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Billions of birds undertake long-distance migration and the complexity of schedules
has only recently become clear. Such movements occur as a response to seasonality
but the ultimate drivers of these changing distributions remain difficult to study
directly. Modeling seasonal distributions based fundamentally on climate and vegetation
without parameterizing with empirical data, we focus on the potential role of ambient
temperature and available resources in shaping the migratory program. We simulate the
complete annual cycle over the Afro-Palearctic region in a round-trip migration model
allowing full variation in the extent and timing of movement, and multiple stopovers. The
resultant simulated tracks and associated environmental metrics are interrogated: we
evaluate the thermal and resource consequences of staying in Europe versus crossing
the Sahara, and secondly identify the movement patterns optimizing exposure to green
vegetation and local surpluses. There is a distinct thermal gain from crossing the Sahara
and the pattern emerging of optimal seasonal vegetation resembles contemporary
migration routes regarding Sahara crossing, loop structure and itinerancy. Thus, our
first-principle simulations suggest that variations in migration patterns among species
are caused by a complex trade-off between risks and rewards of staying versus
moving, including innate physiological constraints and the resultant gain of the high-risk
Sahara crossing.

Keywords: simulations, Afro-Palearctic, NDVI, movement ecology, ambient temperature

INTRODUCTION

Migration enables birds to utilize habitats separated by thousands of kilometers (Alerstam et al.,
2003; Somveille et al., 2015). Often migrants overfly otherwise ecologically inhospitable regions
such as oceans, deserts and mountain ranges (Alerstam and Hedenström, 1998; Backman et al.,
2017). Recent tracking studies have revealed a diversity and complexity of movements among
species (Jonzén et al., 2011; McKinnon et al., 2013; Kays et al., 2015). While some populations
use single breeding and non-breeding sites (Kristensen et al., 2013), others use multiple, discrete
sites across the non-breeding period (Heckscher et al., 2011; Stach et al., 2012; Arlt et al., 2015;
Hewson et al., 2016; Jacobsen et al., 2017), and loop migrations are common (Klaassen et al., 2010;
McKinnon et al., 2013; Willemoes et al., 2014).
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Understanding the drivers of migration has attracted
substantial interest from theoretical and quantitative biology
(Berthold, 1996; Alerstam and Hedenström, 1998; Shaw, 2016).
Requirements during breeding are generally specific and differ to
those of other key life history events, necessitating a potentially
abrupt switch in desirable geographical regions (Alerstam et al.,
2003). Furthermore, migration enables individuals to exploit the
seasonal variation in the environment (Newton, 2010) but it is
not clear how this is optimally solved given environmental and
physiological constraints. There is direct evidence that seabirds
take advantage of multiple areas in the non-breeding period
to exploit Net Primary Productivity (Block et al., 2011) and
raptors and geese track resource abundance (e.g., Trierweiler
et al. (2013), Shariatinajafabadi et al. (2014)) but this is less clear
in small insectivorous songbirds (Heckscher et al., 2011; Tøttrup
et al., 2012b; Kristensen et al., 2013; Lemke et al., 2013; Renfrew
et al., 2013; Willemoes et al., 2014; Bridge et al., 2016; Gersten
and Hahn, 2016; Thorup et al., 2017).

Balancing potential gains in resources, migration incurs
specific costs (Alerstam and Lindström, 1990; Ramenofsky
and Wingfield, 2007). However, staying in the same area
may also be constrained by seasonal physiologically-limiting
conditions such as ambient temperature (Scanes, 2015). Even
small songbirds can persist in extreme low temperatures under
responsive endothermy, for example through supplementary
thermogenesis (Irving and Krog, 1954; Calder, 1974; Eppley,
2008) which entails increased maintenance costs (Swanson,
2010); furthermore, adaptive traits enhance the ability to cope
with low temperatures but the constraints of these is poorly
known (Swanson and Vézina, 2015; Blix, 2016). Physiological
adaptations to the thermal environment have been identified
across the taxa (Swanson and Vézina, 2015), for example,
birds that experience lower winter temperatures also have more
insulation in the form of body feather mass (Osváth et al.,
2018). Temperature itself has been proposed to be involved
in driving the distributions of avian and mammalian species
(Khaliq et al., 2014). We propose that obligate Afro-Palearctic
migration could evolve at least partially as an adaptation to avoid
the risk of low ambient temperatures while optimizing resource
abundance.

