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The truly surprising thing about evolution is not how it makes individuals better adapted
to their environment, but how it makes individuals. All individuals are made of parts
that used to be individuals themselves, e.g., multicellular organisms from unicellular
organisms. In such evolutionary transitions in individuality, the organised structure of
relationships between component parts causes them to work together, creating a new
organismic entity and a new evolutionary unit on which selection can act. However,
the principles of these transitions remain poorly understood. In particular, the process
of transition must be explained by “bottom-up” selection, i.e., on the existing lower-
level evolutionary units, without presupposing the higher-level evolutionary unit we are
trying to explain. In this hypothesis and theory manuscript we address the conditions for
evolutionary transitions in individuality by exploiting adaptive principles already known
in learning systems. Connectionist learning models, well-studied in neural networks,
demonstrate how networks of organised functional relationships between components,
sufficient to exhibit information integration and collective action, can be produced via
fully-distributed and unsupervised learning principles, i.e., without centralised control
or an external teacher. Evolutionary connectionism translates these distributed learning
principles into the domain of natural selection, and suggests how relationships among
evolutionary units could become adaptively organised by selection from below without
presupposing genetic relatedness or selection on collectives. In this manuscript, we
address how connectionist models with a particular interaction structure might explain
transitions in individuality. We explore the relationship between the interaction structures
necessary for (a) evolutionary individuality (where the evolution of the whole is a non-
decomposable function of the evolution of the parts), (b) organismic individuality (where
the development and behaviour of the whole is a non-decomposable function of the
behaviour of component parts) and (c) non-linearly separable functions, familiar in
connectionist models (where the output of the network is a non-decomposable function
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of the inputs). Specifically, we hypothesise that the conditions necessary to evolve
a new level of individuality are described by the conditions necessary to learn non-
decomposable functions of this type (or deep model induction) familiar in connectionist
models of cognition and learning.

Keywords: evolution, deep learning, evolutionary connectionism, basal cognition, development, natural selection,
adaptation, multi-level selection

INTRODUCTION: EVOLUTIONARY
TRANSITIONS IN INDIVIDUALITY

All complex individuals are made of parts that used to be
individuals themselves (e.g., the transition from single-celled
life to multicellular organisms). Such evolutionary transitions
in individuality have occurred at many levels of biological
organisation, and have been fundamental to the origin of
biological complexity, but how they occurred is not well
understood (Maynard Smith and Szathmary, 1997; Michod, 2000;
Okasha, 2006; Godfrey-Smith, 2009; Szathmary, 2015; West et al.,
2015). Before a transition, adaptations under natural selection
support component entities in acting to maintain their individual
survival and reproduction. But after a transition, natural selection
supports components in acting to serve the development, survival
and reproduction of an individual at higher level of organisation
(e.g., the multicellular organism), even when it conflicts with or
suppresses the survival and reproduction of these component
parts (e.g., somatic cells) (Maynard Smith and Szathmary, 1997;
Godfrey-Smith, 2009).

How do they come to work together in this way? The form
and function of the many different parts within an individual,
and their working together as a coordinated whole, is consistent
with natural selection acting at the higher level. When the
higher-level individual is established as an evolutionary unit,
i.e., after a transition, this can even explain self-sacrifice at
the level of component parts – as they are no longer effective
evolutionary units as individuals. But this presupposes the
higher-level individual as an evolutionary unit and does not
explain the process of the transition. The evolutionary changes
involved in the creation and maintenance of a new level of
individuality are complex and can involve many evolutionary
steps in multiple dimensions including population structure,
functional interdependence and reproductive specialisation
(Godfrey-Smith, 2009). For example, these may include: a new
kind of compartmentalisation (e.g., cell membrane) that limits
the distribution of public goods or provides physical protection
that binds selective fates together; new social relationships
that create irreversible fitness dependencies between ecological
partners (e.g., from ecological “trade” to division of labour); the
synchronisation and centralisation of reproductive machinery
(e.g., as in the origin of chromosomes and the eukaryote
cell); changes to physical population structure that implement
genetic assortment (e.g., a reproductive bottleneck in the origin
of multicellular animals) and/or reproductive specialisation
(with early-determination and sequestration of a germ line)
(Margulis and Fester, 1991; Maynard Smith and Szathmary, 1997;
Michod, 2000; Okasha, 2006; Godfrey-Smith, 2009; Buss, 2014;

Szathmary, 2015; West et al., 2015). Such changes cannot be
explained as adaptations of the higher-level unit because the
higher-level unit does not exist until after (some sufficient subset
of) these adaptations have taken place. Rather they must be a
result of selection on the extant lower-level units changing their
functional relationships with one another. That is, evolutionary
transitions in individuality must be understood as evolved or
coevolved changes to relationships between existing evolutionary
units – not as some kind of instantaneous jump in the unit
of selection (followed by the evolutionary complexification of
internal relationships and mechanisms) (Black et al., 2020; Veit,
2021).

This presents an evolutionary puzzle because, whilst the
collective benefit of adaptations at the higher level may be
significant in the long term, natural selection is famously short-
sighted and self-interested. That is, characteristics that decrease
immediate benefit, or differentially benefit others, do not increase
in frequency. Selection at the higher level of organisation
necessary to overcome this is not effective until after the new level
of individuality is constructed, and selection at the lower level
will not favour any changes that decrease short-term individual
fitness (Veit, 2021). Assuming the new evolutionary unit did not
spring into existence “all at once,” with the necessary organised
relationships already in place, the multiple changes involved in
its creation must have been driven “bottom-up” by the selective
interests of the extant, lower-level units – even though these same
units are consequently caused to give-up their self-interest in the
process. A key question in the transitions is thus:

How do multiple short-sighted, self-interested entities organise
their relationships with one another to create a new level of
individuality, meaning that they are caused by these relationships
to act in a manner that is consistent with long-term collective
interest?

To answer this, a theory of ETIs needs to describe (a) what
kind of functional relationships between components are needed
to make a new individual, and how they need to be organised; and
(b) how the organisation of these relationships arises “bottom-
up,” i.e., without presupposing the higher-level individual we are
trying to explain.

Existing evolutionary theory struggles with these questions.
Specifically, a conventional evolutionary framework cannot
explain adaptations in systems that are not evolutionary
units. After the transition, when the higher-level individual is
established as an evolutionary unit, selection at this higher level
can explain complex relationships and even altruistic behaviours
among the component parts. But before the transition, we cannot
invoke natural selection to explain the adaptation of such system-
level relationships or behaviours. Thus, if these are adaptations
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required to create the new level of individuality, how can selection
explain them? Questions about how new units are created, or
transition from one level of organisation to another, cannot be
addressed within a framework that presupposes the unit it is
trying to explain. As Veit puts it, the problem is one of circular
reasoning: “how to explain the origins of Darwinian properties
without already invoking their presence at the level they emerge?”
(Veit, 2021). So the process of ETIs under bottom-up selection
creates a chicken-and-egg problem for conventional thinking;
Which came first, the higher-level unit of selection required for
complex adaptations, or the complex adaptations required to
create the higher-level unit of selection? (Griesemer, 2005; Clarke,
2016).

In this manuscript, we outline the existing theoretical
frameworks and hypotheses regarding the ETIs, and discuss
their limitations – in particular, the problem of creating fitness
differences at the collective level that are not just a by-product
of fitness differences among particles, and how to explain the
selective mechanisms by which the structures necessary to
produce this transition can evolve bottom-up.

We then introduce some new experimental findings in
developmental biology – namely, “basal cognition” and the
separation of organismic individuality from genetics (Manicka
and Levin, 2019a; Lyon et al., 2021a) and new perspectives on
evolutionary processes, namely “evolutionary connectionism”
(Watson et al., 2016), which deepens and expands the formal
links between evolution and learning. The link between evolution
and simple types of learning has often been noted (Skinner,
1981; Watson and Szathmary, 2016) but is sometimes interpreted
in an uninteresting way; as if to say Some types of learning
are no more clever than random variation and selection. But
the formal equivalence between evolution and learning (Frank,
2009; Harper, 2009; Shalizi, 2009; Valiant, 2013; Chastain et al.,
2014) also has a much more interesting implication, namely:
Evolution is more intelligent than we realised (Watson and
Szathmary, 2016). Evolutionary connectionism addresses the two
questions above by utilising (a) the principles of distributed
cognition, familiar in neural network models, to explain how the
relationships between evolutionary units can produce something
that is “more than the sum of the parts” in a formal sense, and
b) the principles of distributed learning to address how evolving
relationships can be organised bottom-up, without presupposing
system-level feedback. This provides new ways of thinking about
these questions, leading to a new hypothesis for what ETIs are
and how the ETIs occur.

The core of the idea is that ETIs are the evolutionary
equivalent of deep learning (LeCun et al., 2015) (i.e., multi-
level model induction), familiar in connectionist models of
cognition and learning (Watson et al., 2016; Watson and
Szathmary, 2016; Czégel et al., 2018, 2019; Vanchurin et al.,
2021). We hypothesise that this is not merely a descriptive
analogy, but a functional equivalence (Watson and Szathmary,
2016) that describes the types of relationships required
to support a new level of individuality and the selective
conditions required for these relationships to arise bottom-up.
Specifically, we hypothesise that (i) the type and organisation
of functional relationships between components required for a

new level of individuality are those which encode a specific
but basic type of non-decomposable computational function
(i.e., non-linearly separable functions), (ii) these relationships
are enacted by the mechanisms of information integration
and collective action (“basal cognition”) observed in the
developmental processes of organismic individuality, and (iii)
the conditions necessary for natural selection to produce
these organisations are described by the conditions for deep
model induction.

EXISTING APPROACHES TO THE
PROBLEM OF THE EVOLUTIONARY
TRANSITIONS IN INDIVIDUALITY

The evolutionary transitions in individuality, ETIs, have been
some of the most important innovations in the history of
biological complexity (Maynard Smith and Szathmary, 1997;
Michod, 2000; Godfrey-Smith, 2009; West et al., 2015). These
include the transition from individual autocatalytic molecules
to the first protocells, individual self-replicating genes to
chromosomes, from simple bacterial cells to eukaryote cells
containing multiple organelles, and from unicellular life to
multicellular organisms (Maynard Smith and Szathmary, 1997;
Michod, 2000). Each transition is characterised by the “de-
Darwinisation” of units at the existing level of organisation
and the “Darwinisation” of collectives at a higher-level of
organisation (Godfrey-Smith, 2009). That is, at the lower level,
each component part loses its ability to replicate independently –
the most fundamental property of a Darwinian unit – and
after the transition, can replicate only as part of a larger
whole (Maynard Smith and Szathmary, 1997). Conversely, before
the transition, reproduction does not occur at the collective
level; and after the transition the collective exhibits heritable
variation in fitness that belongs properly to this new level of
organisation (Maynard Smith and Szathmary, 1997; Okasha,
2006).

Whereas conventional evolutionary theory takes individuality
for granted, and assumes the unit of selection is fixed, it is now
recognised that Darwinian individuality is a matter of degree in
many dimensions (e.g., degree of genetic homogeneity, degree
of functional integration, degree of reproductive specialisation)
(Godfrey-Smith, 2009). The research programme of the ETIs
seeks to understand the processes, mechanisms and drivers that
cause evolutionary processes to move through this space of
possibilities (Okasha, 2006; Godfrey-Smith, 2009).

Social Evolution Theory and Kin
Selection
Social evolution theory, a general approach to explain social
behaviour, notes that it is evolutionarily rational to cooperate
with someone that makes more copies of you (or your genes).
Thus, in the case that interactors are genetically related or
homogeneous, as they can be in the case of the cells within
a multicellular organism, for example, this can explain the
altruism of the somatic cells (West et al., 2015; Birch, 2017).
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The inclusive fitness perspective on ETIs, derived from this
kind of social evolution theory, also offers a viewpoint that
side-steps the whole problem. The question, as we posed
it, asked why short-sighted self-interested individuals would
act in a manner that opposes their individual interest to
serve the interests of the whole. But an inclusive fitness
perspective suggests this is wrong-headed because they were
never different individuals in the first place – they were
always of one genotype, and the multicellular organism is
just a phenotype of this singular evolutionary unit. Problem
solved?

For some purposes, it might be appropriate to view ETIs as an
extreme point on the same continuum as other social behaviours.
But genetic relatedness, kin selection or inclusive fitness do not
explain all ETIs or even key examples such as multicellularity with
homogeneous genetics.

