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Biogeography has traditionally focused on the distribution of species, while community
ecology has sought to explain the patterns of community composition. Species
interactions networks have rarely been subjected to such analyses, as modeling
tools have only recently been developed for interaction networks. Here, we examine
beta diversity of ecological networks using pollination networks sampled along an
urbanization and agricultural intensification gradient in east Leinster, Ireland. We show,
for the first time, that anthropogenic gradients structure interaction networks, and exert
greater structuring force than geographical proximity. We further showed that species
turnover, especially of plants, is the major driver of interaction turnover, and that this
contribution increased with anthropogenic induced environmental dissimilarity, but not
spatial distance. Finally, to explore the extent to which it is possible to predict each of the
components of interaction turnover, we compared the predictive performance of models
that included site characteristics and interaction properties to models that contained
species level effects. We show that if we are to accurately predict interaction turnover,
data are required on the species-specific responses to environmental gradients. This
study highlights the importance of anthropogenic disturbances when considering the
biogeography of interaction networks, especially in human dominated landscapes where
geographical effects can be secondary sources of variation. Yet, to build a predictive
science of the biogeography of interaction networks, further species-specific responses
need to be incorporated into interaction distribution modeling approaches.

Keywords: beta diversity (β), interaction networks, anthropogenic impact, plant-pollinator interactions,
biogeography

INTRODUCTION

As human dominance of the biosphere continues to grow, two landscape types are continuing to
expand: agricultural and urban systems (Foley et al., 2005; Seto et al., 2010). While agricultural
ecosystems have been extensively studied, and the negative effects of agricultural intensification on
species and ecological processes are relatively well understood (IPBES, 2018), it is only in the last
two decades that attention has turned to urban ecosystems (McPhearson et al., 2016).
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Urban landscapes can negatively affect many species, with
species richness tending to be lower in urban landscapes (Shochat
et al., 2006; Grimm et al., 2008; McKinney, 2008). Yet, urban
adapted species can thrive, occurring at high levels of abundance
(Shochat et al., 2010) and there is accumulating evidence that
the urban landscape is driving convergent phenotypic changes
(Alberti et al., 2017a,b), suggesting that cities impose similar
evolutionary selective regimes (Santangelo et al., 2018). Urban
areas can potentially act as a refuge for species (Carrier and
Beebee, 2003; Menke et al., 2011; Hall et al., 2017), with
gardens and public space recognized as important conservation
arenas (Goddard et al., 2010). Furthermore, effects are not
uniform across either urban or agricultural landscapes but vary
with intensity. While previous reviews of urban gradients have
indicated that species richness follows a hump shaped curve
along an urban gradient, with species richness peaking at medium
levels of urban intensity (Blair, 1999; Germaine and Wakeling,
2001; McKinney, 2002; Shochat et al., 2006), a more recent
global meta-analysis has indicated that increasing intensity of
urbanization continually erodes species richness when compared
to natural habitats (Newbold et al., 2015). Newbold et al.
(2015) found a similar pattern and magnitude of species loss
for increasing intensity of crop and pastoral agriculture and
plantation silviculture, indicating that land use intensification
in general reduces local species richness (Gerstner et al., 2014;
Beckmann et al., 2019). Yet, the response of any species to
increasing land use intensity can be specific to the land use and
the species’ functional traits (Rader et al., 2014). For example,
while agricultural intensification and urbanization are both
associated with decreases in pollinating species diversity (Le Féon
et al., 2010; Bates et al., 2011), more recently urban landscapes
have been suggested as a potential refuge for bees, but not
other insect pollinator groups, from the surrounding agricultural
matrix (Banaszak-Cibicka and Żmihorski, 2012; Hall et al., 2017).

Moving beyond local species richness, beta diversity
measures the compositional turnover of species among
communities. Higher beta diversity means that two communities
have dissimilar compositions, are heterogenous, while low
beta diversity implies that communities are homogenous.
There is building consensus that beta diversity declines with
agricultural intensification, meaning that communities in
intensive agricultural landscapes undergo homogenization,
although the trend is not universal and depends on the group
studied (Vellend et al., 2007; Ekroos et al., 2010; Flohre et al.,
2011; Karp et al., 2012). Similarly, urban landscapes have the
most homogenized communities of any studied land use types in
a global meta-analysis (Newbold et al., 2015), providing evidence
for the claim that urbanization results in biotic homogenization
(McKinney, 2006).

Yet the impacts of land use change and intensification,
particularly urbanization, on ecosystem processes such as
species interactions are less well understood (Shochat et al.,
2006; Alberti, 2010; Elmqvist et al., 2015; but see Baldock
et al., 2015). Pollination is emerging as a model system for
studying the effects of global change on species interactions
due to a large literature on mechanistic aspects of pollination
(Harrison and Winfree, 2015) and well-developed network

science tools to visualize and parameterize interaction webs
(Dunne, 2006; Bascompte and Jordano, 2013). Pollinators have
been extensively studied in agricultural systems and natural
habitats (Kremen et al., 2002; Ricketts et al., 2008; Potts et al.,
2010), and while there is a growing literature on pollinators
in urban landscapes (Cane et al., 2006; Bates et al., 2011;
Geslin et al., 2013; Fortel et al., 2014; Baldock et al., 2015;
Theodorou et al., 2017), it remains an under-studied area,
particularly in terms of describing the patterns of interaction
beta diversity. Trøjelsgaard et al. (2015) studied interaction
network beta diversity across the Canary Islands, finding strong
spatial structuring of the networks, yet, to our knowledge, no
study has explored the patterns of interaction beta diversity in
anthropogenic landscapes.

Anthropogenic disturbances affect beta diversity through
multiple processes. First, when disturbances decrease species
richness, beta diversity can increase. This is because the
probability that sites do not share species increases when fewer
species occupy each site (Chase et al., 2011). Second, disturbances
can impose similar ecological filters over vast areas (Keddy, 1992),
thereby homogenizing communities (Karp et al., 2012), or create
environmental heterogeneity, thereby diversifying communities
(Hawkins et al., 2015). Increasing community dissimilarity with
increasing geographical distance, known as distance decay, is
well documented for single trophic communities (e.g., Nekola
and White, 1999). More recently, distance decay has been shown
to occur at both local and regional scales for plant–pollinator
interaction networks (Carstensen et al., 2014; Simanonok and
Burkle, 2014; Trøjelsgaard et al., 2015).

Here, we first quantify the spatial and anthropogenic
induced turnover in plant–pollinator interaction networks
by examining the beta diversity of species and interactions
between network pairs across 21 sites. We assume that
the environment is composed of both its landscape context
(agricultural vs. urban) and the intensity of the land use
(high, medium, or low). At the spatial scale of this study
(50 km), we predict that the anthropogenic gradient dissimilarity,
created by combining an urban and agricultural gradient, will
produce stronger community and interaction dissimilarity than
distance decay effects.