Long-distance intra- and inter-continental flights invariably
involve negotiating ecological barriers (Alerstam and Lindström,
1990). In addition to carrying an anticipated physiological cost
of obligate endurance flight, ecological barriers are presumably
limiting for some individuals, particularly in combination with
adverse and unpredictable weather (Gill and Hays, 2015; Loonstra
et al., 2019). Crossing deserts, seas and long-distance flights
have been shown to account for the greatest mortality in
migrating birds (Sillett and Holmes, 2002; Strandberg et al.,
2010; Blackburn and Cresswell, 2016; Paxton et al., 2017;
Senner et al., 2019; Snell and Thorup, 2019). However, tracking
studies have revealed a remarkable capacity for even small
songbirds to undertake extensive non-stop endurance flights
(DeLuca et al., 2015; Snell et al., 2018). Overall, the risks and
physiological costs of long-distance migration must be offset by
the resultant conditions, and potentially those tracks that do
not stop in the desert are rewarded with improved seasonal

resource availability associated with vegetation conditions in sub-
Saharan Africa.

While physiological constraints are easily quantified,
quantifying resource availability is more challenging. NDVI
(Normalized Difference Vegetation Index), a measure of
vegetation greenness, has been used extensively as a proxy
for food availability over ephemeral or stochastic variation
in temperature or precipitation, for both herbivorous and
insectivorous avian species (Pettorelli et al., 2011). Thorup
et al. (2017) demonstrated that migration schedules were
overall related to seasonal accumulation of vegetation greenness
(NDVI) and to spatially local peaks (Surplus NDVI) in three
species of long-distance insectivorous avian migrants. Primary
productivity, a measure of net energy gain through, principally,
the photosynthesis of green plants, has garnered much interest
in biogeography studies, however to date, these typically have
used a proxy (e.g., chlorophyll a or EVI: Block et al. (2011); La
Sorte et al. (2014), Bridge et al. (2016)). These three metrics
are distinct in their magnitudes both between resources and
their seasonal variation. The temporal resolution of these, and
global meteorological products, enables examination of the
seasonal variation of ecological and climatic parameters in which
predictable changes throughout the annual cycle are thought to
underlie the seasonal movements of species (Kemp et al., 2012;
Lisovski et al., 2017).

Migration routes result from a variety of factors acting in
concert through the annual cycle across a seasonally changing
landscape. Migrants need to balance the energetic demands
of a number of life-history stages such as breeding, molting
and migration while at the same time escaping predation
and parasites. Our aim here is to explore the optimal
strategies with regard to geographical constraints, thermal
environment and resource availability. We investigate the
spatiotemporal characteristics of simple, fundamental simulated
migration tracks across a real-word landscape and explore
the migration characteristics and patterns of environmental
metrics encountered. Such bottom-up approaches in modeling
emerging patterns (Connolly et al., 2017) holds great promise for
identifying the underlying drivers of the evolution of complex
migration routes. Because of the trade-offs birds have to balance
and our simplified description of birds’ environments, we do not
expect birds to strictly follow the identified individual routes but
instead we focus on overall qualitative agreement of strategies.
Fundamental simulations have been employed to investigate
potential drivers between single breeding and wintering sites
(e.g., Somveille et al., 2018; Somveille et al., 2019) but here
we aim to simulate the full annual cycle (Bridge et al., 2016;
Stutchbury et al., 2016; Thorup et al., 2017; Shaw, 2020) and
account for the complex spatio-temporal strategies that have been
revealed recently including multiple wintering sites and variation
in timings of flights.

We investigate the potential factors underlying the conserved
patterns in populations’ seasonally changing distribution in the
Afro-Palearctic region in silico. We modeled the spatiotemporal
regimes of a complete annual cycle of small migratory land-
birds, with realistic constraints based on empirical patterns
Thorup et al. (2017). We simulated individual bird tracks
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across the Palearctic region and Africa, incorporating the
complexity of multiple non-breeding sites in a round-trip model
generating individuals’ locations from breeding, throughout
wintering and back.

For the randomly generated simulated tracks, we first
focus on evaluating the thermal (minimum temperature
encountered) and resource (vegetation) consequences for bird
tracks staying in Europe versus those crossing the Sahara. We
then investigate in detail the locations in space and time that
allow migrants to optimize resources across the annual cycle
(based on the amount of green vegetation as well as surplus
in green vegetation experienced over the year), by mapping
the spatiotemporal characteristics of the tracks with the highest
resources encountered. Furthermore, from exploring simulations
testable hypotheses concerning the drivers of migration patterns
can be generated.