First, acting with unity of purpose in multicellular organisms
does not require genetic homogeneity (Grossberg, 1978; Levin,
2019, 2021b; Levin et al., 2019; Bechtel and Bich, 2021).
Second, other transitions in individuality involve components
that are genetically unrelated, for example, the transition from
self-replicating molecules to chromosomes, and the transition
from bacterial cells to eukaryote cells with multiple organelles
(Maynard Smith and Szathmary, 1997). Third, and perhaps
most important, social evolution theory only explains the
cooperation that is expected given a certain interaction structure
(i.e., determining whether those that interact are related). It
does not explain changes in interaction structures that are
necessary to increase or decrease genetic assortment, let alone
to reach such extremes. Moreover, the genetic definition of
individuality fails to address all the questions that are really
interesting about individuality – not least how individuality
changes from one level of organisation to another. By asserting
that, both before and after the transition, the only relevant
individual was the gene, this approach fails to address the
meaning of the individual at all. Of course, it is common
that the cells of multicellular organisms, especially animals, are
for the most part genetically homogeneous. And given that
they are, this can explain the apparently altruistic behaviours
of soma. But this does not explain how this situation
evolved, nor other instances of individuality that are not
genetically homogeneous.

Evolved Change in Interaction Structure:
Ecological Scaffolding and Social Niche
Construction
One recent approach to explain how new interaction structures
might evolve is ecological scaffolding (Black et al., 2020;
Veit, 2021). That is, extrinsic ecological conditions, that are
not in themselves adaptations and do not require selective
explanation, create conditions where individuals live in
a grouped or meta-population structure, e.g., microbial
mats aggregated around water reed stems (Veit, 2021).
The differential survival and reproduction of such sub-
populations, e.g., in recolonising vacant locations, affords
the possibility of higher-level selection (Wilson, 1975;

Wade, 2016). Thus far in this account, nothing has evolved
to support or maintain these structures; It is simply an
assumption of fortuitous extrinsic conditions that alter
population structure to create these different selective
pressures. But from there it becomes more interesting.
Given these conditions, individual selection at the lower
level supports the evolution of characters that access synergistic
fitness interactions, changing the relationships among the
particles, and given that synergistic fitness interactions among
particles have evolved, it is subsequently advantageous for
particles to evolve traits that actively support this grouped
population structure. Now the original extrinsic ecological
conditions might change or cease, but the population
structure necessary to support higher-level selection is
nonetheless maintained, supported by the adaptations of
the particles. That is, the ecological scaffolding becomes
redundant, and is replaced by endogenous effects of
characters produced by selection at the particle level. This
ecological scaffolding thus provides a way to overcome
the chicken-and-egg problem of the ETIs (by temporarily
assuming the presence of a “chicken”). It does, however,
depend on the initial assumption of extrinsic ecological
conditions that happen to support higher-level selection in
the first place. Moreover, if population structure changes
evolutionary outcomes for individuals, and individuals
have the ability to alter population structure, we must
consider the possibility that rather than adapting to
support the new level of selection they act to oppose or
disrupt it, e.g., by evolving dispersal behaviours rather than
aggregation behaviours.

These works and others in this area point to the need
to explain how evolution modifies the parameters of its own
operation when these parameters exhibit heritable variation
(Powers and Watson, 2011; Ryan et al., 2016; Watson and
Szathmary, 2016; Watson and Thies, 2019), i.e., to endogenise
the explanation of its own parameter values (Bourrat, 2021b;
Okasha, 2021). For example, with or without scaffolding, suppose
that organisms have heritable variation in traits that modify their
interaction structure with others, such as compartmentalisation
or group size, reproductive synchronisation, or reproductive
specialisation. These traits can modify relatedness – they change
how related interactors are [not by changing anyone’s genetics
but by changing who interacts with whom (Taylor and Nowak,
2007; Jackson and Watson, 2013)]. How does natural selection
act on these traits? For example, initial group size is known
to be an important factor in modifying the efficacy of (type 1)
group selection (Wilson, 1975; Powers et al., 2009, 2011), and
individuals may have traits that modify initial group size (e.g.,
propagule size) (Powers et al., 2011). The term “social niche
construction” refers to the evolution of traits that alter interaction
structure, i.e., who you interact with and how much (Powers
et al., 2011; Ryan et al., 2016). In some circumstances, natural
selection will act to modify such traits toward structures that
increase cooperation (Santos et al., 2006; Powers et al., 2011;
Jackson and Watson, 2013). This social niche construction has
potential advantages over ecological scaffolding because it does
not presuppose exogeneous reasons for favourable population
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structure (that is later canalised by endogenous traits), but
shows conditions where such population structure can evolve de
novo.

Multi-Level Selection and Individuation
Mechanisms
In contrast to the kin selection approach (i.e., focussing on the
lower-level units and whether they interact with other units
that are related), the multi-level selection approach conceives
higher-level organisations (collectives) as units of a higher-level
evolutionary process (Wilson, 1997; Okasha, 2006; O’Gorman
et al., 2008). The multi-level Price approach, for example,
attempts to divide the covariance of character and fitness into
“between collective selection” (acting at the higher level) and
“within collective selection” (acting at the particle level) (e.g.,
Bourrat, 2021b). Clarke (2016) proposes that we might assess
the degree of individuality as “the proportion of the total change
that is driven by selection at the higher level,” and like Okasha
(2006), suggests that an ETI involves a decrease in the proportion
of selection driven by the lower level and an increase in the
proportion driven by selection at the higher level. In the limit
of complete Darwinisation of the collective, and complete de-
Darwinisiation of the particles, this becomes maximal.

One problem with this analysis is that, as Wimsatt (1980)
points out, the presence of heritable variation in reproductive
success at the collective level is not in itself “sufficient for the
entity to be a unit of selection, however, for they guarantee only
that the entity in question is either a unit of selection or is
composed of units of selection.” Moreover, Bourrat argues that
“there is no fact of the matter as to whether natural selection
occurs at one level or another” because “when evolution by
natural selection occurs at one level, it does so concomitantly at
many other levels, even in cases where, intuitively, these levels
do not count as genuine levels of selection” (Bourrat, 2021a).
Collectives can be defined at any level and with any boundary,
and their character-fitness covariance can be measured, and yet
we could have equally well drawn boundaries in any other way.
We would have got different quantities (if the interactions among
particles are non-linear), but nothing about these quantities tells
us how to identify which units are playing a factually causal role
in the evolutionary process. Thus, even when there are salient
functional interactions among the particles within a collective, it
can be hard to disentangle what is happening at one level and
what is happening at another, or more exactly, what caused things
to happen at one level or another (see also cross-level by-products
(Okasha, 2006).

Bourrat (2021a) goes on to provide an extension to the multi-
level Price approach which divides the response to selection
(the product of selection and heritability) into a component
that is functionally additive (aggregative) and a non-additive
component. The latter non-aggregative component is associated
with the collective response to selection that is not explained by
the particle response to selection Thies and Watson (2021). This
is useful in drawing attention to the nature of the interactions
among particles and its significance in identifying the salient
level of causal processes. It also emphasises how a change in

heritability at the collective level could alter the ability to respond
to selection at the collective level. We will develop related ideas
below (but argue that in order for higher-level selection to alter
evolutionary outcomes, the type of non-aggregative interaction
needs to be more specific).

Beyond matters of quantifying individuality, we also aim to
better understand the mechanisms that cause these changes (e.g.,
changes in the ability to produce heritable fitness differences at
the collective level) and how selection acts on these mechanisms.
In other words, in addition to knowing whether the evolutionary
change in a character is explained by lower-level or higher-level
evolutionary units, and quantifying how this balance might alter
in the course of a transition, we also want to explain how and
why this balance changes. We want to explain the mechanisms by
which natural selection changes the identity of the evolutionary
unit. Here theory is less well developed.

Clarke offers the concept of “individuation mechanisms” that
influence “the extent to which objects are able to exhibit heritable
variance in fitness” (see also Godfrey-Smith, 2009). These might
include developmental bottlenecks, sexual reproduction, egg-
eating behaviours, germ separation, immune regulation and
physical boundaries (Clarke, 2014, 2016). In general such
mechanisms may affect genetic variance (by affecting the extent
to which genetic variation is heritable at the collective level), the
fitness effects of that variation, or other (non-genetic) sources
of heritable variance in fitness. But still, we want to know how
selection, more specifically, bottom-up selection, acts on such
traits. For example, we need to be able to explain why lower-
level selection would act on such traits in a manner that increases
non-aggregative components of the collective heritability and
response to selection, and not in a manner that decreases it.
Intuitively, one might imagine that the reason the traits evolve,
the source of their selective advantage, derives specifically from
the change in the collective-level response to selection – e.g., the
non-aggregative component identified by Bourrat. The models
of social niche construction demonstrate that this is possible in
some circumstances. However, we cannot assume that it is in the
interest of particles to reduce their ability to respond to selection
independently, and make themselves dependent on the collective
to respond to selection. Given that such traits must be evolved
through a particle-level response to selection (since a collective-
level response to selection does not exist until after the transition),
and that a collective-level response to selection may ultimately
create a situation that opposes their direct fitness (e.g., that of
somatic cells), this direction of travel is not at all for granted. As
yet, these approaches do not tie together the effects that such traits
have on the level of individuality with the selection that causes
such traits to evolve.

Types of Fitness Interactions:
Emergence, Non-aggregative
Interactions and Collectives That
Change Evolutionary Outcomes
In order for a new level of biological organization to have a
meaningful causal role as an evolutionary unit, evolutionary
outcomes of the collective must not be simply summary statistics
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over the lower level units they contain (Okasha, 2006; Bourrat,
2021a). Being a bone fide evolutionary unit requires heritable
variation in fitness (Lewontin, 1970; Okasha, 2006), and being a
new evolutionary unit (that is “more than the sum of the parts”)
requires heritable fitness differences at the new level that are
not just the average of heritable fitness differences at the lower
level (Okasha, 2006). Otherwise, how can it be that collective
characters, and not particle characters, determine particle
fitness? If particle characters determine collective characters,
and collective characters determine the fitness of the particles
they contain, then particle characters determine particle fitness.
We can write this as follows. If the sum (or other aggregative
property) of particle characters (6z) in a collective determines
(linearly) the reproductive output of the collective (�), and the
reproductive output of the collective determines (linearly) the
fitness of a particular particle therein (ω1), then the value of that
particle determines its fitness (z1→ ω1), and hence the collective
is explanatorily redundant in describing the selection on particles
(Eq. 1). [∑

z→ �→ ω1

]
⇒ [z1 → ω1] (1)

The point is perhaps better made by focussing on changes in
characters and fitnesses. Thus if the change in a character (1z1)
determines a change in collective fitness (1�), and a change
in collective fitness determines a change in particle fitness, then
changes in particle fitness are determined by changes in particle
characters (1z1→1ω1), and the collective is redundant.

[1z1 → 1�→ 1ω1]⇒ [1z1 → 1ω1] (2)

So, given that collective characters and hence collective fitness
are entailed by the characters of the particles they contain, how
can collectives and not particles be the reason that one particle
character was selected and another was not? The means by which
collectives can somehow break the association between particle
character and particle fitness will be a key focus of what follows.

To create a meaningful causal role for the collective, there is
often an appeal to the notion of creating something qualitatively
new at a higher level of organisation, a.k.a. emergence. This
can be difficult to define (Corning and Szathmary, 2015;
Bourrat, 2021a), especially since we generally want to retain
the assumption that salient differences at the higher level
require salient differences at the lower level (supervenience).
It is agreed, at least, that in order for the collective to be
a meaningful evolutionary unit, fitness interactions between
components cannot be linearly additive (Corning and Szathmary,
2015; Bourrat, 2021b). If the fitness-affecting character of
the collective is simply the sum or average of the particles,
or more generally, an aggregative property of the parts
(Bourrat, 2021b), then the distinction between higher and
lower levels of selection is merely conventional, not substantial
(Bourrat, 2021a).