Second, we quantify the components of interaction turnover
which drive network difference. Rewiring, the reassembly of
interactions among co-occurring species, and species driven
interaction turnover, interactions between species conditioned
by their co-occurrence (Pellissier et al., 2018), are the major
components of interaction turnover. Species turnover can
be further decomposed into its three components: plant-
driven, pollinator-driven, and plant-and-pollinator driven
turnover. Each component of species driven turnover is due to
compositional turnover of the interacting species: for example,
where a plant species is present at site A but absent from a site
B, any interaction the plant is involved in will turnover due
to plant driven turnover in the site pair comparison A-B. The
overwhelming importance of species turnover for pollination
network dissimilarity (Simanonok and Burkle, 2014; Trøjelsgaard
et al., 2015) suggests that we are likely to find that rewiring is a
minority contributor to network dissimilarity across the 21 sites
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of our study region. Further, we explore how the components
of species driven interaction turnover are impacted by spatial
distance and anthropogenic landscapes by decomposing species
driven interaction turnover into its three components and
regressing them against spatial distance and anthropogenic
induced environmental dissimilarity.

Finally, if we are to move beyond descriptive studies of
interaction biogeography, we must understand the variables that
are predictive of interaction turnover. We explore the factors
predictive of interaction turnover, aiming to understand whether
there is predictive power in broad landscape, network, and
ecological variables or whether species specific information is
required for accurate predictions. Requiring species specific
information would mean much more intensive data collection
on species traits is needed to build a predictive biogeography
of interactions. We train a model to predict turnover using
a combination of interaction properties, relative floral
abundances, spatial distance, and anthropogenic environmental
dissimilarities, and then test its predictive performance against
models containing species as random effects to determine the
source of predictive power for interaction turnover.

Thus, our aims are threefold, sequential and complementary:
explore the (1) patterns, (2) components, and (3) predictive
variables generating beta diversity in interaction networks
situated in anthropogenic landscapes.

MATERIALS AND METHODS

Field Site Selection
Twenty-one sites were sampled around east Leinster, Ireland,
along gradients of agricultural intensity, urbanization, and semi-
naturalness (Figure 1). The agricultural and urban sites were
located along gradients of intensity; high, medium, and low,
with three sites to each level for replication, while there was
a single semi-natural level containing three sites. Each site is
characterized by the degree of urbanization, measured as the
percentage of impervious surface in the landscape, agricultural
intensity, measured as the average field size in the landscape, and
the percentage of semi-natural vegetation. The low urban and
semi-natural sites were not exclusively urban or semi-natural,
both containing agricultural land, due to the impossibility of
finding exclusively low urban or semi-natural landscapes in
the east Leinster region. The site characteristics are shown in
Supplementary Table S2. A minimum distance of 1km separated
all sites, to ensure that a separate pollinator community was
sampled at each site.

The urbanization gradient was created using an impervious
surface index, from a impervious surface map generated by
the Copernicus Pan European Land Service1 [© European
Union, Copernicus Land Monitoring Service 2018, European
Environment Agency (EEA)], while the agricultural gradient was
created using an index of average field size (Supplementary
Table S1). Each index was calculated over an area within a 1.5 km
radius circle, with this circle delimiting the boundary of a “site.”

1https://identify.plantnet.org/

Sites categorized as "high" urbanization have 70–74% impervious
surface, those as “medium” urbanization have 42–46%, and those
as "low" urbanization have 12–18%. To calculate average field
size, the number of fields in a 1.5 km radius circle at candidate
sites were counted using Google Maps My Maps application2

which was then divided by the area under agriculture obtained
from the Copernicus Urban Atlas land use map3 [© European
Union, Copernicus Land Monitoring Service 2018, European
Environment Agency (EEA)], to obtain the average field size at
that site. Both arable and pasture were considered agricultural
land. An average field size of greater than 5 hectares (5.0–6.5 ha)
within a circle of 1.5 km radius was considered a high intensity
agricultural landscape, between 3.5 and 5 ha (3.8–4.4 ha) medium
intensity and less than 3.5 ha (2.5–3.5 ha) average field size a low
intensity agricultural landscape (Supplementary Table S1).

Average field size was used as the agricultural intensity index
instead of area under agriculture as average field size is a more
independent measure of the intensity of agricultural activities.
Arable farmers remove field boundaries to create larger fields
for more efficient use of machines and intensive pasture, such
as dairying, remove field boundaries for more flexible paddock
management with temporary electrical fences. There is a trend
of increasing area under agriculture along the agricultural index
based on field size, mostly due to the larger amounts of field
boundaries at lower average field sizes, yet we chose to use
field size as opposed to area under agriculture to more in
independently sample intensity of agricultural landscapes. The
semi-natural index is designed to measure landscapes which
have a lower area under agriculture, where semi-naturalness
is measured as the percentage of semi-natural vegetation in
a 1.5 km radius.

Semi natural sites were categorized as those with greater
than 10% of the site area being under semi natural meadow
grassland. Semi natural vegetation was calculated by combining
the Herbaceous Vegetation Associations category of land use in
the 2012 Copernicus Urban Atlas land use map4, plus the habitats
surveyed in the Grasslands of Ireland study5.

Sampling Flowers, Flower–Visitors, and
Flower–Visitor Interactions
Each of the 21 sites was sampled four times between 5 May
and 20 August 2018 at monthly intervals. Plants and pollinators
were sampled along a 2 m × 1 km transect within each
1.5 km radius site, with sub-sections of the transect allocated
proportionately to all land cover types comprising more than 1%
of the selected site (e.g., pasture, arable, continuous urban fabric;
see Supplementary Figure S1 legend). Transects in residential
areas were positioned along the boundary between pavements
and residential gardens, so that 1 m of the transect width
was located in gardens and the other 1 m was located on
pavements and road verges. Transect locations were chosen
using a random number generator to select points from a

2https://www.google.com/maps/d/
3https://land.copernicus.eu/local/urban-atlas
4https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
5https://www.npws.ie/maps-and-data/habitat-and-species-data
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FIGURE 1 | Location of the 21 sites. The nine urban sites are in Dublin city. The nine agricultural sites are in the surrounding agricultural landscape in counties
Dublin, Kildare, and Meath and the three semi natural sites are in landscapes with a higher proportion of semi natural meadows.

grid, and transect sections were located as close as possible
to those points. Where land cover types were particularly
dominant within a site, a maximum transect section length of
250 m was walked, with multiple transects of the same land
cover walked across multiple locations. The amount of pasture
and arable land surveyed at each agricultural site is shown in
Supplementary Table S4.

