2 in October 2017), which was instead dominated
by post-spat size classes, including market size oysters (≥ 76 mm)
(Figure 3 and Supplementary Figure 1). Spat densities were low
during winter 2017/18 (restored: 26 m−2, reference: 4 m−2). Two
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FIGURE 1 | Map of the study area, including Texas coastline and Gulf of Mexico (A), the Mission-Aransas Estuary and St. Charles Bay, TX (B), and sampling
locations (C). The Hurricane Harvey track is shown as a dashed line.

FIGURE 2 | Mean salinity and temperature in St. Charles Bay, TX, measured from May 2017-February 2019. Hurricane Harvey indicated by vertical dashed line.

relatively strong recruitment pulses occurred at the restored reef
in May 2018 (441 ± 207 m−2) and November 2018 (337 ± 166
m−2). Densities of larger, post-spat size classes (≥ 26 mm)
increased sharply in the 3 months immediately following the
hurricane, from 0 m−2 in September 2017 to 591 ± 43 m−2

in November 2017, before reaching a peak of 1,092 ± 89 m−2

in May 2018 and remaining elevated for the remainder of the
study. Densities of oysters on the reference reef were lower

and less variable (113–475 m−2) throughout the study period
(Figure 3). Oysters on the restored reef grew rapidly during
the first 3 months after the hurricane, with average growth
rates of 0.29–0.41 mm d−1 from August to September, and
September to October 2017 (Supplementary Figure 2). Mean
oyster size on the reference reef decreased sharply in the 2
months following the hurricane from 62 ± 2 mm in September
2017 to 42 ± 6 mm in October 2017 (Figure 3). Market size

Frontiers in Ecology and Evolution | www.frontiersin.org 3 January 2022 | Volume 10 | Article 791739

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-791739 January 25, 2022 Time: 10:41 # 4

Martinez et al. Restored Reef Dynamics After Hurricane

FIGURE 3 | Mean density of oyster spat (≤ 25 mm; A) and larger size classes (≥ 26 mm; B), and oyster size (shell height; C) on the restored and reference reefs
from September 2017-February 2019.

oysters were present on the reference reef throughout the study
period and were first observed on the restored reef in May 2018
(Supplementary Figure 1).

Resident epifauna density on the restored reef increased
for the first 3 months after the hurricane, from 357 ± 65
m−2 in September 2017 to 635 ± 16 m−2 in November 2017
(Supplementary Figure 3). Epifauna density on the reference reef
decreased during this period from 804 ± 163 m−2 to 594 ± 143
m−2. After 6 months, epifauna densities steadily increased on
both the restored and reference reefs to a high of 1,983 ± 652

m−2 (restored) and 1,104± 215 m−2 (reference) at the end of the
study period. Epifauna densities were dominated by the porcelain
crab Petrolisthes sp., and the mud crabs Eurypanopeus depressus
and Panopeus herbstii (Supplementary Table 1).

In the month immediately following the hurricane, deposition
of fine sediments decreased the proportion of sand in the
study area from 95% in July 2017 to 89% in September 2017
and increased the proportion of silt and clay from 4% in July
2017 to 10% in September 2017 (Figure 4). Sediment grain
size distribution returned to pre-storm levels within 3 months
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FIGURE 4 | Sediment grain size distribution (%; A; note axis break), and mean density of infauna and bivalves (n m–2; B; note log-scale). Hurricane Harvey indicated
by vertical dashed line.

(by November 2017). Infaunal densities (dominated by the
polychaetes Mediomastus spp. and Streblospio benedicti, and the
tanaid Leptochelia rapax) decreased in the month following the
hurricane, from 7,154 ± 687 m−2 in July 2017, to 2,994 ± 343
m−2 in September 2017 (Figure 4 and Supplementary Table 2).
Most notably, bivalves (mainly Mulinia lateralis and Mactra
fragilis) decreased from 47± 26 m−2 in July 2017 to 0 m−2 from
September 2017 and remained absent for 6 months following the
hurricane until after February 2018. Bivalve densities increased to
above pre-storm levels after 9 months (May 2018, 173± 52 m−2)
and remained present for the remainder of the study (32–126
m−2).

DISCUSSION

Hurricane-induced effects on estuarine systems often vary and
depend on various storm attributes, including hurricane category
and rainfall (Mallin and Corbett, 2006). Storms with prolonged
rainfall and flooding tend to have greater effects on estuarine
ecosystems (Paerl et al., 2001). A sharp decrease in salinity and

temporary deposition of fine sediments within the first 3 months
after the hurricane corresponded with increases in oyster and
epifaunal recruitment on the restored reef. Salinity returned to
pre-storm levels within 9 months and sediment composition
within 3 months. Because the reef was constructed just weeks
before passage of Hurricane Harvey, we did not have historical
baseline data to assess the magnitude of fauna recovery or
separate the direct effects of the hurricane from the changes
due to early recruitment and growth. Regardless, results provide
useful information about dynamics of restored and natural oyster
reefs after large-scale disturbance that can help assess future
recovery and inform conservation and management strategies.