Bourrat examines cases where the relationship between z and
collective character, Z (and hence �), is non-linear (Bourrat,
2021b). For example, suppose a change in the character of
a particular particle (1z1) given a particular context where
the sum of other particle characters has a particular value

(6zx = p), results in a change to collective fitness and hence
a change to particle fitness (1ω1). Now consider the same
change, 1z1, in a different context where the sum of other
particle characters has a different value (6zx 6= p), i.e., we
are at a different point on the non-linear curve relating the
particle characters to collective character. If this has a different
effect on collective fitness (1�′ 6= 1�) and hence a different
effect on the fitness of this particular particle (1ω1

′
6= 1ω1)

then it does not follow that this change to particle character
results in a change in its fitness that is independent of
context (Eq. 3). In this sense, the collective is not explanatorily
redundant.[
1z1 :

(∑
zx = p

)
→ 1�→ 1ω1

]
and

[
1z1 :

(∑
zx 6= p

)
→1�

′

→ 1ω
′

1

]

; [1z1 → 1ω1] nor
[
1z1 → 1ω

′

1

]
(3)

Corning and Szathmary (2015) and Bourrat (2021b) describe
some examples of possible scaling relationships, such as step
functions or thresholds, and super linear curves, that effect
a non-linear relationship between the characters of parts
and the characters of wholes. The salient criterion of such
functions is “whether or not there are combined effects that are
interdependent and cannot be achieved by the “parts” acting
alone.” or “produce an interdependent, qualitatively different
functional result” (Corning and Szathmary, 2015).

However, although 1ω1
′ and 1ω may be different in any such

non-linear function, they could nonetheless have the same sign.
This is the case whenever the function relating 6z to Z, and �,
is monotonic (such as a diminishing returns or economy of scale
relationship). In this case it will nonetheless be the case that an
increase (a particular directional change) in particle character
(↑z1) will systematically produce an increase in particle fitness
(↑ω1) regardless of context. That is, for monotonic relationships,
the collective is explanatorily redundant in determining the
direction of selection on particle characters (Eq. 4) (even though
the collective character may be non-aggregative).

[↑ z1 →↑ �→↑ ω1]⇒ [↑ z1 →↑ ω1] (4)

This means that, although the effect of selection at the collective
level may be different from selection at the particle level, it
is always affected by particle characters in the same direction.
This does not describe cases where higher-level selection changes
evolutionary outcomes, i.e, changes in which of two variants
are favoured, only how quickly the preferred variant will fix.
Such monotonic non-linearities alter only the magnitude of
selection, and thus might alter how quickly selection modifies the
frequency of a type, but not which type is favoured. Heritable
variation in the fitness at the collective level thus remains
explanatorily redundant in determining which particle character
is favoured by selection.

We think this is not a minor point because altering
evolutionary outcomes in this sense – where individual and
collective levels of selection “want different things” - is central to
ETIs. Restricting attention to monotonic relationships excludes
scenarios where the creation of a higher level evolutionary unit
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BOX 1 | Non-linearly separable functions.
In machine learning, examples of non-linearly separable functions for two binary inputs are logical exclusive-or (XOR) and if-and-only-if (IFF), meaning that the inputs
are different or the same, respectively. In such a function, the contribution of each component input to the output value changes sign depending on the value of
another input. For example, if A = true then the output [A XOR B] is made true by B = false. But if A = false then the output [A XOR B] is made true by B = true (for
example, if this cell is soma that cell should be germ, and vice versa) (Figure B1). In functions that are linearly separable (i.e., unitary functions IDENTITY, NOT, and
other two-argument functions OR, AND, NAND, and NOR) the effect of an input “shows-through” to the output (or cannot be “decoupled” from the output). That is, if
there is a context (a set of values for the other inputs) where increasing a given input increases the output, its effect cannot be the reverse in another context. Put
simply, in non-linearly separable functions the sign of the effect of an input on the output depends on an interaction with other inputs. This is a simple way of defining
what it means for an output to be non-decomposable or “more than the sum of the parts” in a formal sense, i.e., not decomposable into a sum of sub-functions over
individual inputs. Technically, the term linearly separable refers to the idea that dividing the multidimensional input space into points where the output is true and
those where the output is false, only requires one straight line (or, for more than two inputs, one hyperplane). In a non-linearly separable function, in contrast, this is
not possible (Figure B1). A corollary of this is that linear directional movements through input space can traverse through regions where the output is true, then false,
then true again. Put differently, getting from one point where the output is true, to another region where the output is true, without going through a region where the
output is false, can require either a nonlinear trajectory or a “jump” in input space where several input variables change simultaneously in a specific manner. It is not
guaranteed that there is one variable that, on its own, can be changed incrementally to reach the other region (nor any linear combination of input variables) (see also
Figure B3.B). This is a simple way to formalise what is meant by a scenario that requires “coordinated action,” i.e., variability that maintains a particular output
requires specific coordinated simultaneous change in multiple variables.

FIGURE B1 | Linearly separable and non-linearly separable functions. (A) A linearly separable function of two inputs A and B. The four combinations of high and low
values are classified as either positive or negative. In any linearly separable function, like this example representing NAND(A,B), the positive and negative examples
can be separated with a linear decision boundary (another example is shown in Figure B3.B). (B) In any non-linearly separable function, like this example
representing XOR(A,B), no such linear decision boundary can be drawn, and separating the two classes requires a non-linear boundary.

causes the lower level units to “do something they didn’t want
to do” such as evolve characters that decrease their individual
fitness (e.g., somatic cells, or other reproductive division
of labour), or decrease fitness differences between particles
(e.g., fair meiosis, mitochondrial reproductive regulation, or
other policing strategies). Although other types of non-
linearity where the interaction is not monotonic are sometimes
mentioned (in particular a division of labour, as developed
below) there is perhaps a reason why the worked examples
in previous work have not addressed this. Specifically, if
the direction of selection on particle character is different
under particle selection and collective selection, such that
higher-level selection opposes the phenotypes favoured by
lower-level selection, why would bottom-up selection create
a new evolutionary unit that opposed its interests in this
way?

It is relatively easy to explain why selective conditions can
be different (even reversed) after a transition compared to
what they were before a transition; as per scenarios of strong
altruism, for example. What is not easy to explain is how traits
(or the parameters of individuating mechanisms) that change
evolutionary outcomes in this way themselves evolve. Before a
transition the only entities that can be evolving are particles not
collectives, so it must be some character of particles that explains
these changes in individuality. How can individual selection

favour characters that serve collective interest at the expense of
the short-term self-interest of particles?

NEW DATA AND INSIGHTS

A number of current inter-related topics provide new
perspectives and new data that contribute to a different
way of looking at the evolutionary transitions and individuality.

When the Direction of Selection on
Components Is Context Sensitive -
Division of Labour Games, Nonlinearly
Separable Functions,
Non-decomposable Phenotypes, and
Comparison With Other Non-aggregative
Functions
Intuitively, collectives could alter evolutionary outcomes if the
way in which the character of a particle affects the fitness of the
particle depends on the other particles present. More specifically,
the direction of selection produced by a change in the character
of a particle must depend on the other particles present.

Interactions of this form can be written as follows. Suppose
that in one context (say when a neighbouring particle, z2,

Frontiers in Ecology and Evolution | www.frontiersin.org 7 March 2022 | Volume 10 | Article 823588

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-823588 March 22, 2022 Time: 15:3 # 8

Watson et al. Design for an Individual

FIGURE 1 | Different possibilities for the relationship of particle characters to collective character. (A) Additive (no interaction). Two particles, with characters z1 and
z2, each contribute to collective character, �, independently. That is, changes in z1 always have the same effect on � regardless of the value of z2 and vice versa.
(B) Synergistic interaction. The effect of z1 on � increases with the value of z2. The two together thus have a synergistic, i.e., super-additive, effect on collective
character. (C) Non-decomposable interaction. The sign of the effect of z1 on � can be reversed by the context of z2. The class of particle character configurations
that confer high values of � (yellow) is defined by a non-linearly separable function over z1 and z2, such as z1 XOR z2 (Box 1) (this is not the case in (B) which
remains linearly separable, i.e., z1 AND z2). The lower panels show the value of � as a function of z1. (A) insensitive to z2, (B) slope of response depends on value of
z2 but does not change sign, (C) sign of response depends on value of z2. Note that in both (B,C), � is a non-aggregative function of the particle characters, but
only (C) is non-decomposable in the sense of being non-linearly separable.

has a positive character value or a value above a given
threshold, θ) increasing particle fitness requires an increase
in a particular particle character, and yet in another context
(e.g., z2 < θ) increasing particle fitness requires a decrease in
the same particle character. In this case, neither an increase
nor a decrease in particle character reliably determines an
increase in particle fitness (Eq. 5). Accordingly, although
collective character determines the direction of selection on
particles, particle character does not (Watson and Thies,
2019).

[↑ z1 : z2 > θ→↑ �→↑ ω1] and [↓ z1 : z2 < θ→↑ �→↑ ω1]

; [↑ z1 →↑ ω1] nor [↓ z1 →↑ ω1] (5)

In such cases, the sign of the relationship between particle
character and particle fitness depends on what other particles
are present. When interacting components are within one
evolutionary unit (e.g., genes), this kind of sign change in fitness
effects is known as reciprocal sign epistasis (Weinreich et al.,
2005). But before a transition, the components are different
evolutionary units and can instead be construed as players
interacting in a game (Hofbauer and Sigmund, 1988). In this
case, this kind of sign change in fitness effects is described
by a division of labour game (Ispolatov et al., 2012; Tudge
et al., 2013, 2016), requiring individuals to adopt complimentary
heterogeneous roles (Hayek, 1980; Tudge et al., 2013; Watson
and Thies, 2019) [e.g., reproductive specialisations such as

germ/soma (Godfrey-Smith, 2009)]. The significance of role
specialisation and division of labour (or combination of labour)
in ETIs has been noted by many writers (e.g., Bonner, 2003;
Kirk, 2005; Ratcliff et al., 2012; Simpson, 2012; Wilson, 2013;
Corning and Szathmary, 2015), but not formally developed in the
manner that follows.

In this case, and only in this case, there is no particle character
that maximises particle fitness but there is nonetheless a collective
character (e.g., complementarity or coordination of particles) that
cannot be reduced to the character of individual particles, and this
collective character confers (collective fitness and hence) particle
fitness. This is a basic but fundamental way of describing a
non-decomposable collective character; i.e., a collective character,
entailed by particle characters, that confers particle fitness, and
yet there is no particle character that systematically confers
increases in particle fitness over all contexts.

For what comes later, it will be useful to note that a division
of labour scenario is the game theory equivalent of a non-
linearly separable function in learning theory (Box 1). This
provides a formal way to characterise what is important about
these functions in evolutionary terms because the distinction
between linearly separable and non-linearly separable functions
is fundamental in machine learning for the same reasons. That is,
the effect of one input changes sign depending on the other input
(Box 1). We refer to collective characters underpinned by such a
function as a non-decomposable collective character (Figure 1).
That is, the collective character cannot be decomposed into a
sum of contributions from individual characters (non-linearity) –
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and more specifically, the sign of the effect of changing one
particle character is not independent of its context (non-
decomposable).

Note that the statistical average of curves in Figure 1C
can be flat (i.e., the context-free contribution of a single
particle character to collective character is zero, averaged over
all contexts). This does not mean that � is insensitive to
particle characters; the functional interactions of particles matter
significantly in determining the collective character. In this
sense, non-decomposability is intimately related to the issue
of separating particle character from particle fitness, and the
possibility that collective character (and not particle character)
determines the fitness of the particles it contains (even though
collective character supervenes on particle characters). Note that,
confirming the intuition of Okasha (2006), non-decomposability
must be defined in terms of traits or characters not particle
fitnesses. It is not logically possible for particle fitness to control
collective fitness and not control its own fitness. But it is possible
for particle traits to determine collective fitness and not control
its own fitness. The particle character matters to its fitness, but the
way it matters (the direction of selection conferred by a change in
particle character) is not determined by itself independently, i.e.,
free from context.

Note that non-decomposability is a stronger condition than
(a refinement of) non-aggregative interactions (Bourrat, 2021b).
Non-aggregative interactions include both monotonic non-
linear interactions and these non-linearly separable scenarios,
but previous examples of non-aggregative interactions have
largely been monotonic and thus linearly separable. It is easy
to see why: Looked at from the particle level, if a particular
change in particle character can increase its fitness in one
context and the same change can decrease it in another,
how can particles evolve to control and take advantage of
collective benefits? Looked at from the collective level, collectives
containing an appropriate complement of particle types can
solve a division of labour game, and will thus be fitter than
a collective that does not. But this creates a problem for
the heritability of the collective – the heterogeneous functions
with homogeneous fitness (HFHF) problem (Box 2). To solve
this problem, and understand how selection at the lower
level can find solutions to non-decomposable problems we
need to look at higher-level individuals not as containers of
heterogeneous but inert particles, but as dynamical systems
that “calculate” collective phenotypes through the interactive
behaviours of particles. The domain of such dynamics are the
processes of development. How can development perform such
computations?