Flowers were sampled by noting every flowering species
on the outward walk of the transect and then counting
the floral units of each species on the return walk. A floral
unit was defined as an individual flower or collection
of flowers that an insect of 5 mm body length could
walk between (see Baldock et al., 2015, Supplementary
Table S5) and comprised a single capitulum for Asteraceae,
a secondary umbel for Apiaceae and a single flower for
most other taxa. Grasses, sedges and wind-pollinated forbs
were not sampled.

Flower–visitor interactions were quantified by walking along
each transect and recording every insect on flowers up to 1m
either side of the transect line to a height of 2 m, where
appropriate, e.g., along hedgerows. An attempt was made to
net all bees and hoverflies (Syrphidae), which were frozen and
later identified to species. All other flower visiting insects were
recorded at the family level (Coleoptera, Diptera, Lepidoptera).
Bees and hoverflies were identified using Stubbs and Falk (2002)
and Falk (2015) respectively, with identifications checked by
taxonomists (see Acknowledgments). Plants were identified using
Rose and O’Reilly (2006) and the phone application Plantnet6,
85% to species and the rest to genus or morpho species. Sampling
for flower visitors and their interactions took place between
09:00 and 19:00 h on dry, warm, non-windy days. No sampling
took place on days that were below 12◦C or above Beaufort

6https://identify.plantnet-project.org/
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scale of 5 (fresh breeze). Two sites were sampled each day,
one in the morning and one in the afternoon. The 21 sites
were sampled over a 2-week period each month, with the
order of sites being sampled each month chosen randomly.
Environmental conditions such as temperature, wind strength,
cloudiness, sunshine, habitat, and vegetation structure were
recorded for each section of the transect and are made available
on the figshare data repository (see section “Acknowledgments”).

Community and Network Dissimilarity
The level of pairwise dissimilarity between networks was
calculated using the recently developed network diversity
indices that take advantage of Hill numbers (Ohlmann et al.,
2019). Pairwise network beta diversity was calculated using the
disPairwise function of the R package econetwork (Dray et al.,
2020a). For the equations used in the disPairwise function see
the Supplementary Materials section “Calculating beta diversity
of interaction networks” and Ohlmann et al. (2019). To ensure
comparability between network beta diversity measures and plant
and pollinator community beta diversity measures, Hill numbers
were used to calculate the plant and pollinator community
pairwise beta diversity (see function hill_taxa_parti_pairwise in
package hillR; Li, 2018).

Communities differing in species or interaction richness are
likely to be less similar than communities of equal richness
(Anderson et al., 2011; Burkle et al., 2016). The influence of
different alpha diversities was mitigated by using a null model
based on 1000 random assignments of species and interactions
to our networks according to a probability distribution derived
from their actual occurrences across the sites (Trøjelsgaard
et al., 2015; Pellissier et al., 2018). That is, widespread species
were more likely to be drawn and assigned to a network
during the random assortments, and numbers of species and
interactions assigned to a random network were constrained
to equal empirical numbers. Across all pairwise combinations,
we calculated the empirical similarity in plant, pollinator,
and interaction composition (βempirical). The deviation from
randomness was measured using z-scores given as (βempirical -
mean(βresampled))/SDresampled, where mean(βresampled) and
SDresampled are the mean and standard deviation of the
similarities achieved from the 1000 random assortments of
species and interactions. Hence, a positive z-score suggests that
two communities are more similar than expected if species or
interactions were distributed randomly across the region, and
vice versa for a negative z-score. The significance level of each
βempirical value was obtained using the resampled values as a
benchmark and all βempirical values having z-scores larger than
1.96 or smaller than -1.96, respectively, were deemed significantly
different (p < 0.05) from random.

Custom R functions create null interaction networks across
sites is available on GitHub at: https://github.com/ciwhite/
network_beta_diversity. The null models were tested on
simulated community and interaction network data to confirm
that the randomization procedure could detect both the absence
and presence of beta diversity patterns.

A variance partitioning exercise was performed to assess the
level of spatial autocorrelation between the beta diversity metrics
(beta diversity of the plant community, pollinator community,

and interaction networks) and the environmental dissimilarity
metric. Variation in communities and interaction networks
was partitioned into the purely spatial, purely environmental
and the spatially structured environment components. To our
knowledge, this is the first-time variation partitioning has been
carried out on interaction networks.

Both the empirical beta diversity similarity values and the
derived z-scores were regressed against geographical distance
and anthropogenic induced environmental dissimilarity using
Mantel tests with 1000 permutations performed with the vegan
v. 2.0-8 package for R (Oksanen et al., 2019). Anthropogenic
induced environmental dissimilarity (hereafter environmental
dissimilarity) is measured as the Euclidean dissimilarity of the
site characteristics (agricultural intensity, urbanization, semi-
naturalness) and thus describes how different a site is from
another in landscape composition and intensity of use. Multi-
scale moran eigen vector maps were created using the adespatial
package (Dray et al., 2020b) and variation partitioning was
carried out using vegan.

Components of Interaction Turnover
Here, we use the method proposed by Novotny (2009) to
partition network dissimilarity into additive components of
rewiring and species driven interaction turnover, as the method
proposed by Poisot et al. (2012) can underestimate species
turnover and overestimate rewiring (Fründ, 2021). Interactions
turnover due to rewiring and species driven interaction turnover,
the latter of which is due to changes in species composition
and can be further partitioned into plant driven, pollinator
driven and plant + pollinator driven turnover. More formally,
if 1 and 2 are two ecological networks, then let Irewired be
the number of interactions that change between the shared
species of 1 and 2, and let Ispecies be the number of interactions
that change due to changes in species composition (Figure 2).
The total number of interactions that differ between A and
B is then given by Irewired + Ispecies, and the proportion of
turnover that is due to rewiring and species-driven interaction
turnover are: rewiring = Irewired/(Irewired + Ispecies) and species-
driven = Ispecies/(Irewired + Ispecies).