The observed increase in oyster recruitment, density and size
on the restored reef during the first 3 months after the storm
likely relates to the condition of the shell substrate. Clean shells,
like those provided by the newly restored reef, have been shown
to support significantly higher oyster recruitment compared to
freshly resurfaced buried shells (Hanke et al., 2021) and biofouled
shells on natural reefs that obscure the surface to recruitment
(Harding et al., 2012). However, spat densities within the first
3 months were below those previously reported for restored
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reefs (without hurricanes) in Texas estuaries (high of 188 n
m−2, current study; 617–1,556 n m−2, George et al., 2015; 231–
260 n m−2, Graham et al., 2016; 2,500 n m−2, De Santiago
et al., 2019), indicating that oyster recruitment was diminished.
Post-settlement survival on the reference reef may have also
been reduced through competition (e.g., for space, resources)
with existing resident species (Osman et al., 1989), compared
to the newly restored reef. A second strong salinity reduction
in November 2018 was accompanied by another recruitment
pulse on the restored reef but only minor changes in oyster size
and density of larger size classes. Relatively lower temperatures
in November 2018 (∼10◦C vs. August 2017: ∼30◦C) may have
contributed to this muted response, as acute low salinity is
most detrimental to oyster growth and survival at high water
temperatures (La Peyre et al., 2013; Rybovich et al., 2016; Marshall
et al., 2021). Bivalves in the Mission-Aransas Estuary have been
shown to demonstrate temporary reductions in recruitment and
density in response to acute summertime flood events, with
recovery driven by strong recruitment the following spring
(Beseres Pollack et al., 2011).

The restored reef provided immediate habitat benefits to reef
resident epifauna. However, epifaunal density within the first 3
months was below that reported for previously restored reefs
(without hurricanes) within 2 km of the study area in the current
study (∼630 n m−2, current study; ∼1,200 n m−2, George
et al., 2015; ∼2,500 n m−2, Rezek et al., 2017) elsewhere in
the Mission-Aransas Estuary (∼1,200 n m−2, Blomberg et al.,
2018) and in the Lavaca-Colorado Estuary, Texas (∼1,500 n
m−2, De Santiago et al., 2019), indicating that initial recruitment
rates were constrained. Nevertheless, epifaunal densities on the
restored reef 12–18 months after the hurricane met or exceeded
those from previously restored reefs (without hurricanes) in the
Mission-Aransas Estuary (∼1,900 n m−2 vs. ∼1,000 n m−2,
Graham et al., 2016; 2,000 n m−2, Rezek et al., 2017) and
Lavaca-Colorado Estuary, Texas (∼1,500 n m−2, De Santiago
et al., 2019), indicating the capacity for similar habitat provision
within a short period of time. Increases in epifaunal density
on the restored reef were likely facilitated by the enhanced
biophysical structure and habitat complexity (Tolley and Volety,
2005; Humphries et al., 2011; George et al., 2015; Humphries and
La Peyre, 2015). The high vertical relief of the restored reef likely
minimized sediment deposition and reef burial and positively
influenced survival, abundance, and size of oysters and reef fauna
(Lenihan and Peterson, 1998; Lenihan, 1999; Lenihan et al., 1999;
Taylor and Bushek, 2008; Powers et al., 2009; Schulte et al., 2009;
Lipcius et al., 2015; Lipcius and Burke, 2018). The muted response
of epifauna to the second salinity reduction 15 months after the
hurricane may be related to presence of later successional stages
(Cranfield et al., 2004).

An immediate and strong decline in infaunal densities
coincided with a sharp decrease in salinity after the hurricane.
Based on abundance of infauna, recovery from the effects of
the hurricane appears rapid, consistent with previous studies
(Boesch et al., 1976; Mallin et al., 1999), with a return to pre-
storm densities occurring within 2 months and then stabilizing
after 6 months. Bivalve recovery was delayed, with strong
recruitment and return to pre-storm densities not occurring until

the following spring. Infaunal bivalves, and Mulinia lateralis
in particular, have highly variable life cycles that correspond
with changes in salinity, with recovery facilitated by their
ability to colonize disturbed areas and grow rapidly (Calabrese,
1969; Boesch et al., 1976; Montagna and Kalke, 1995). Results
corroborate previous work demonstrating sensitivity of benthic
infauna to hurricane-induced changes in salinity, with post-
storm recovery driven by recruitment of mollusks (Patrick et al.,
2020). A lack of synergy among multiple stressors (e.g., salinity,
temperature; Côté et al., 2016; Hewitt et al., 2016; Carrier-Belleau
et al., 2021) during the second salinity drop in November 2018
may have averted significant reductions in infauna and bivalves.

CONCLUSION

Despite experiencing a large-scale hurricane disturbance and
acute decrease in salinity, changes in physical and biological
complexity on a newly restored oyster reef were generally
limited to 1–3 months, although oyster and epifaunal densities
were generally below those measured on restored reefs without
hurricanes. The high vertical relief of the restored reef likely
minimized sediment deposition and facilitated survival of oysters
and reef fauna (Lipcius et al., 2015 and references therein).
Criteria for oyster reef restoration, including increases in physical
(e.g., oyster shell height and density) and biological complexity
(e.g., faunal abundance and biomass), were met within 12–
18 months (Coen and Luckenbach, 2000; Peterson et al., 2003;
Powers et al., 2009). Because the reef was constructed just
weeks before passage of Hurricane Harvey, pre-disturbance data
were not available to assess the magnitude of reef recovery
to pre-disturbance levels or separate the direct effects of the
hurricane from the dynamics of early recruitment and growth.
Nevertheless, increasing our understanding of the dynamics of
restored and natural oyster reefs after large-scale disturbance
can help in assessing recovery and informing management and
conservation decisions.
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