New Perspectives on Organismic
Individuality – Development and Basal
Cognition
Organismic concepts of individuality, like evolutionary concepts
of individuality, can also be hard to pin down (Clarke,
2010; Levin, 2019). Properties such as functional integration,
spatial continuity or physical cohesion, coordinated action
and developmental dependency, for example, may or may

not be aligned with notions of evolutionary or Darwinian
individuality (Godfrey-Smith, 2009). Tying individuality to an
evolutionary unit identified by its genetics quickly unravels
(Godfrey-Smith, 2009; Clarke, 2010). Clonal growth of a
bacterial colony may be genetically homogeneous, for example,
but does not constitute an organismic individual by most
accounts. And even normal looking natural multicellular
organisms can be profoundly genetically heterogeneous. For
example, planaria are multicellular organisms that can reproduce
by fissioning (without a cellular population bottleneck) and
thus can accumulate somatic diversity over many generations
(Lobo et al., 2012). Nonetheless, planaria exhibit development,
morphology and behaviour just like genetically homogeneous
multicellular organisms. At a smaller scale, the mechanisms
of chromosomal reproduction and (fair) meiosis are tightly
coordinated within cells but the chromosomes are genetically
heterogeneous. And the behaviour of individual unicellular
organisms is, of course, far from a linear combination of gene-
products. At a higher level of organisation, holobionts, for
example, are sometimes offered as a candidate for a higher-
level individual – not because of shared genetics but because
of coordinated functional integration and dependencies. Some
argue for a view of the biosphere as a whole that is organismic
in kind, despite the lack of conditions necessary to be an
evolutionary unit. How do we distinguish a collection of multiple
organisms that is merely complicated from a new level of
individuality?

In multicellular organisms, morphogenesis and its disorder,
the breakdown of individuality known as cancer, is intrinsic
to individuality (Deisboeck and Couzin, 2009; Doursat et al.,
2013; Rubenstein et al., 2014; Friston et al., 2015; Pezzulo
and Levin, 2015, 2016; Slavkov et al., 2018; Pezzulo et al.,
2021). In most organisms cancerous growths originate from
genetically homogeneous tissue and, conversely, in planaria,
despite their heterogeneity, cancers are rare. New work shows
that cancerous growth can be induced by a disruption of
electrical coordination signals between cells and in some cases
can be reversed by re-establishing them, without genetic changes
(Levin, 2021a). Meanwhile, new experiments demonstrate that
artificial multicellular genetic chimera can also exhibit holistic
behaviours and functions (Blackiston et al., 2021). These recent
experiments and considerations add to the growing evidence
that genetic homogeneity is neither necessary nor sufficient
for organismic individuality. Is functional integration more
important? And what kind of functional integration is necessary
and sufficient?

Recent work has begun to apply the tools of collective
intelligence and cognitive neuroscience to describe “the signals
that turn societies into individuals?” (Lyon et al., 2021a,b).
In particular, this includes consideration of behaviours and
their reward structures or incentives. Like the considerations
of evolutionary individuality above, if the incentives of the
whole (its macro-scale reward structures and sensory-action
feedbacks) are just summary statistics over the incentives of
the parts (micro-scale reward structures and sensory-action
feedbacks), then the individuality of the whole is conceptually
degenerate. Levin recently makes the case that organismic
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BOX 2 | The “heterogeneous functions with homogeneous fitness” (HFHF) problem.
For particle fitness to be determined by collective character and not particle character, a division of labour game is required (“When the Direction of Selection on
Components Is Context Sensitive - Division of Labour Games, Nonlinearly Separable Functions, Non-decomposable Phenotypes, and Comparison With Other
Non-aggregative Functions”). Solving a division of labour game requires individuals to be different to each other. But if a collective contains multiple types of
individuals, how does it reproduce? If reproduction occurs through a single-celled bottleneck or unitary propagule this creates homogeneous descendant groups
(and homogeneous groups cannot be solutions to a division of labour game). If reproduction occurs through fissioning the group, or any propagule greater than size
one, and individuals are intrinsically different, then selection at the individual level will act on these differences, driving changes in the composition of the group. The
latter appears as transmission bias opposing the ability to respond to selection at the higher level (Okasha, 2006). To remove this problem and stop selection at the
lower level from interfering with selection at the collective level, the fitnesses of the components must be equalised (de-Darwinised). Individuality thus requires
collectives to solve the “heterogeneous functions with homogeneous fitness” (HFHF) problem (Watson and Thies, 2019). Heterogeneous functions are necessary to
create fitness differences at the collective level (a.k.a. Darwinisation of the whole); and homogeneous fitness is required to remove fitness differences at the individual
level (a.k.a. de-Darwinisation of the parts) (Godfrey-Smith, 2009). But how can particles be functionally different and have the same fitness? Solving the
heterogeneous functions with homogeneous fitness problem requires individuals to be plastic (Watson and Thies, 2019). This is logical; untying function from fitness
requires either plasticity of function or plasticity of fitness. Functional (or phenotypic) plasticity allows individuals to be intrinsically the same (e.g., same genotype and
hence same fitness) but act differently (e.g., different phenotype and function). Alternatively, reproductive plasticity (e.g., where reproduction is cued by or enacted by
the context of the collective, rather than by autonomous reproductive mechanisms of the particles) allows individuals to be intrinsically different (providing functional
complementarity) but reproduce the same (e.g., synchronised reproduction of chromosomes equalises fitnesses) (Watson and Thies, 2019). In evolutionary
transitions, these two different ways of solving the HFHF problem are manifest in two different kinds of transitions (Queller, 1997; Watson and Thies, 2019). Fraternal
transitions solve the HFHF problem with phenotypic plasticity (and homogeneous genetics) whereas egalitarian transitions utilise reproductive plasticity (and
heterogeneous genetics).

individuality is appropriately ascribed to systems that are
capable of information integration and collective action at
some spatiotemporal scale (regardless of whether they are
genetically related or not) (Levin, 2019, 2021b). This is a
cognitive notion of “self ” (“cogito, ergo sum” perhaps?). But it
does not require neurons or brains; Basal cognition refers to
processes of information integration and collective action that
occur in non-neural substrates – such as in the development
of morphological form (Pezzulo and Levin, 2015; Manicka and
Levin, 2019a,b; Lyon et al., 2021a,b). It refers to cognition in
an algorithmic sense that is substrate independent (Levin and
Dennett, 2020). “[F]unctional data on aneural systems show
that the cognitive operations we usually ascribe to brains—
sensing, information processing, memory, valence, decision
making, learning, anticipation, problem solving, generalization
and goal directedness—are all observed in living forms that
don’t have brains or even neurons” (Levin et al., 2021). What
is important is the presence of functional and informational
interactions (signals and responses of any nature) that facilitate
information integration and the ability to orchestrate cued
responses that coordinate action. In this manuscript we develop
this cognitive notion of self by making explicit equivalences with
computational models of individuality based on connectionist
notions of cognition and learning. This provides the dynamical
substrate in which interacting particles can collectively compute
solutions that solve the HFHF problem.

Particle Plasticity and Collective
Development
Solving the heterogeneous functions with homogeneous fitness
problem requires individuals to be plastic (Watson and Thies,
2019; Box 2). Plasticity allows function and fitness to be
separated such that the phenotype of the particle (e.g., whether
it is type A or type B) does not determine its reproductive
output (Eq. 5). Nonetheless, when this plasticity is used to
coordinate phenotypes with other particles, it can access the non-
decomposable component of collective fitness. Thus the ability to
adopt a phenotype that is complementary to its neighbour (such

as “becoming an A when with a B” or “becoming a B when with
an A”) confers a consistent selective signal (toward being different
for XOR, or toward being the same for IFF, Box 1). Plasticity thus
pushes a collective trait like “diversity” down to a particle trait
like “an ability to plastically differentiate.” This introduces the
notion of a second order particle trait – a trait about relationships
between things rather than the things themselves – in contrast
to a first-order or context free trait. That is, a second-order trait,
such as a differentiating or coordinating behaviour, controls the
combinations of first-order characters. It is thus an individual
character which increases the heritability of a non-decomposable
collective character (e.g., phenotypic diversity necessary to solve
a division of labour game).

Note that although the direction of selection on a first-order
individual character will reverse depending on context in a
division of labour game, the direction of selection on the second-
order character (e.g., favouring being different rather than being
the same) is consistent for a given game. It is then possible to
attribute particle fitness to this (second-order) particle character.
This appears to put us back at square one with a collective
that is explanatorily redundant (Eq. 4). But note that second-
order characters such as plasticity really are different from first
order characters because they are about relational attributes. For
example, a particle cannot be “the same” or “different” on its
own, and a phenotype that is sensitive to the context of others
cannot be assigned a fitness until the others are present and
the plasticity is enacted (i.e., development happens). Intuitively,
although the property of being able to plastically differentiate
from your partner is a property that a single particle can have,
the ability to solve a division of labour game is not a property
that a single particle can have. This collective property is the
result of a basal “calculation” performed by multiple particles
within the collective in interaction with each other. When this
functional outcome (a solution to the division of labour game)
is a non-linearly separable function of the individual particle
characters, the fitness of the particles (and more specifically,
the direction of selection on particle characters) that results
cannot be attributed to those individual particle characters, and
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BOX 3 | Depth is required to represent non-linearly separable functions.
In simple artificial neural networks (e.g., the Perceptron), the output of each neuron is a function of the sum of its weighted inputs (Minsky and Papert, 1988). The
shape of this function is non-linear but monotonic (e.g., sigmoidal or threshold). For a single neuron, a particular input might influence the output more or less strongly
than other inputs (depending on the magnitude of the weight), it might have a positive or negative influence (depending on the sign of its weight), and because of the
non-linearity of the output function, the slope of this influence can be affected by its magnitude and the magnitude of other inputs. But the influence of a particular
input on the output cannot change sign. Whether it increases or decreases the output is not sensitive to other inputs [by analogy, see the difference between
magnitude epistasis and sign epistasis (Weinreich et al., 2005)]. This means that when directional changes in the input “show-through” to directional changes on the
output they do so in a consistent manner, i.e., there cannot be two contexts where a given change on the input has the opposite effect on the output. This property
makes it easy to incrementally adjust the weights toward a desired output function because the correct direction to change a weight does not depend on the state of
other inputs. However, this means that a single neuron of this type, or a network with a single layer of such neurons, cannot compute non-linearly separable
functions of the inputs, where the influence of one of the inputs must be reversed depending on the value of the other input (Box 1). To represent a non-linearly
separable function an intermediate level of representation (or “hidden layer”) between inputs and outputs can be employed. A multi-layer Perceptron can compute A
XOR B, for example, by computing OR(AND(A, NOT(B)), AND(NOT(A),B)), i.e., (A XOR B) = “A without B or B without A.” The sub-functions used in this construction
(AND, OR, and NOT) are all linearly separable functions (computable with a single Perceptron). One node in the hidden layer, let’s call it h1, can thus compute
h1 = AND(A,NOT(B)) and another node can compute h2 = AND(NOT(A),B), and then an output node can be stacked on top to compute OR(h1,h2). More generally,
to represent a non-linearly separable function, a network must be able to compute higher-order or multiplicative terms – not just a weighted sum of inputs.1

FIGURE B3 | Shallow and deep computations. (A) A Perceptron of two inputs calculates an output that is a non-linear weighted sum of its inputs. (B) The
Perceptron can represent any linearly separable function, such as this example, AND(A,NOT(B)). (C) The multi-layer Perceptron utilises “hidden” nodes to calculate
intermediate functions which are fed forward to the output node. This can calculate any linearly or non-linearly separable function of its inputs. (D) In this example, h1
calculates AND(A,NOT(B)) and h2 calculates AND(NOT(A),B). The output node can calculate OR(h1,h2) such that the network as a whole represents the non-linearly
separable function XOR(A,B). In a non-linearly separable function, moving between different positive regions (variation within the class without visiting regions that are
not in the class) cannot be achieved by linear movements in the input space and instead requires “jumps” or coordinated “collective action” (simultaneous
discontinuous changes in multiple variables).

accordingly, the collective is not explanatorily redundant. This
view thus resolves the tension between the two desiderata of (i)
collectives that are not explanatorily redundant and (ii) collective
properties that are nonetheless determined by particle properties.