Species–driven interaction turnover (Ispecies) can be further
partitioned into that caused by (i) pollinators only present
in one of the networks but interacting with plants present
in both (i.e., pollinator–driven interaction turnover, Ipol), (ii)
plants only present in one of the networks but interacting
with pollinators present in both (i.e., plant–driven interaction
turnover, Ipla), or (iii) plants and pollinators only occurring
in one of the communities and interacting together (i.e., a
complete turnover of species and hence interactions, Ipol+pla)
(Figure 2). Therefore, if Ipla is the number of interactions
between non-shared plants and shared pollinators (regions 2 and
3 in Figure 2), Ipol is the number of interactions between non-
shared pollinators and shared plant species (regions 4 and 7 in
Figure 2), and Ipol+pla is the number of interactions between
non-shared pollinators and non-shared plants (regions 5 and 9 in
Figure 2), then Ispecies = Ipol + Ipla + Ipol+pla, and the fractions of
the species-driven interaction turnover that can be explained by
replacement of pollinators, plants or both are Tpol = Ipol/Ispecies;
Tpla = Ipla/Ispecies and Tpol+pla = Ipol+pla/Ispecies, respectively.
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FIGURE 2 | (A) Interaction turnover between two ecological networks can be partitioned into contributions from rewiring (i.e., when shared species alter their
interactions; Irewired ) and species-driven turnover (i.e., when changing species composition change interactions; Ispecies), with the latter being further partitioned into
pollinator-driven (Ipol ), plant-driven (Ipla) and pollinator + plant-driven (Ipol+pla) interaction turnover. (B) Matrices 1 and 2 represent ecological networks, with pollinator
species arranged in rows and plant species in columns, which are artificially merged into one large matrix in order to identify interactions contributing to the different
categories of interaction turnover. Region 1 contains interactions between shared species, and Icommon denotes interactions found in both 1 and 2, whereas Irewired is
the sum of interactions only observed in either matrix 1 or 2, but between shared species. Shaded areas contain interactions contributing to species–driven
interaction turnover. Interactions located in regions 2 and 3 are between shared pollinators and non-shared plants (i.e., the plants are found in either matrix 1 or 2 but
not both) and represent plant–driven interaction turnover. Interactions located in regions 4 and 7 are between shared plants and non-shared pollinators comprising
the pollinator-driven interaction turnover. Finally, regions 5 and 9 contain interactions between non-shared pollinators and non-shared plants and comprise the
pollinator + plant–driven interaction turnover. Regions marked with n.a. do not contain any interactions due to the artificial merging of matrices 1 and 2.
(C) Interaction specific site-pair combinations. This (hypothetical) interaction is observed at sites 1 and 6 (filled squares) while the species pair is also present at site
5, however, without interacting (open square). The plant species is absent from site 2 (green square), the pollinator species absent from site 3 (red square) and both
species absent from site 4 (yellow square) allowing a dataset to be created to document all the ways in which interaction networks differ. Six site-pair combinations
are possible in this case; 1↔5 rewiring, 1↔2: plant driven interaction turnover, 1↔3 pollinator driven interaction turnover, 1↔4 plant and pollinator driven interaction
turnover and 1↔6: no interaction turnover (interaction constancy). Figure adapted from Trøjelsgaard et al. (2015).

Custom R functions to partition interaction turnover into the
various components are available on GitHub at: https://github.
com/ciwhite/network_beta_diversity.

We used Local Regression (loess) to account for non-
linearities in the relationship between both plant driven
(T_pla) and pollinator driven (T_pol) interaction turnover and
each of geographical or anthropogenic environmental distance.
Loess was evaluated with confidence intervals calculated using
bootstrap with replacement (Wehrens et al., 2000). First, we
estimated a local regression for the empirical data and local
regressions for each of 10 000 permutations of the data. Second,
“basic bootstrap confidence intervals” (Wehrens et al., 2000)
were calculated.

Predicting Interaction Turnover
Our aim was to explore whether it is possible to predict
interaction turnover due to rewiring, plant driven turnover,
pollinator driven turnover and plant and pollinator driven
turnover. In particular, we are interested in where the main
sources of predictive power lie: can we predict interaction
turnover using site characteristics and network properties, or is
information at species level required?

To do so we explore the predictive ability of three
models (1) a generalized linear model (GLM) with measured
ecological, landscape and network variables (detailed below),
(2) a generalized linear mixed effects model (GLMM) with the
measured variables as fixed effects and random effects for each
plant and pollinator species involved in the interaction, and (3) a
random effect GLMM containing the plant and pollinator species

as random effects. The purpose of the random effects GLMM is
to account for the variation contained at the species level and so
by comparing the predictive power of the random effects glmm
(3) to mixed effects glmm (2), we can determine whether the
predictive power comes from species specific information that
we have not measured or the measured ecological, landscape and
network variables. Importantly, the dataset and hence species in
the random effects model and the mixed effects model are the
same, the random effect levels are consistent between models,
allowing valid model comparisons.

Thus, for each component of interaction turnover, we explore
the predictive power of three models:

glm(turnover ∼ ecological variables+ landscape variables+

network variable, family = binomial(link = "logit")) (1)

glmm(turnover ∼ ecological variables+ landscape variables+

network variable+
(
1|pol

)
+

(
1|pla

)
,

family = binomial
(
link = "logit"

)
) (2)

glmm(turnover ∼
(
1|pol

)
+

(
1|pla

)
,

family = binomial(link = "logit")) (3)

To create the datasets for each component of interaction
turnover, we first isolated each unique interaction between
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a plant and a pollinator species. We then noted each site
pair where the interaction was constant, where the interaction
rewired, where the interaction turned over due to plant driven
turnover, pollinator driven turnover, or plant and pollinator
driven turnover, and finally where the interaction was absent
from both sites even though the species co-occurred in the site
pair. Thus, for each unique interaction, we obtained every event
of interaction turnover, constancy, or absence between site pairs.
This dataset was split into four for each component of interaction
turnover, a rewiring dataset, a plant driven turnover dataset, a
pollinator driven turnover dataset and a plant and pollinator
driven turnover dataset. The three models above are then applied
to each dataset and their predictive power compared.

The measured ecological variables are origin of plant species
(native or introduced) and a floral abundance variable measuring
the difference in floral abundance between the site pair. Four
different indices of floral abundance were tested in an exploratory
model: the difference in floral abundance, relative difference
in floral abundance and the absolute values of both. While
each floral abundance variable was significant, the absolute
difference in relative floral abundance proved to be most
significant. As the mixed effects GLMMs would not converge
when all four floral abundance variables were added, the most
significant predictor, absolute difference in relative abundance,
was chosen to represent the floral abundance variable. Absolute
difference in relative abundance was calculated as such: for a
given interaction specific site-pair combination we calculated
the difference in flower abundance for the plant species
involved in the interaction. This was then divided by sum
of the floral abundance at both sites for that species to get
a measure of the relative change in flower abundance. The
absolute value of the relative change was taken and used as a
predictor variable.

Four measured landscape variables were tested: (1) the
environmental dissimilarity between the site pair, (2) the average
agricultural intensity index of the site pair, (3) the average
urbanization score of the site pair, and (4) the geographical
distance between the site pair. The average of the agricultural and
urbanization scores were used in addition to the environmental
dissimilarity to assess whether there are directional effects of
the agricultural and urban gradient respectively. Averages were
used rather than differences as differences remove the directional
effect of each gradient, while sums and averages are equivalent
predictor variables.

Finally, the network variable was the average interaction
frequency between the plant and pollinator species. Interactions
with high frequency can be interpreted as linking species with
high mutual affinity, such species would likely interact with
high frequency if no temporal or spatial constraints are imposed
(Carstensen et al., 2014). Thus, we expect interactions with high
average interaction frequency to rewire less frequently, show high
constancy across sites, while those with low average frequency
to rewire more frequently. Average interaction frequency is the
average abundance of an interaction, calculated as the sum of
the interaction frequencies between two species across all sites in
which they co-occur divided by the number of sites where both
species co-occur (interacting or not).

Importantly, these variables should not be considered an
exhaustive set, rather they represent a set that can be obtained
during standard ecological network data collection. We are
interested in exploring the predictive power of each model type
to assess whether additional species level information needs to
be collected to explain the components of interaction turnover.
Each variable was scaled and centered around 0 to ensure that the
GLMMs would converge.

Predictive power was measured by carrying out a model
training and test exercise, where the ability of each model
trained on a training dataset was used to predict interaction
turnover on a test dataset. The training and test dataset are
created by splitting collected dataset into non-overlapping test
and training sets, meaning this is an out of sample prediction
exercise. The comparator of predictive power is the area under
the receiver operating curve (ROC), which is created by plotting
the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. For a given threshold value, the
closer the corresponding point in the ROC space is to the
upper left angle (FPR = 0, TPR = 1), the greater the model’s
predictive power. Thus, an indication of the overall model
performance is given by the Area Under Curve (AUC) index
(Hanley and McNeil, 1982). AUC is computed by numerical
integration of the curve f = TPR(FPR), with values closer to 1
indicating greater model performance. By comparing the AUC
values generated from the three models for each component
of interaction turnover it is possible to assess the importance
of routinely collected variables in ecological network studies
and the species level information as contained in the random
effects (For further information on the size of the test and
training datasets, the specific variables used in to predict each
component of interaction turnover and on model development,
validation and fitting see Prediction of Interaction Turnover of
the Supplementary Materials).

During the GLMM model validation procedure, the residuals
were checked for overdispersion with respect to each model
predictor and the discretized response using the DHARMa
package (Hartig, 2020). It was found that the model was over
dispersed with respect to the discretized model predictions. As
such, the model behaves differently as the probability of an
interaction turning over increases: the model predictions have
a higher variance at high probability of interaction turnover
while having a lower variance at low probability of interaction
turnover. Such overdispersion is likely due to the model missing
an informative predictor that was not measured in this study.
The simpler binomial GLM without random effect variables did
behave better in terms of overdispersion, but the simpler model’s
fit prediction performance tended to be much lower than the
more complex binomial GLMM. We choose to present the results
of the binomial GLMM, noting that the overdispersion with
respect to the discretized predictions is likely to be caused by a
missing predictor variable.

Linear binomial mixed models were performed with the
packages lme4 v. 1.0-5 for R (Bates et al., 2015) and all
analyses were performed using R version 4.0.2. (R Core
Team, 2020). We acknowledge that the linear mixed models
only account for the taxonomic non-independence (i.e., the
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multiple entries of each species) and not necessarily the spatial
non-independence (i.e., the multiple entries of the pairwise
comparisons of the networks).

RESULTS

A total of 4,161 insect flower visitors were sampled from the
21 sites, of which 62% were Hymenoptera, 35% Diptera, 2%
were Lepidoptera and 1% were Coleoptera. This comprised of
85 visitor taxa (44 Diptera, 30 Hymenoptera, 11 Lepidoptera;
Coleoptera were not identified beyond order) visiting 213 plant
taxa (180 identified to species, 21 to genus and 12 to morpho
species). A total of 862 unique interactions were recorded,
resulting in a 73% sample coverage for interactions; 86 pollinator
species were recorded with a 99% sampling coverage; and 192
plant species were recorded with a 97% sampling coverage
(Supplementary Figure S2).

Community and Network Dissimilarity
Taking alpha diversity into account by using z-scores,
geographical distance increased the pairwise dissimilarity
of pollinator communities (Mantel test with 999 permutations:
rM = 0.1909, p = 0.024) and interaction networks (rM = 0.1876,
p = 0.025) but not plant communities (Mantel test with
999 permutations: rM = 0.1338, p = 0.091; Figures 3A–C).
Moreover, we found a stronger and significant increase in
dissimilarity with the anthropogenic gradient dissimilarity
for plants (Mantel test with 999 permutations: rM = 0.571,
p < 0.001) and interaction networks (Mantel test with 999
permutations: rM = 0.5705, p < 0.001) (Figures 3E,F) but
no impact on the pollinator communities (Mantel test with
999 permutations: rM = 0.0934, p = 0.208) (Figure 3D).
Therefore, geographically close networks and pollinator
communities, but not plant communities, were more similar
in their composition than expected from a random assortment
of species and interactions, while distant communities or
networks were no more different in their composition
than expected. In contrast, plant community composition
and interaction networks responded more strongly to
environmental dissimilarity than geographical distance:
those plant communities and interactions networks that had
low environmental dissimilarity were more similar in their
composition than expected under random assortment. There
was no impact of the anthropogenic dissimilarity on the
pollinator communities.

Disaggregating the pollinator community shows that the bee
community did not respond to either geographical distance or
environmental dissimilarity, while hoverfly composition only
responded to spatial distance (Mantel test with 999 permutations:
rM = 0.1796, p = 0.016; Supplementary Figure S8). Similarly,
disaggregating the plant community into introduced and native
plant species revealed that the native plant community responded
to both geographical distance (Mantel test with 999 permutations:
rM = 0.2643, p = 0.002), and anthropogenic environmental
dissimilarity (Mantel test with 999 permutations: rM = 0.3486,
p = 0.001; Supplementary Figures S9A,B), while the introduced

plant community composition did not significantly respond
to geographical distance (Mantel test with 999 permutations:
rM = 0.031, p = 0.367) but did respond to anthropogenic
environmental dissimilarity (Mantel test with 999 permutations:
rM = 0.1989, p = 0.027; Supplementary Figures S9C,D).

Variation partitioning produced qualitatively similar results
(see Supplementary Figure S10), where the environment
partition accounted for the largest source of explained variation
for each community and the networks, confirming that, in a
heavily modified region, it was the anthropogenic environmental
variables that structured communities more than spatial distance.

Components of Interaction Turnover
Species driven interaction turnover was the dominant
component of network difference (Ispecies > Irewire), accounting
for ∼80% of interaction turnover (Figure 4A). The proportion
of interactions that turnover due to species driven turnover
and rewiring varied inversely with environmental dissimilarity;
with the species driven turnover proportion increasing with
increasing environmental dissimilarity (Mantel test with 999
permutations: rM = 0.5632, p < 0.001), while the rewiring
proportion decreased (–0.5632, p < 0.001; Figure 4D). There
was no significant effect of spatial distance on the contribution
of turnover (Mantel test with 999 permutations: rM = 0.0849,
p = 0.217) or rewiring (Mantel test with 999 permutations:
rM = –0.0849, p = 0.783; Figure 4A).