We thus identify particle plasticity (enabling coordinated
phenotypes or coordinated reproductive behaviour between
particles) as a concrete type of individuation mechanism. This
is a particularly significant type because it enables access to
components of selection that cannot be otherwise be accessed
precisely when functional interactions between particles have a
non-decomposable relationship. Because the ability to coordinate

with others is a characteristic that can be heritable at the particle
level, and the result of this ability is a coordinated collective
phenotype that would not otherwise be heritable, this facilitates a
response to selection at the collective level that was not previously
present. This particular kind of particle-level trait therefore
1This could be provided by a non-monotonic output function (where, for
example, over-saturation of inputs depresses outputs) – but this would make
it impossible to represent ordinary linearly separable relationships with the
same network. Alternatively, multiplicative interactions could be implemented by
synaptic connections that mediate the sign of other synaptic connections directly,
e.g., via axoaxonic synapses that join directly with another incoming connection
rather than the dendrites of the downstream neuron.
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connects directly with the particular kind of non-aggregative
component of selection, and the collective level heritability,
required to facilitate a response to selection at the collective level
(Bourrat, 2021b).

How does the necessary plasticity evolve? Given the consistent
direction of selection on plastic traits, Tudge et al. (2016)
showed that natural selection can evolve phenotypic plasticity
that solves division of labour games in two-player collectives
with homogeneous genotypes, by evolving phenotypic sensitivity
to one-another to facilitate complementary differentiation
(Brun-Usan et al., 2020). Plasticity of any kind requires
a timescale on which it can take effect – time to go
from undifferentiated types (genotypes) to differentiated types
(phenotypes), with communication between one particle and
another to determine the coordinated outcome. In a fraternal
transition, this temporally extended process effects a minimal
separation between an “embryonic group” (undifferentiated
components with the same genotype) and the “group phenotype”
(differentiated components with coordinated complementary
functions) – and the process that separates them is a minimal
model for development.2 To Darwinise the collective at the
same time as de-Darwinising the components thus requires the
components to be plastic and a developmental process that
coordinates their behaviour. The Tudge model, involves just two
particles and the one connection between them. It also assumes
genetic relatedness which presupposes the higher-level unit of
selection and its heritability. The evolution of relationships
that solve the HFHF problem in more general networks of
interactions (more than two players, thus more general games),
and under bottom-up selection, has not yet been shown.

Note that development is not merely a process that modifies
particle phenotypes and particle fitnesses, but more specifically,
to produce fitness differences that properly belong to the
collective level, it must solve a division of labour game.
These considerations argue that developmental interactions
required for evolutionary individuality must be able to
coordinate solutions to non-decomposable functions of
this type. This complexity exists in the substrate of basal
cognition (implicated in organismic individuality) and at
the timescale of organismic development. It suggests that
organismic individuality (i.e., the plasticity of particles,
and the developmental interactions that coordinate their
differentiation) is intrinsic to Darwinian individuality (i.e.,
creating non-decomposable fitness differences that properly
belong to the collective level). Recent expansions on the
equivalence between evolution and learning provide a new
theoretical framework to make sense of and unify these
observations. In particular, these develop connectionist models
of cognition and learning that focus on interactions (or
second-order characters) in systems of many components and
many interactions.
2In an individual resulting from an egalitarian transition, the language would
be different. For example, this temporally extended process of interaction might
be called collective or group reproduction, rather than development. That
is, an embryonic group containing intrinsically different components (with
different functions and different genotypes) is coordinated by these processes
to produce undifferentiated component-reproduction (coordinated and identical
reproductive opportunity).

Connectionist Models of Cognition and
Learning
Connectionism explores the idea that the intelligence of a
system lies not in the intelligence of its parts but in the
organisation of the connections between them. Each neuron
might be computationally trivial (e.g., a unit that produces
an output if the sum of its inputs is strong enough), but
connected together in the right way, networks of such units
have computational capabilities at the system level that are
qualitatively different. For example, the output of a network
can be a non-linearly separable function of its inputs (Box
3), and built-up in multiple layers (the outputs of one layer
being the input to the next), such networks can represent any
arbitrary function of its inputs. In networks with recurrent
connections (creating activation loops), the system as a whole
can have multiple dynamical attractors that produce particular
activation patterns. The information that produces these patterns
is not held in any one neuron (or any one connection)
but in the organisation of the connections between them.
Patterns stored in this way can be recalled through presentation
of a partial or corrupted stimulus pattern, known as an
“associative memory” (Watson et al., 2014; Power et al.,
2015).

System-Level Organisation Without System-Level
Reinforcement
The organisation necessary for such distributed intelligence can
arise through simple learning mechanisms – without design or
selection. In most learning systems, the learning mechanism
(used to adjust connections) is simply incremental adjustment
that follows local improvements in an objective function. The
objective function can be based on the accuracy of the output
(supervised learning), the fit of the model to data (unsupervised
learning), or the reward from behaviours that are generated
from the model (reinforcement learning).3 Supervised learning
requires an “external teacher” to define a desired output or target
but reinforcement learning only requires a “warmer/colder”
feedback signal and nothing more specific (reinforcement
learning is commonly identified as the analogue of evolution
by natural selection, but for bottom-up evolutionary processes
we are particularly interested in unsupervised learning (Watson
and Szathmary, 2016). Unsupervised learning does not depend
on a reinforcement signal at all. It demonstrates conditions
where the organisations necessary to produce system-level
cognitive capabilities can arise through very simple distributed
mechanisms operating without system-level feedback. A simple
example is the application of Hebbian learning often paraphrased
as “neurons that fire together wire together” (Watson and
Szathmary, 2016). This mechanism changes relationships (under
local information, i.e., using only the state of the two nodes
involved in that connection) in a manner that makes the
connection more compatible with the current state of the nodes it
connects. Despite this simplicity, this type of learning is sufficient
to produce an associative memory capable of
3And may include regularisation terms that apply or modify an inductive
bias, as discussed in section “System-Level Optimisation Without System-Level
Reinforcement.”
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storing and recalling multiple patterns, generalisation, data-
compression and clustering, and optimisation abilities (“System-
Level Optimisation Without System-Level Reinforcement”).

Learning is not the same as simply remembering something.
Learning (apart from rote learning) requires generalisation –
the ability to use past experience to respond appropriately
to novel situations. That is, the ability to model (recognise,
generate or respond to) not just the situations encountered in
past experience but also novel situations that have not been
encountered before. Connectionist models of cognition and
learning exhibit generalisation naturally. When representing the
pattern “11,” for example, the network could represent that the
first neuron value is “1,” and independently, the second neuron
value is “1.” But because networks can represent patterns with
connections, it can also represent an association between the
value of neuron 1 and the value of neuron 2 – in this case,
that the values are the same. This “associative model” represents
not just this particular pattern but the class of patterns where
the values have the same relationship. In this example, it will
also include “00.” In some situations, this might be a mistake –
after all, “00” has no individual values in common with “11.”
But the relationships between values (such as “sameness” or
“differentness”) in a pattern are higher-order features that might
represent useful underlying structures within a broader set, or
“class,” of patterns. If consistent with past experience, learning
such relationships enables generalisation that cannot be provided
by treating individual components of the pattern as though
they were unrelated. This enables neural networks, over an
extraordinarily broad range of domains, to learn generalised
models that capture deep underlying structural regularities from
past experience and exploit this in novel situations.

System-Level Optimisation Without System-Level
Reinforcement
Because of their ability to generalise, neural networks can also
discover novel solutions to optimisation problems. Specifically,
simple fully-distributed mechanisms of unsupervised learning,
using only local information, can produce system-level
optimisation abilities (Watson et al., 2011a,c). The initial
weights of the network define the constraints of a problem
and running the network from random initial states finds state
patterns that correspond to locally optimal solutions to these
constraints (Hopfield and Tank, 1986; Tank and Hopfield,
1987a,b). If the network is repeatedly shocked or perturbed, e.g.,
by occasionally randomising the states, with repeated relaxations
in between, this causes it to visit a distribution of locally optimal
solutions over time. Without learning, however, it cannot learn
from past experience and may never find really good solutions.
In contrast, if Hebbian learning slowly adjusts the weights of
the network whilst it visits this distribution of locally optimal
solutions, the dynamics of the system slowly changes. Specifically,
these systems learn to solve complex combinatorial problems
better with experience (Watson et al., 2009, 2011a,c). This is
because the network learns an associative model of its own
behaviour [known as a self-modelling dynamical system (Watson
et al., 2011c)]. That is, it forms memories of the locally optimal
solutions it visits, causing it to visit these patterns more often

in future. This is because Hebbian changes to connections have
the effect of creating a memory of the current state, making it
more likely that the system dynamics visits this state in future by
increasing its basin of attraction (i.e., the region of configuration
space that is attracted to that state configuration by the state
dynamics). Moreover, because it is an associative model, it is not
simply memorising these past solutions but learning regularities
that generalise. That is, any state configuration that shares that
combination of states (consistent with that connection) is more
likely to be visited. This means it also enlarges the dynamical
attractors for other states it has not visited in the past but have
similarly coordinated states. Over time, as relationships change
slowly, the attractor that is enlarged the most tends to be a higher
quality solution, sometimes even better than all of the locally
optimal attractors visited without such learning (Mills, 2010;
Watson et al., 2011a,b,c; Mills et al., 2014). The ability to improve
performance at a task with experience is perhaps not unexpected
in learning systems. But important for our purposes here, there is
no reinforcement learning signal used in these models – system-
level optimisation is produced without system-level feedback,
using only unsupervised and fully-distributed Hebbian learning
acting on local information, and this repeated perturbation and
relaxation.

Furthermore, the principle of Hebbian learning is entirely
natural; it does not require a mechanism designed or selected for
the purpose of performing such learning. Specifically, Hebbian
changes to connections result from incremental “relaxation” of
connections, i.e., changes that reduce conflicting constraints,
reduce the forces that variables exert on one another, or
equivalently, decrease system energy (Watson et al., 2011a,c).
This means that any network of interactions, where connections
differentially deform under the stress they experience, can exhibit
this type of associative learning and optimisation. The action of
natural selection provides one such case in point when there is
heritable variation in connections – even without system-level
selection. This enables the computational framework of cognition
and learning familiar in connectionist models to be unified with
the evolutionary domain – hence evolutionary connectionism.

Evolutionary Connectionism
Evolutionary connectionism is a new theoretical framework which
formalises the functional equivalence between the evolution of
networks and connectionist models of cognition and learning
(Watson et al., 2016; Watson and Szathmary, 2016). This work
shows that the action of random variation and selection, when
acting on heritable variation in relationships, is equivalent to
simple types of associative learning. Accordingly, these models
can be translated into the domain of evolutionary systems
to explain the evolution of biological networks with system-
level computational abilities (Watson et al., 2010; Kounios
et al., 2016; Kouvaris et al., 2017; Brun-Usan et al., 2020).
This work demonstrates mechanisms of information integration
in biological interaction networks, equivalent to simple (but
powerful) types of neural network cognition.

In some cases, these models characterise the evolution of
developmental organisation (evo-devo) where the interactions
are inside a single evolutionary unit (among the multiple
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components it contains), such as gene-regulatory interactions
(Watson et al., 2010). The kind of information integration
that gene-networks can evolve is the same as that which
neural networks can learn and, for example, is capable of
demonstrating associative memory (one genotype can store and
recall multiple phenotypes, recalled from partial or corrupted
selective conditions) and generalisation (networks can produce
novel adaptive phenotypes that have not been produced or
selected in past generations) (Watson et al., 2010; Kouvaris
et al., 2017). These models demonstrate that the conditions for
effective learning can be transferred into the evolutionary domain
and help explain biological phenomena such as the evolution
of evolvability (Kounios et al., 2016; Watson, 2021). However,
these models assume that selection is applied at the system level
(equivalent to reinforcement learning at the system level).

System-Level Organisation Without System-Level
Selection: Evolving Organised Relationships
Bottom-Up
For the ETIs, driven by bottom-up selection, we cannot assume
a reward function that operates over the system as a whole;
rather it must be analogous to a reward function for each
individual particle (Power et al., 2015). How does reinforcement
learning at the level of individual particles, in interaction with
each other and acting on their relationships, change system-level
behaviours?