The species driven turnover (Ispecies) was further partitioned
into plant (Tpla), pollinator (Tpol) and plant + pollinator (Tpla+pol)
driven turnover (Figures 4B,C,E,F). Along both the spatial and
environmental dissimilarity gradient, plant driven interaction
turnover contributed more to species driven interaction turnover
than pollinator driven (Tpla > Tpol, Figures 4B,E), accounting
for ∼70% of species driven interaction turnover. While spatial
distance did not have much impact on proportional contributions
(the bootstrap limits did not show a trend, Figure 4B; see
Supplementary Table S7 for non-significant mantel test), the
proportion of plant and pollinator turnover varied as a function
of enviromental dissimilarity (Figure 4E). The effect was
most pronounced at small environmental dissimilarities, where
pollinator driven turnover peaked and plant driven turnover
reached its minimum. For pollinator driven turnover, this was
significant as the lower limits of the bootstrap confidence bands
at environmental dissimilarity score of 15 were higher than
the upper limits at other dissimilarities, while for plant driven
turnover, the peak occurred at a score of 45, where the lower
confidence band is higher than the upper limits at other landscape
dissimilarities.

The plant and pollinator driven turnover (Tpol+pla)
contributed 15% to all interaction turnover (Figure 4C),
meaning in any given network comparision, 15% of interactions
will be between plant and pollinator species unique to either
network. Spatial distance had a non-significant postive effect on
the contribution of unique interaction to interaction turnover
(Mantel test with 999 permutations: rM = 0.1274, p = 0.103;
Figure 4C), while the unique interaction contribution to
interaction turnover increased linearly with gradient dissimilarity
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FIGURE 3 | Dissimilarity in the composition of pollinators (A,D), plants (B,E), and their interactions (C,F) networks as a function of spatial (A–C) and environmental
distance (D–F). To reduce the effect of differing α diversities, we calculated z-scores as a measure of deviation from randomness. Z-scores were given as (βemperical –
mean(βresampled ))/SDresampled , where βemperical is the empirical similarity between two networks, mean(βresampled ) and SDresampled are the mean and standard
deviation of the similarities when performing 1000 random assortments of species and interactions, respectively. Positive and negative z-scores signify higher and
lower similarity, respectively, than expected from random distributions of species and interactions. Filled circles indicate that a given empirical pairwise comparison
differed significantly from the resampled values, and gray dashed lines mark the boundary between 1.96 and -1.96.

(Mantel test with 999 permutations: rM = 0.2256, p = 0.027;
Figure 4F).

Predicting Interaction Turnover
The prediction performance of the mixed effects model and
the random effects model was similar for each component
of interaction turnover, indicating that the fixed effects added
little useful information for predicting interaction turnover
(see AUC values in Supplementary Table S18 and Figure 5).
The good predictive performance of the random effects
models indicates that most of the variation in whether an
interaction will turnover or not is contained in the species
under comparison. The prediction performance of the GLM
was poor for pollinator driven turnover (AUC = 0.62), plant
driven turnover (AUC = 0.65) and plant and pollinator driven
turnover (AUC = 0.58), yet performed reasonably well for
rewiring (AUC = 0.87, Supplementary Table S18), meaning
that the fixed effects, composed of landscape variables (gradient
dissimilarity, average impervious index and average agricultural
intensity index, spatial distance), interaction properties (average
interaction frequency) and ecological variables (plant origin and
difference in floral abundance) can be used to predict interaction
rewiring (Figure 5). Yet, this predictive performance is lower
compared to the random effects model (random effects model

AUC = 0.93), meaning that much of the variance in whether an
interaction would rewire is dependent on the species in question
and less so on the surrounding environment. For pollinator
driven, plant driven and plant and pollinator driven interaction
turnover the GLMs performed very poorly in comparison to
the random effects GLMMs (see Figure 5 or Supplementary
Table S18 for comparison of AUC values), illustrating that
whether an interaction turned over due to species driven turnover
is dependent on the species in question and not on the measured
site variables or interaction properties. See Supplementary
Material Prediction of Interaction Turnover for full discussion of
results, particularly Supplementary Table S18.

The binomial GLM for rewiring performed reasonably
well (AUC = 0.87) indicating that the covariates are useful for
predicting when an interaction will rewire or stay constant.
Average interaction frequency correlated negatively with
interaction turnover, meaning interactions that were frequent
rewired less (Figure 6A), while the average agricultural index, the
average impervious index and the environmental dissimilarity
(Figures 6B–D) were positively correlated with interaction
turnover, meaning that interaction pairs in differing landscape
intensities and types were more likely to rewire. Plant origin,
whether native or introduced, affected the probability of
interaction turnover, with native plants having a lower mean
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FIGURE 4 | The proportion of the total interaction turnover that can be labeled as either species-driven interaction turnover (yellow points and yellow line) or rewiring
(purple points and purple line) changes in relation to geographical distance (A) or the environmental dissimilarity (B) between paired networks. The proportion of the
species–driven interaction turnover that can be ascribed as pollinator-driven (blue points and blue line) and plant-driven (orange points and orange line) as a function
of spatial distance (C) or environmental dissimilarity (D). Proportion of species–driven interaction turnover that is caused by a combined turnover of both plants and
pollinators (pollinator + plant-driven) in relation to geographical distance (E) and environmental dissimilarity (F).

turnover probability (Figure 6E). Finally, a lot of variation
is contained at the species level, with the impact of average
interaction frequency conditioned strongly be species identity
(Figure 6F). See Supplementary Table S10 for model outputs
and summaries of the binomial GLM.

DISCUSSION

Community Dissimilarity
The beta diversity of interaction networks is structured
strongly by anthropogenic landscapes, and to a lesser extent
by geographical proximity (Figure 3). The mechanism
structuring the interaction networks is likely anthropogenic
environmental filtering of the plant community, as the
plant beta diversity patterns are strongly structured by the
anthropogenic landscapes, while pollinator beta diversity is
not. Additionally, plant driven interaction turnover is the
dominant component of interaction turnover (Figure 4) and
so drives the observed patterns in network beta diversity.
Previous studies have shown distance decay effects for
plant-pollinator interaction networks across a variety of
spatial scales (Carstensen et al., 2014; Trøjelsgaard et al.,

2015), yet to our knowledge, this is the first evidence
that environmental gradients (in this case, urbanization
and agricultural intensification) structure interaction beta
diversity, and indeed can exert a greater structuring force than
spatial distance.

Network beta diversity patterns show a degree of spatial
structure, some of which can be accounted for by the spatial
structure present in the pollinator community (Figure 3). Yet,
the variation partitioning procedure estimated the independent
spatial component to account for 8% of the network beta diversity
variation (Supplementary Figure S11F), demonstrating that
interactions are subject to spatial processes that do not operate for
their constituent organisms. Similarly, a further 8% of variation is
partitioned into the purely environmental component, providing
evidence that interactions have their own biogeographic patterns
not determined exclusively by their respective communities.
Using a different method, Poisot et al. (2012) found a similar
pattern, the dissimilarity of interactions formed by species shared
between sites shows no correlation with the dissimilarity of
species composition, implying that environmental filtering of
species and interactions are different. Thus, if we are to build
a predictive biogeography of ecological interactions, we are not
only required to model species co-occurrence as influenced by
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FIGURE 5 | Area under the Receiver Operating Curve (AUC) values for models predicting interaction rewiring (A), plant driven interaction turnover (B), pollinator
driven interaction turnover (C), and both plant + pollinator driven interaction turnover (D). The receiver operating curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various threshold settings. The closer AUC is to one, the better the model performance. GLM refers to a model using
landscape, ecological and network variables, Mixed refers to a GLMM with landscape, ecological and network variables as fixed effects and species identity as
random effects and Random refers to a GLMM using species identity as random effects. The horizontal line is 0.5 AUC, where the model performs no better than
random.

environmental and spatial data but also must model the influence
of such variables on the likelihood of interactions occurring. We
must condition interaction probabilities on the environment and
spatial distance (Gravel et al., 2019).

Networks and plant communities that occur in sites with
similar environmental characteristics were more similar than
expected by the null model distribution (Figure 3). This is likely
an effect of local environmental filtering, where plant species
and thus interactions in similar landscapes were selected for.
The native plant community is responsible for this pattern, as
opposed to the non-native plant community (Supplementary
Figure S9), and so we can rule out the effect of human preferences
for garden and agricultural plant species in generating more
similar than expected communities. This suggests that the
environmental context, the degree of urbanization or intensity
of agriculture, is strongly filtering native plant community
composition, generating homogenous native plant communities
in similar landscapes. Interestingly, there were only three
plant communities that were more dissimilar than expected

by the null model distribution (Figure 3), meaning that both
the spatial distance and environmental dissimilarity between
sites were not great enough to create plant communities and
networks significantly different in their composition. Studies
have found that networks that are far apart (∼450 km) are
more different than expected under randomization (Trøjelsgaard
et al., 2015), suggesting that the spatial distance of this study
(50 km) was not large enough for dispersal limitation to
have an effect. Yet, it is surprising that the relatively large
differences in the anthropogenic gradient, comparing sites in
an urban center to sites with a significant proportion of
semi-natural habitat to sites in intensive agriculture, did not
produce plant, pollinator communities or interaction networks
that were significantly different from each other. Overall, that
plant communities and networks are more similar than expected
in similar landscapes is suggestive of homogenization within
anthropogenic land use classes, a finding similar to studies that
show intense agriculture erodes beta diversity (Karp et al., 2012)
or that residential lawns homogenize urban plant communities
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FIGURE 6 | Probability of interaction turnover and model predictors based on a binomial GLM predicting rewiring (A–E) and a sample of individual pollinator
responses from a binomial GLMM (F). (A) Average interaction frequency is negatively related to the probability of interaction turnover. The more frequent interactions
show lower probabilities of turnover between sites. (B) The larger the average agricultural index of the site pair, the higher the probability that an interaction turns
over. (C) The larger the average impervious index of the site pair, the higher the probability that an interaction turns over. (D) The more dissimilar the environmental
gradient is between site pairs, the higher the probability that an interaction turns over. (E) Probability of interaction turnover for native and introduced plant species.
(F) Large variance in how the interaction turnover of individual pollinator species changes with average interaction frequency. Superimposed residuals result in darker
marks (A–E). See Supplementary Table S10 for binomial GLM parameter estimates and Supplementary Table S9 for mixed effects GLMM parameter estimates
and random effect variances.

(Wheeler et al., 2017). Yet, we do not find homogenization of
communities along the urban and agricultural intensification
gradients (Supplementary Figure S7), suggesting that the pattern
observed here is not one of homogenization with intensity
of land use, but rather of community homogenization within
landscape types.

It should be noted that most of the variation in the
plant and pollinator communities and in interaction networks
could not be explained by either the measured environmental
variables or spatial distance, indicating that while urbanization
and agricultural intensification do structure communities and
interaction networks, they account for a relatively small
proportion of the total dissimilarity. Thus, while we conclude
that landscape scale anthropogenic environmental filtering is
contributing to structuring community assembly and interaction
formation in our study region, the major structuring processes
have not been elucidated. A potential reason for the low
explanatory power is that local habitat filtering effects are
unaccounted for in the analysis, as aggregating communities and

networks collected in different habitats into a landscape level
community or network obscures local habitat filtering.

Components of Interaction Turnover
As in other studies, species driven interaction turnover was
the major component of interaction turnover, accounting for
∼80% of the turnover in interactions. Increasing spatial distance
had no effect on the proportion of rewiring or species driven
interaction turnover, in contrast to a previous study conducted
a study at a larger spatial scale (Trøjelsgaard et al., 2015), again
suggesting that geographical effects occur at larger spatial scales
than the 50 km scale of the present study. However, increasing
environmental dissimilarity had a strong effect, increasing the
proportion of species driven turnover and decreasing the
rewiring contribution. The contribution of rewiring more than
halves across the anthropogenic dissimilarity gradient: rewiring
contributes ∼25% at low anthropogenic dissimilarity but less
than 10% at high anthropogenic dissimilarity. Importantly,
the fact that rewiring contributes double digit proportions to
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interaction turnover means that any study that attempts to
understand the impacts of environmental change on ecological
networks must account for rewiring or risk underestimating the
impact of environmental change.

Disaggregating species driven interaction turnover
into its respective components reveals that plant species
turnover accounts for 70% of all species driven interaction
turnover. A previous study in a more natural area found that
pollinator-drive interaction turnover was the major component
(Trøjelsgaard et al., 2015). This suggests that in urban and
agricultural environments, where the native plant species pool
is supplemented with non-natives, plant driven turnover is the
dominant component of network beta diversity.