Previous work shows that the action of fitness-based
incremental change at the individual level (or individual
reinforcement learning in a network of pairwise games
(Davies et al., 2011; Watson et al., 2011a), when applied to
relationships between agents, is equivalent to unsupervised
associative learning at the system scale. That is, individual-
level reinforcement learning, when given control over the
strength of connections, is equivalent to unsupervised learning
at the system level (Davies et al., 2011; Watson et al.,
2011a; Power et al., 2015). This means that the same
learning principles can be translated into evolutionary scenarios
where the system is not a single evolutionary unit but a
network of relationships among many evolutionary units –
such as an ecological community with a network of fitness
dependencies between species. These models characterise the
evolution of ecological organisation (evo-eco) under individual-
level natural selection (Power et al., 2015; Watson and
Szathmary, 2016). Even though, in this case, selection acts
at the level of the components not at the system level, the
kind of information integration that community networks
can evolve is also the same as that which neural networks
can learn (with unsupervised learning) (Power et al., 2015).
These learning principles do not depend on any centralised
mechanisms, or an external teacher/system-level feedback
(Watson and Szathmary, 2016). This can be used to demonstrate
the evolution of ecological assembly rules that implement
an associative memory that can store and recall multiple
ecological attractors that have been visited in the past and
recall them from partial or corrupted ecological conditions
(Power et al., 2015). This is crucial in demonstrating how

natural selection organises interaction networks bottom-up -
before a transition.

System-Level Adaptation Without System-Level
Selection: Bottom-Up Adaptation
Under suitable conditions, these models also demonstrate
non-trivial problem-solving optimisation at the system
level without system-level selection. As in the analogous
neural systems (“System-Level Optimisation Without System-
Level Reinforcement”), when the initial connections between
individuals constitute a system of random constraints (or
pairwise games), running the network to an attractor (i.e.,
repeatedly allowing all individuals to make their own decisions
about the state that maximises their individual utility) increases
total utility. Intuitively, each unit is incentivised to maximise
their individual utility (by definition) and if each of them acts
to increase their individual utility then the total utility tends to
increase as well (Davies et al., 2011; Watson et al., 2011a,c) (this is
guaranteed if the interactions are symmetric). However, because
of the conflicts and constraints between individual incentives,
the short-sightedness of their actions and the fact that individual
behaviours have no system-level incentive to maximise the
utility of others, the attractors found are only locally optimal
(again, as analogous to the neural systems). Other attractors
may exist with higher total utility but these are only found if
the system happens to start from very specific initial conditions
(Watson et al., 2011a).

When individual reinforcement or selection is allowed to
modify the strength of the relationships between units, the system
becomes a self-modelling dynamical system and its dynamics
change in predictable ways, as per the distributed optimisation
shown in neural models. Specifically, if the state of the system
(species densities) is repeatedly shocked or perturbed, causing
it to reset to different random initial conditions and repeatedly
allowed to relax into different ecological attractor states, the
relationships that evolve enlarge the dynamical attractors for the
distribution of locally-optimal states visited. Because selection
is changing the relationships between species, and associative
learning can generalise, it also enlarges the dynamical attractors
for other states with even higher total utility. The evolution
of interactions in an ecological community can thus produce
adaptive organisation at the network level without presupposing
that the network is an evolutionary unit.

To provide a compelling example of what this can do, Power
sets up the initial competitive ecological interactions between
species to represent the constraints of a resource allocation
problem equivalent to a Sudoku puzzle (Power, 2019). The
profile of species densities represents assignments of numbers
in a Sudoku solution, and the community matrix of fitness
dependencies between them represents the rules of the puzzle
(e.g., two “6”s in the same row, column or box have a strong
competitive interaction). Running the initial Lotka-Volterra
ecological dynamics from random initial species densities
finds one of very many ecological attractors corresponding
to, generally poor, locally optimal solutions (i.e., with many
constraints violated). Power then showed that individual-level
natural selection, acting on traits that affect inter-specific
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interactions, caused the attractors of the ecological dynamics to
change, and showed conditions where this causes the community
to form attractors that correspond to better quality solutions over
evolutionary time (Power, 2019). Under these conditions, the
resultant ecosystems, evolving without any system-level selection,
can in many cases learn to solve Sudoku puzzles that humans find
very difficult to solve.

Some comparisons with ecological scaffolding are notable.
Both this effect and ecological scaffolding utilise the observation
that, when a system is held in a particular state, the action
of natural selection on the components therein is likely to
reinforce that state – making a “memory” of that configuration. In
ecological scaffolding this means that the scaffolding conditions
can be removed and the organisation persists, in ecological
memory (Power, 2019), the system state can be perturbed and it
will, with greater probability, return to this state. In both cases
this results in a system that adopts configurations of higher-
total utility or higher cooperation than it would otherwise. Some
important differences are that in scaffolding the one new state
is (initially) created by exogenous conditions that oppose the
natural attractors of the system, causing it to adopt states that
are conducive to more cooperation, whereas in Power’s model
of ecological adaptation, the system visits many states that are
each natural local attractors, and no exogenous conditions need
be changed. In scaffolding the canalisation of the new state
can be any evolutionary change that maintains that state (e.g.,
changes to population structure that restrain the interactions
in the same way), here we are interested more specifically in
associative relationships that have the capability to represent
underlying structural regularities that generalise over the set of
states visited. This is important because (a) in scaffolding, the
state that is initially imposed by exogenous factors is the state that
is ultimately canalised. Insomuch as the exogenous imposition of
ecological factors is not in itself an adaptive process, whatever
outcome it produces is fortuitous happenstance. Though its
results might have adaptive consequences, it does not require
an adaptive explanation. (b) In contrast, in the effect described
by Power, the ultimate outcome is a novel state that the
system finds by an adaptive process of generalisation. This is a
true optimising effect, explained by selection from below, not
fortuitous happenstance. Nonetheless, in general cases, there is
plenty of scope for exogenous ecological scaffolding, this effect,
and others to interact with one another in complex ways.

Evolutionary connectionism thus translates distributed
learning principles into the domain of natural selection, and
demonstrates how relationships among evolutionary units
can become adaptively organised by selection on the existing,
lower-level units – or more exactly, on the characters of lower-
level units that affect the relationships between them. This
thereby demonstrates conditions where multiple short-sighted,
self-interested entities organise their relationships with one
another causing them to act in a manner that is consistent with
long-term collective interest – increasing total welfare (the sum
of individual fitnesses). Individuals do not do this because they
are intrinsically motivated by long-term or pro-group interests
(they are short-sighted and self-interested), but under these
conditions, short-term self-interest acting on slow-changing

relationships between individuals (second-order traits) produces
this systematic outcome. The organisation of the whole becomes
conditioned by its past experience, with distributed incremental
changes to its organisation motivated to reduce individual-level
conflict, and because this occurs over a distribution of many
ecological equilibria, each resolving some subset from the
same set of conflicting constraints, it generalises from this
past experience to influence future behaviour in a manner that
resolves more of these conflicts (Watson et al., 2011a,b; Power,
2019).

Thus far, however, these models have not demonstrated
transitions in individuality. In the models of gene regulation
networks, the evolutionary unit was already at the network
level (evo-devo). In the models of ecological dynamics, the
evolutionary unit was at the lower (individual) level (evo-eco)
and although there are observable fitness consequences at the
network level, the ecological community does not become a new
reproductive unit with heritable fitness differences, nor is there
a de-Darwinisation of particles. Neither model demonstrates a
change in the level of individuality, or “evo-ego” (Watson and
Thies, 2019). What is missing?

HYPOTHESIS AND THEORY: TOWARD A
CONNECTIONIST FRAMEWORK OF
INDIVIDUALITY

The framework of evolutionary connectionism provides a basis
on which to develop a different kind of theory for ETIs.
Conventional evolutionary thinking suffers the chicken-and-egg
problem of transitions because it attempts to explain adaptations
through changes to the frequency of units, which presupposes
an evolutionary unit (at the relevant level) is already defined. In
contrast, a connectionist approach explains adaptations through
the changing organisation of the relationships between existing
lower-level units. This provides a way for the whole to become
more than the sum of the parts, in a formal sense, without
presupposing that the whole is already an evolutionary unit. It is a
theory that focusses not on the things (and their frequencies) but
on the relationships between things (and the transformation of
their organisation). Connectionism provided a way for cognitive
science to escape the infinite regress of homoncular thinking
(i.e., the whole is intelligent only because it is composed of
intelligent components), and showed that the whole can have
cognitive abilities of its own (more than the sum of the parts),
even though the individual components are cognitively trivial,
if the relationships between them are organised appropriately.
Here we aim to translate this into the evolutionary domain to
provide a way for evolutionary theory to resolve the chicken-and-
egg problem of individuality, and show that the whole can have
individuality of its own (more than the sum of the parts), even
though the components are self-interested (have no foresight or
pro-social assumption), if the relationships between them are
organised appropriately.

But How Exactly Do Relationships Need to Be Organised to Produce
a New Level of Individuality?
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What kind of interaction structures turn a society into an
individual? (Lyon et al., 2021a,b). Here we develop the hypothesis
that translating further principles of connectionist cognition and
learning into the domain of evolutionary systems describes both
the specific kind of relationships that are needed for an ETI and
the conditions under which they can evolve through bottom-
up selection.

Design for an Individual
Summarising the conditions discussed above, in order for an
evolutionary unit to be meaningful it must explain evolutionary
outcomes that cannot be explained by the summative effects of
the components it contains. Collective characters must therefore
be non-linearly separable functions of (embryonic) particle
characters (“When the Direction of Selection on Components
Is Context Sensitive - Division of Labour Games, Nonlinearly
Separable Functions, Non-decomposable Phenotypes, and
Comparison With Other Non-aggregative Functions”). In order
for particles to effect such collective characters, particles must
be plastic (either phenotypically or reproductively) (“Particle
Plasticity and Collective Development”). Plasticity allows for the
phenotype or the reproduction of a particle to not be determined
by the intrinsic independent properties of the particle but rather
by its interactions with other particles (e.g., their coordination
or complementarity). Before a transition these interactions are
ecological (i.e., between multiple evolutionary units) and after the
transition these same interactions are developmental (i.e., among
the components of a single evolutionary unit) (Watson and Thies,
2019; Fields and Levin, 2020). The dynamical process controlled
by these interactions is what we recognise as the basal cognition
of development - implementing information integration
(computing a non-decomposable function of input states) and
collective action (producing specific coordinated responses in
multiple downstream variables). Ultimately, this collective action
must control the reproduction of the particles involved (such
that their fitness is determined by collective-level properties –
properties that cannot be decomposed into the properties of
the individual particles). This might result in synchronised
reproduction or reproductive specialisation (the egalitarian or
fraternal solutions to the HFHF problem, respectively).

Evolutionary individuality thus requires a developmental
process that constitutes the computation of a non-linearly
separable function (between “embryonic” collections of particles
and “adult” collective phenotypes) (“Particle Plasticity and
Collective Development”). When evolved interaction structures
between units compute a function that is non-linearly separable,
this makes collective fitness, and hence reproduction, non-
decomposable in this formal sense. Natural selection, acting
bottom-up, can modify relationships between units in a manner
that creates adaptive organisation at the system scale. So, perhaps
it might create interactions that compute the non-linearly
separable functions required for a transition in individuality?
However, shallow or single-level interaction structures cannot
compute non-linearly separable functions (Box 3). Previous
models only allowed for the evolution of shallow interaction
structures – a single layer of symmetric, all-to-all relationships
(e.g., a↔b, b↔c, c↔a). In order for a system to compute

non-linearly separable functions, the interaction structure must
have some depth4 (Box 3 and Figure 2).

The significance of deep structure is demonstrated by
further work with neural networks. An adaptive process with
the ability to learn and exploit deep structure has different
adaptive capabilities from an adaptive process that cannot –
this is referred to as deep optimisation (Caldwell et al., 2018,
2021), or multi-scale search (Mills, 2010; Mills et al., 2014). In
neural models this affords new levels of variation (coordinated
action) that can access new levels of reward structure (higher-
order epistatic components of fitness) (Watson et al., 2011b),
i.e., coordinate changes to multiple units simultaneously. This
progressive hierarchical abstraction, with each higher-level of
representation building on the representations of the layer below,
is familiar in machine learning and, we argue this is analogous
to the way in which ETIs enable deep biological evolution (i.e.,
multi-scale evolutionary processes) to implement deep model
induction (Mills, 2010; Mills et al., 2014; Watson and Szathmary,
2016; Czégel et al., 2018, 2019; Vanchurin et al., 2021). In the
machine learning context we have shown that this coordinated
collective action can find high-quality solutions to combinatorial
optimisation problems that cannot be accessed by individual
action (Watson et al., 2011b; Caldwell et al., 2018, 2021).

This suggests that (a) the interaction structures necessary
for evolutionary individuality, (b) the interactions structures
necessary for organismic individuality, and (c) the interaction
structures required to compute non-linearly separable functions
are intimately related. Specifically, when interactions among
evolutionary units form collective phenotypes that are non-
linearly separable functions of their embryonic phenotypes, and
this integrated information then cues behaviours that coordinate
the reproduction of the particles, this constitutes a new level
of evolutionary individuality. In order for such interactions
to compute non-linearly separable functions, the interaction
structure cannot be shallow or reciprocal (as in previous
models) but must have some depth. We thus describe a view
of evolutionary processes where, given appropriate conditions,
interaction structures will evolve (through bottom-up selection)
in a way that “mirrors” structure in the selective environment
(Wagner and Laubichler, 2004; Kounios et al., 2016; Kuchling
et al., 2020) – and that when this structure is deep, this constitutes
a transition in individuality (Figure 2).

This leads to our main hypothesis about the architecture of
individuality:

H1. Individuality requires a dynamical process
(development), mediating the plastic expression of
components in the context of one another, with the
specific form of computing a collective character that is
a non-linearly separable function of (embryonic) particle
characters, with the effect of coordinating reproduction based
on this collective character.

4In modern neural networks, “deep” is often used to mean that there are very
many computational layers, sometimes hundreds. Here we only mean that the
computation cannot be single layer (simply connecting inputs to outputs directly),
but must (minimally) include connections that go from inputs to outputs via
hidden state variables.

Frontiers in Ecology and Evolution | www.frontiersin.org 16 March 2022 | Volume 10 | Article 823588

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-823588 March 22, 2022 Time: 15:3 # 17

Watson et al. Design for an Individual

FIGURE 2 | Overview of conventional models of evolution (A), previous work in evolutionary connectionism (B) and Hypothesis 1 (C). (A) A conventional view of
evolution models individual evolutionary units in a population. The complexity of the environment is not “visible” to evolution – selection on an individual (orange circle)
responds only to corresponding additive effects of selection in the environment (orange square) (large arrows). At the population level, this is formally equivalent to
simple (model-free) forms of learning and inference (Frank, 2009; Harper, 2009; Shalizi, 2009). (B) When individual traits affect behavioural or phenotypic interactions
with other individuals, these relationships can evolve to “mirror” dependencies among environmental variables. When interactions are reciprocal (single-level) the
evolution of the community is formally equivalent to shallow models of connectionist learning (Watson et al., 2014, 2016; Power et al., 2015; Kouvaris et al., 2017).
(C) We hypothesise that when functional interactions between individuals in a community are directional, creating deep interaction structures with “hidden” variables,
evolution is formally equivalent to deep model induction. When evolved functions are non-linearly separable, and their outputs control the coordination of particle
reproduction, the hierarchical structures so created constitute new individuals at a higher level of organisation (e.g., green). The functional interactions between
component individuals constitute a developmental process for this higher-level individual, and enable information integration and collective actions at a new level of
biological organisation. Adaptations under natural selection (acting on deep variables, red circles) now serve the development, survival and reproduction of the new
individual (large arrows), and deep causal variables in development (red circles) mirror deep causal variables in the selective environment (red squares).

Only under these conditions, we hypothesise, can it be
true that multiple individuals have relationships that cause
them to work together for long-term collective benefit
despite causing behaviours that oppose their short-term
individual interest. On the fine timescale we call development,
we might observe this as delayed or prohibited individual
reproduction of some cells within a multicellular organism,
for example. Whereas on the longer timescale relevant to
the reproduction of the collective, we might observe this
as a coordinated or specialised reproductive behaviour
that affords access to higher-order fitness differences by
allowing information integration and collective action. This
can be directed at the control of reproductive plasticity
that coordinates reproduction timing or specialisation. For
example, in individuals created by fraternal transitions,
this information integration and collective action controls
reproductive division of labour (i.e., which particles get to
be germ). In individuals created by egalitarian transitions, it
is directed at the control of reproductive centralisation and
synchronisation (i.e., the timing of particle reproduction). In
either case, we can see that any susceptibility to control over
particle reproduction runs counter to the fitness interests of
the particle – but can confer synergistic benefits to the particle

via the collective character of reproductive complementarity
or coordination. Whilst reproductive control of this kind can
oppose the short-term fitness interests of the individual, we
hypothesise that it cannot necessarily be undone by subsequent
selection because of the non-decomposable nature of the
control function.5 Thus, when information integration and
collective action is directed at the control and coordination
of reproductive plasticity this constitutes a new evolutionary
unit. And because individual selection cannot undo this
relationship, selection at the higher level can act in opposition to
individual selection.

If true, how would this hypothesis inform experimental
work or further theoretical development? The main impact of
this hypothesis is that it makes specific predictions about the
conditions for ETIs to occur that are testable either in further
modelling or empirical experimentation.

5This has a natural analogue in machine learning terms. When we train a neural
network to represent a given function it is advisable to start from a network that is
close to neutral – e.g., with small symmetric weights. If, in contrast, we train a deep
network to represent a non-linearly separable function, then try to retrain from
there to a new function, the learning process can become irretrievably stuck, unable
to learn the second function even though the network architecture is capable of
representing it.
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Under What Conditions Can These
Interaction Structures Evolve?
This hypothesis (H1) makes specific predictions about the
conditions required for an ETI to occur and what would be
required to build a working mechanistic model of a transition
in individuality. Rather than a framework that depends on
new genetic or selective structures that arise fully-formed, it
suggests an approach where the ETIs can be smoothly integrated
with more ordinary coevolutionary and social dynamics, and
explains why ordinary evolutionary change, driven by selection
from below, can result in transitions that later become
qualitatively distinct.

H1 predicts that the difference between “ordinary
coevolution” and ETIs depends on the particular nature
of these relationships. If they have the effect of enacting a
decomposable (linearly separable) function, particle character
will be predictive of particle fitness, and this will not involve
collective action, and will not constitute an ETI. However, if
such a relationship becomes more non-linear over evolutionary
time, it may become a non-linearly separable function. When
this occurs collective character, and not particle character, will be
predictive of particle fitness and an ETI has occurred.

Moreover, the difference between the kind of relationships
that can constitute non-linearly separable functions and those
that cannot is specific but not complicated – it just requires
some depth. They cannot be represented by anything equivalent
to a single layer Perceptron. Such networks do not need to
be organised in neat layers as they often are in artificial
neural networks such as the multilayer Perceptron – they could
be messy. But they cannot be entirely shallow or have only
symmetric interactions (Box 3).

So, how does this structure evolve? Under what conditions do
deep interaction structures, computing non-linearly separable
functions, evolve without presupposing the higher-level
evolutionary unit we want to explain? Existing work shows
several of the necessary elements (but not all in one model).

• When evolution acts on heritable variation in characters
affecting the interactions between units, the effect is
equivalent to connectionist models of learning (“System-
Level Adaptation Without System-Level Selection:
Bottom-Up Adaptation”). But, as yet, these are shallow
models not deep.
• When heritable variation permits the evolution of

asymmetric interaction structures, conditions exist where
deep interaction structures can evolve (Nash et al.,
2021). The hierarchical modularity that results mirrors
the modularity of the selective environment and can
consequently increase evolvability in rugged fitness
landscapes. This occurs under short-term selection only,
without selection for such long-term evolutionary benefits
conferred by these structures. But, as yet, these models
assume system-level selection.
• When individuals are given the ability to evolve symbiotic

partnerships that create new reproductive units, we find
that there are conditions where this permits the evolution of
specific higher-level units. These units mirror the structure

of the evolutionary game they are playing, and enable
the discovery of high-fitness collectives that cannot be
found under single-level selection (Watson et al., 2011d).
These specific partnerships evolve under short-term and
individual-level selection, without selection for these long-
term collective benefits. But, as yet, these models assume
the possibility of discrete symbiotic relationships (enacting
new reproductive units) rather than collective phenotypes
that develop through the signalling and plastic responses of
the component particles.
• Unsupervised learning principles, acting in a decentralised

manner, without system-level reward feedback or selection,
demonstrate the capability to induce interaction structures
that facilitate collective action and higher-level adaptation
that cannot be achieved with individual action (Watson
et al., 2011b). Notably this requires learned interactions
to be used in a feed-forward (deep) manner rather than a
symmetric recurrent manner. But, as yet, these are neural
learning models not evolutionary models.

Thus, several components relevant to H1 have been
demonstrated but not the whole picture in one model; we have
evolutionary connectionism (in shallow models), the evolution
of deep interaction structures (under system-level selection),
the evolution of new selective units effective in scaling-up
selection (without a developmental model), and deep models that
provide collective action (in neural models). From the different
components we already have, and building on H1, we hypothesise
that these relationships between evolutionary individuality and
deep learning models are not merely a descriptive analogy (Czégel
et al., 2018, 2019) but a functional equivalence that also predicts
the conditions under which bottom-up natural selection can
cause these structures to evolve. Hence,

H2: The conditions necessary for the induction of deep
models, familiar in connectionist models of learning and
cognition, are predictive of the conditions necessary for an
ETI to occur.

What are these conditions?
In addition to a basic learning mechanism,6 any

learning system requires: A suitable model space (capable
of representing the structure in the problem domain);
A representative set of samples to learn from; And a
suitable inductive bias (e.g., a parsimony pressure or
other regularisation term). We address why each of these
is needed in learning systems and how each of these
corresponds to conditions for the evolution of transitions
in individuality.

(1) A Model Space Capable of Representing the Structure in
the Domain

6The equivalence between learning and evolution shows that random variation and
selection can provide a suitable learning mechanism (to adjust model parameters).
This includes connectionist models of cognition and learning, and also deep
models (Such et al., 2017; Brun-Usan et al., 2020; Nash et al., 2021) Back-
propagation, the standard learning algorithm for the induction of deep models, is
not required and a simple variation and selection process is sufficient (albeit less
efficient) (Such et al., 2017).
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If we want to learn correlations between system variables, for
example, we must use a model space capable of representing
correlations. In neural models, this just means that learning
occurs by modifying weighted connections; We cannot learn
anything interesting by altering the outputs (or the input-
output function) of individual neurons as if they were a bag
of independent computational units. Associative learning occurs
by altering the organisation of connections in a network,
not by altering the independent features of individual neural
units. In learning systems this is an obvious point – but
this lies in contrast to common evolutionary models, treating
particles as though they are inert, and higher-selective “units”
as though they are merely containers. Individuals must be
modelled as non-trivial computational systems. This makes an
intimate bond between organismic individuality, evolutionary
individuality and cognition.

In evolutionary terms, this means that there must be heritable
variation in the relationships between units – not just the
independent (i.e., non-context-sensitive) features of individual
particles. This means that particles must be plastic, sensitive to
one-another’s phenotypes, and selection must act on the details
of these signal-response connections (in whatever substrate they
are implemented). Then if we want to represent non-linearly
separable functions, we must use a model space that can represent
these higher-order functions (e.g., a structure with some depth).
In evolutionary terms, this means that a shallow network
architecture with symmetric interactions (Watson et al., 2014;
Power et al., 2015) (e.g., a↔b, b↔c, and c↔a) is insufficient.
There must be some depth to how particles interact – with some
units differentiating before others (e.g., a→b, b→c, and a→c),
which then have the opportunity to coordinate the behaviour of
multiple downstream units (a.k.a. development) (Figure 2C).

(2) A Representative Experience (Samples or Training Data)
It is not possible to fit the parameters of a correlation model,

let alone a deep model, from a single data sample. If we simply
present a single training example and allow a Hebbian learning
mechanism to alter connections, the model just learns that one
pattern and canalises all the relationships between all the variables
(Watson et al., 2011a,c, 2014; Power et al., 2015). To learn
structural relationships, i.e., that some variables are correlated
and some are not, requires a training set – a distribution of
training samples.