Plants and pollinators appear to be affected differently by
anthropogenic dissimilarity, with a peak for pollinator driven
interaction turnover at low gradient dissimilarity while the
peak for plant driven interaction turnover occurred at medium
levels of gradient dissimilarity. This is consistent with the
respective responses of the plant and pollinator communities
to anthropogenic dissimilarity. Plant community dissimilarity
is more strongly correlated to anthropogenic dissimilarity than
the pollinator community is, and thus we should expect the
proportion of plant driven interaction turnover to increase as
anthropogenic dissimilarity increases. A weak positive effect
of environmental dissimilarity on plant + pollinator driven
interaction turnover existed, meaning a complete substitution of
both plants and pollinators accounted for an increasing fraction
of species driven turnover in landscapes with increasingly
different compositions. In the Canary Islands, Trøjelsgaard
et al. (2015) found that these entirely novel interactions
dominate interaction turnover at regional spatial scales, yet
in strongly contrasting anthropogenic landscapes complete
substitution only accounts for ∼25% of interaction turnover.
Thus, while the anthropogenic gradients likely impose habitat
filtering effects resulting in complete substitution and novel
interactions, the strength of the anthropogenic filtering effect is
not as strong as island biogeographic dispersal limitation and
habitat filtering.

We encourage replication of this study in other contexts,
particularly along anthropogenic gradients. Ireland is known
to have a depauperate pollinator community compared to the
British Isles and particularly Mediterranean Europe, and the
trends revealed here - turnover of the plant community is the
dominant component of interaction turnover - may not be
so dominant in regions with a richer pollinator fauna. Island
biogeographic factors could play a role in which component
is dominant as the study of Trøjelsgaard et al. (2015) on the
Canary Islands found that the pollinator community was the
main component of network dissimilarity. Thus, determining
what conditions pollinator turnover vs. plant turnover is
the dominant component of network dissimilarity is fruitful
avenue of research.

Predicting Interaction Turnover
Pairwise interactions have proven difficult to predict (Burkle
and Alarcón, 2011). Efforts in the last decade have moved
toward probabilistic models that generate both interactions and

networks, moving the field beyond descriptions of network
structure (Strydom et al., 2021). Here, our aim was to
explore which variables (species-level, environmental, spatial)
influence the turnover of interactions to highlight the data
required by probabilistic models to accurately predict patterns of
network beta diversity.

We found that species driven interaction turnover, as
opposed to rewiring, is difficult to predict without species
level information. The site variables and interaction properties
that we measured provided little useful information for
predicting species driven interaction turnover. The inclusion
of the species identities and the site pair combination as
random effects drastically improved prediction performances,
indicating that species specific variables are required to accurately
predict species driven interaction turnover. As species driven
turnover is the dominant component of interaction turnover in
spatially separated networks, further work building probabilistic
models to predict network beta diversity would benefit from
adopting species distribution modeling practices, in particular
joint species distribution models (Tikhonov et al., 2017) and
interaction distribution modeling (Gravel et al., 2019). As the
local species pool forms the basis of interaction networks,
building probabilistic species pools based on spatially explicit
distribution models is essential to predict networks across space
(Strydom et al., 2021).

In contrast to species driven interaction turnover, it was
possible to predict interaction rewiring to a reasonable degree
of accuracy with site characteristics and interaction properties.
Average interaction frequency was the most significant predictor
of rewiring, with interactions that occurred frequently between
co-occurring species much less likely to rewire. Interactions
with high interaction frequency can be interpreted as linking
species with high mutual affinity, it is likely that such species
would interact with high frequency if no temporal or spatial
constraints are imposed (Carstensen et al., 2014). These
interactions were likely a result of both niche and neutral
processes: at a minimum, these interactions were not forbidden
due to trait mismatches and were likely heavily influenced
by the relative abundances of the respective species (Poisot
et al., 2014). Additionally, the relative difference in plant
abundance between a site pair showed a positive relationship
with rewiring, meaning that increasing the difference in plant
floral abundance between a site pair increased the likelihood
of interaction turnover, underscoring how important neutral
processes are to interaction formation. Yet, interaction frequency
in pollination systems is difficult to predict (Strydom et al.,
2021) and, to the best of our knowledge, models predicting
floral abundance for each species within a community do
not exist. Thus, the more useful variables for predicting
rewiring are currently unavailable to probabilistic network
modelers interested in exploring network dissimilarity across
space and time. The long-standing assumption that co-
occurrence is equivalent to meaningful interaction strength
has been shown to be false (Blanchet et al., 2020), and
thus to predict rewiring, a significant component of network
dissimilarity accounting for ∼20% of interaction turnover in
our study, species level information on abundance and traits
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are particularly important in constraining the set of possible
networks generated from probabilistic models. The proliferation
of open access databases, such as those on plant functional
traits (TRY7), species interaction data (Mangal8 and GloBI9) and
metacommunity ecology and species trait data10 could facilitate
the development of predictive models of interaction strength and
floral abundance.

Landscape level variables were predictive of rewiring,
particularly agricultural intensity which increased the likelihood
of rewiring strongly. Interestingly, this would increase the
beta diversity of interaction networks in intensive agricultural
landscapes, contrasting with the homogenization of the plant
communities in such landscapes (Karp et al., 2012). A much
weaker positive effect of the impervious gradient was found,
indicating that urbanization also increases the probability of
interaction rewiring. However, the urbanization effect was
not retained in the mixed effects model, and so we can
conclude that while agricultural intensification shows a strong
and consistent effect of increased rewiring probability, the
evidence for urbanization is mixed and needs further exploration.
Additionally, the gradient dissimilarity between site pairs
increased the probability of an interaction rewiring, indicating an
effect of landscape composition. That these landscape variables
impact rewiring probabilities highlights that remote sensing can
be a useful data source for models seeking to enhance predictive
power. Yet, the random effects GLMM still outperformed the
binomial GLM to such a degree that if we are to build predictive
models of interaction rewiring, and more generally of interaction
turnover, it would be more fruitful to build predictive models
using species level information. Gravel et al. (2019) proposes
to build probabilistic models of species interactions which
combines species distribution modeling and species level trait
data to model the probability of interactions between species.
The probabilistic approach is data intensive, yet this study has
shown that to accurately predict interaction turnover, species
level data are required.

CONCLUSION

Using methods and tools developed to make interaction networks
amenable to community ecology analysis, we have shown
that an anthropogenic environmental gradient structures the
composition of interaction networks while geographical distance
exerts a weaker effect, to our knowledge the first study to
do so. A similar pattern is observed with the components
of interaction turnover, demonstrating that the anthropogenic
gradient moderates the components of interaction turnover
and not geographical distance, highlighting the importance
of considering anthropogenic disturbances in studying the
biogeography of interaction networks. Yet, when it comes to
predicting when an interaction turns over, site characteristics

7https://www.try-db.org/TryWeb/About.php
8https://mangal.io/#/
9https://www.globalbioticinteractions.org/about
10https://icestes.github.io/

and interaction properties perform poorly, showing that if we
are to build a more predictive science of the biogeography of
interaction networks, there is still much work to be done to
integrate species specific responses. Given that species driven
interaction turnover is the main component of the patterns
observed in this study, extending species distribution modeling
to interaction distribution modeling is a promising avenue of
further research.
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