In evolutionary terms, if the interactions between units
are modified by natural selection after it reaches a particular
attractor state, this is analogous to the presentation of a
single training sample. So, if this occurs only once then
relationships fitting to correlations cannot evolve. If, in contrast,
the phenotypic state of units is repeatedly shocked or reset to
random configurations and each time allowed to play-out to a
different attractor (whilst natural selection slowly changes the
relationships between them), this is analogous to learning over
a set of representative training samples. This causes the future
system dynamics (modified by these learned relationships) to
change in a particular way. Specifically, the evolved relationships
enlarge the basin of attraction for configurations that have
been visited in the past (meaning that individual selection takes
the system to this configuration more often in future, from

arbitrary starting conditions), and crucially, also enlarges the
basin of attraction for other novel configurations with especially
high total utility. In the limit, as positive feedback between the
states that are visited and the states that are learned builds
up, the system tends to converge on only one attractor and
this tends to have much higher utility than average (“System-
Level Adaptation Without System-Level Selection: Bottom-
Up Adaptation”) (Kounios et al., 2016; Power, 2019). This
is possible because the distributed associative model that is
learned is not just a memory of past visited states, but a
generalised model.

(3) A Suitable Inductive Bias
Generalisation is intrinsic to learning (“System-Level

Organisation Without System-Level Reinforcement”). Of all
the models that could represent the training data equally well,
some will generalise differently from others, i.e., they respond
differently to novel inputs. Indeed, the training set says nothing
about how to respond to novel points. So, over the set of all
conceivable models, it cannot be said that there are more
models that categorise a novel input one way than there are that
categorise it another – even if we limit this to models that agree
equally well with the training set. Accordingly, the conceptual
notion of “all possible models that agree with the training data”
does not, in fact, afford any generalisation. Generalisation thus
requires an inductive bias. Inductive bias describes the difference
between all models that agree with the training data and the
actual model delivered by the learning algorithm. Although in
many contexts bias seems like something that should be avoided
(Uller et al., 2018), in learning systems it is not – the aim is not
to get rid of inductive bias, but to use an appropriate bias, that
generalises well.

Accepting the idea that inductive bias is necessary for learning,
the notion of a suitable inductive bias that generalises well may
still seem like a cheat - a place to hide privileged knowledge that
makes the system “know the right answer” despite the lack of
information in the training set. It may seem like all the interesting
work of a learning system is being done by this somewhat
magical assumption. This is not the case. Even if we assume an
appropriate inductive bias, the learning mechanism still needs
to fit the model (given this bias) to the training data, and the
generalisations obtained are a product of this past experience
as well as the inductive bias. In fact, the form of the inductive
bias can be very weak and general. For example, a bias that
prefers simple models over complex models, as per Occam’s
razor, a.k.a. a parsimony pressure, is an extremely simple and
effective inductive bias in almost all practical learning domains.
In modelling terms, this can be as simple as preferring models
with less connections to models that do the same thing with
more connections. In biological terms, there are many reasons
that simple models may evolve more readily than complex ones
that do the same job. This may arise by virtue of starting
from mechanisms that constitute empty or null models and
adding complexity incrementally, or through subsidiary selective
pressures for material efficiency, or speed, or robustness to
perturbation or damage. Whatever the reason, our hypothesis
predicts that this is a necessary condition for the biological
networks to learn.
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Here there is an important overlap between the model space
of a learning system and the inductive bias of a learning system.
For example, searching in the space of single-layer networks is a
different inductive bias from searching in the space of multi-layer
or deep networks, even if each space is explored uniformly (with
respect to their own parameters). In evolutionary terms, this
means that different assumptions about the nature of interactions
(whether there is heritable variation that allows for symmetric
or recurrent interactions, or asymmetric, feed-forward or deep
interactions, etc.) will alter whether it is possible or probable
to evolve non-linearly separable functions in response to the
selective conditions experienced. The previous work in evolving
hierarchical gene-regulatory structure shows that we do not need
to assume or force interactions to be deep (Nash et al., 2021), but
it also predicts that we must allow for this possibility and suggests
that a strong parsimony pressure may be important in evolving
such models (Clune et al., 2013; Mengistu et al., 2016; Kouvaris
et al., 2017).

Learning and Evolving Deep Structures
So, what are the particular necessary and sufficient conditions
for the induction of deep models in learning systems? Actually,
machine learning systems usually have their topological depth
prescribed by a priori design decisions before learning begins –
systems might use a single-layer network or a multi-layer
network, but whichever is used is decided at the outset and
does not change during learning time [otherwise we are in the
advanced machine learning topic of topology search (Stanley and
Miikkulainen, 2002)]. However, some simple observations are
useful. Shallow architectures cannot represent deep (non-linearly
separable) functions but deep architectures can represent shallow
(linearly separable) functions, so deep architectures are more
general. And since a deep architecture can represent linearly
separable functions as well as non-linearly separable functions,
the depth of the function they compute can be variable even if the
topological depth of the network architecture is fixed. Moreover,
this is the usual progression in learning systems – by initialising
a network to weights with small uniformly random values it does
not, at the outset, represent a non-linearly separable function. But
over learning time, it is not difficult to alter weights incrementally
such that they eventually come to represent a non-linearly
separable function (Brun-Usan et al., 2020). Given the possibility
of moving in a suitably general model space, incremental learning
algorithms are sufficient to learn such functions.

It is notable that there are learning algorithms for the single-
layer Perceptron that are guaranteed to converge on any target
(linearly separable) function, but for learning models capable of
representing non-linearly separable functions there are no such
guarantees. Back-propagation, the standard learning algorithm
for deep networks, often works well in practice but does not have
such guarantees. The reason is interesting. It is because the effect
on the output caused by changing an input (or a weight from an
input), can change sign depending on the context of other inputs.
Put differently, the way that changing inputs “shows through” to
the outputs is not consistent depending on the context of other
inputs. In other words, the same property that makes them an
interesting class of functions (for machine learning and ETIs) also

makes them difficult to learn. A different way to understand this
problem is that the representation learned in the hidden nodes
is under-determined by the input-output relationship.7 The
learning process must break symmetry (arbitrarily) to identify
a self-consistent internal representation. This is not particularly
difficult (at least in functions over a small number of inputs), but
the under-determination issues indicate the disconnect between
selection on the outputs (collective phenotypes) and selection
on the relationships between the parts therein (i.e., on the
signals that turn societies into individuals). Our hypothesis H2
makes the prediction that evolving interactions that represent
non-linearly separable functions, as required for ETIs, will be
similarly sensitive to issues of non-guaranteed convergence and
symmetry breaking. Indeed, we suggest that this is exactly why
the conditions for evolving ETIs have been elusive thus far and
difficult or impossible to characterise in conventional (additive)
models of selection or social games. Nonetheless, we predict that
deep interaction structures necessary for ETIs can evolve given
the conditions identified above (and briefly summarised below).

LIMITATIONS AND CONCLUSION

The topic of the evolutionary transitions in individuality has
many facets, and at present, accommodates many different
opinions about what is important and how they might occur.
This manuscript has been a limited discussion, positioning a
particular research approach and point of view within the issues
of the ETIs. This is just one attempt to try to make sense of
many complex issues. Some of the limitations of our approach
include the following.

– The existing models of evolutionary connectionism make
a strong connection between correlation learning and
evolution of relational traits, and the analysis developed
here shows that such traits are critical to accessing heritable
fitness differences at the collective level. The need to allow
for the evolution of asymmetric interactions in order (for
proto-developmental dynamics) to calculate non-linearly
separable functions is also well-known. However, we have
not yet put these features together in a unified model.

– As yet, we have not provided a mathematical analysis
that explicitly links together non-decomposable collective
characters, the response to selection at the collective
level, and selection on the parameters of plasticity as an
individuating mechanism that increases the heritability of
these collective characters. We imagine that the direction
of selection on the parameters of plasticity may be
equivalent to gradients in the objective function of a
correlation learning system applied to a non-linearly
separable function.

7Even in the trivial example of learning A XOR B, the internal representation
could be h1 = AND(A,NOT(B)) and h2 = AND(NOT(A),B), as described in
Box 3, or it could be the other way around, i.e., h1 = AND(NOT(A),B) and
h2 = AND(A,NOT(B)). Either works just as well, and other decompositions are
also suitable, neither construction is more right than the other, thus symmetry
breaking is required to arrive at an internally consistent representation of the
function.
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– Other individuating mechanisms, such as mutual policing
strategies, and population structuring traits, such as
dispersal radii or the severity of a population bottleneck,
have not been integrated into this framework. Some of
our reasoning suggests that particle plasticity is the only
way to remove fitness differences at the particle level whilst
creating fitness differences at the collective level, but these
other mechanisms and issues are clearly fundamental to
many ETIs and the interaction of plasticity with these issues
is currently unclear.

– Since the evolution of adaptive organisation via
connectionist principles does not require that the system
is already a unit of selection, there are also potentially
interesting things to say about cognition, learning
and individuality in systems that are not evolutionary
units such as ecological communities, social systems
and the biosphere.

– The relationship between non-decomposable collective
characters enacted through the phenotypic plasticity of
particles, and non-decomposable collective reproduction
enacted through the reproductive plasticity of particles,
remains unclear. If the phenotypes we are interested in have
fitness consequences, the difference between regulating
phenotypes and regulating reproduction may be one of
degree not kind.

– At present, our approach subsumes both egalitarian and
fraternal transitions under the more general concept
of reproductive regulation (namely, reproductive
synchronisation and reproductive specialisation,
respectively). It is notable that there are two categorically
different types of non-linearly separable functions (XOR
and IFF) which correspond to favouring differentiation
and favouring sameness. This might be connected but is
not yet developed.

– Here we have mostly developed notions of information
integration, and the types of interactions required
to calculate non-decomposable functions, but we
have not talked much about the other key feature of
organismic individuality, namely collective action (except
that the consequence of collective phenotypes must
ultimately be applied to collective reproduction). Our
computational models of deep optimisation suggest
that the ability to rescale movements in phenotype
space through collective action is critical to rescaling
evolutionary optimisation.

– The conceptual framework presented here depends on
a separation of timescales between fast variables (game
strategies, selection on first-order phenotypes) and
slow variables (game pay-offs, selection on second-
order plasticity parameters). These correspond to
the relatively fast dynamics of cognition (neural
activations) and the relatively slow dynamics of
learning (changes to synaptic strengths). In some
biological contexts, this separation of timescales

may not be clear and the consequences of this needs
investigating.

Nonetheless, we have laid out a specific set of hypotheses
and predictions which we hope will prove illuminating despite
these limitations. We have argued that the interaction structures
necessary for organismic individuality are intimately related
to those required for evolutionary individuality and non-
decomposable cognitive functions. Specifically, when organismic
processes of basal cognition compute a collective phenotype that
is a non-linearly separable function of the embryonic particle
states, and this “basal decision” is applied to the control and
coordination of particle reproduction, this constitutes a new
evolutionary unit. This leads to the hypothesis that the conditions
for deep model induction are predictive of the conditions for
a transition in individuality to evolve. The potential value of
these hypotheses is the specific predictions they make about
the conditions for ETIs to occur. These predictions are specific
enough that they are testable in further modelling or empirical
experimentation. Namely, ETIs require:

• Heritable variation in the relationships between units
(requiring particle plasticity and signalling) that
coordinates particle functions and reproduction.
• The ability to represent asymmetric interactions structures

between units necessary for deep structure (that can
represent non-linearly separable functions).
• Selective conditions that are subject to repeated shocks or

perturbations.
• A sufficiently strong parsimony pressure

favouring simple systems.

Notably, these predictions concern features that are quite
different from those commonly addressed in ETI research.
For example, although measuring genetic assortment, the
severity of a population bottleneck or reproductive division
of labour might all be relevant to ETIs (Godfrey-Smith,
2009), they are not in themselves sufficient nor do they
identify predictions about the conditions under which
they will evolve. The emphasis of our hypotheses is on
a unification of organismic individuality, evolutionary
individuality and the principles of distributed learning –
leading to a cognitive theory of individuality. This connectionist
framework focusses not on changes to the frequency of
units (Darwinian fitness), at one scale or another, but
on the organisation of relationships between units and
the conditions under which this organisation constitutes
something more than the sum of the parts in a formal sense.
This cognitive framework of individuality, we believe, will
provide directions for future theoretical development and
experimentation that begin to overcome the inadequacies of
previous theoretical approaches.
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