MATERIALS AND METHODS

Round-Trip Migration Simulations
Individual tracks were simulated as obligate round-trip
migrations starting in the breeding area and ranging from
Europe to the south of Africa. We restricted the extremely
high number of possible annual spatiotemporal schedules to
within realistic constraints of space and strategies. Thus, during
migration from the breeding area only southward steps were
allowed and during return migration only northward steps.
Within each simulation of an annual cycle, a southern-most
latitude was pre-defined and the out- and return-migrations
were accomplished with a random number of migratory steps
(two to eight) occurring at a random time intervals.

We generated the simulated tracks in R (R Core Team, 2017)
restricting movement specifically within the Afro-Palearctic
region (35◦S to 55◦N, 17◦W to 57◦E) and incorporating
a stationary breeding season defined arbitrarily as eastern
Denmark (55◦N, 13◦E) for the two months of June and July.
The annual cycle was divided into 24 biweekly periods and
the geographic area was gridded into cells of 2◦ latitude and
longitude. Southern extents were distributed at 10◦ latitude
intervals, resulting in the maximum number of latitudes crossed
from 20◦ to 180◦ (summing both south and northbound
movements). Individuals have free longitudinal scope and cells
that are exclusively water, sand or ice filled are excluded.
The number of steps (and therefore resultant non-breeding
stopover sites) was pre-specified for each individual bird and
ranged from a minimum of two up to 20 with unrestricted
temporal movements during the non-breeding period; the model
was run with sufficient iterations to represent the infinite
possibilities of spatial and temporal movements available, while
remaining within the boundaries of observed patterns for
migratory passerines (constrained breeding dates, southwards
followed but northwards route, duration of stopovers). We
ran the model 100 times for each possible southern extent
and all possible numbers of steps, generating periodic and
geographic cell information for 11692 valid random round-trip
migrations. Supplementary Figure 1 illustrates the simulation

procedure and Supplementary Figure 2 illustrates examples of
the simulation output.

Biotic and Abiotic Environmental Data
Remote-sensed environmental data was obtained for the years
2008 to 2015, where all products were available in a consistent
format, and aggregated to determine expected values. Surface
temperature and precipitable water were obtained from NCEP
FNL re-analysis product (National Centers for Environmental
Prediction/National Weather Service/NOAA/U.S. Department of
Commerce, 2000; Kanamitsu et al., 2002). Data are available
at 1◦ spatial resolution and 6 hourly temporal resolution. Data
were aggregated to the same resolution using MATLAB, in
three dimensions, i.e., the values for each 2◦ by 2◦cell and
biweekly temporal period, across all years, for absolute minimum
temperature (◦C) and mean precipitable water (kg m−2).

Normalized difference vegetation index is a spectrographic
measure of chlorophyll and is proportional to canopy leaf
density (Tucker, 1979); various metrics of NDVI have been
demonstrated to be associated with migratory patterns of
insectivores. NDVI was extracted from the MODIS satellite
images with a resolution of 0.05◦ from a 16-day period
(MOD13C1; Justice et al. (1998), MODIS (2016)), and Net
Primary Productivity (NPP; gC m−2 day−1) was extracted
at 0.1◦ for 8-day intervals (MOD17; Running et al. (2015),
MODIS (2017)). Data were aggregated (areas with NDVI values
commensurate with water, sand or ice are excluded to allow
individual birds to use model cells that contain physical or
biological islands) using the “raster” package in R (Hijmans,
2016; R Core Team, 2017). For each cell we calculated absolute
NDVI and NPP as mean value in three dimensions (latitude,
longitude and temporal period). Surplus NDVI is a metric
of the ratio of mean NDVI for each temporal period for
all years relative to the mean annual value for that cell
(Thorup et al., 2017).

In order to minimize the number of possibilities for the model
run, we used 10◦ intervals as the southern extent rather than each
2◦cell of latitude, as such we inspected the latitudinal gradient of
variables of interest to ensure that intermediate steps could be
appropriately represented with the spatial resolution designated.

Evaluating the Sahara Crossing
To test the environmental parameters in relation to overflying
a substantial ecological barrier crossing, we defined the Sahara
Desert and Mediterranean Sea together as simply the latitudes
between 15◦ and 33◦N which correspond closely to less than
the isohyet of 100 mm and an NDVI of consistently less than
0.2 (classed as non-vegetated). The number of generated tracks
with a southern extent south of the Sahara that did not spend
any periods in cells within the Sahara region were 1,220 (10.4%;
excluded tracks include the 25% of all tracks where the southern
extent was defined as within the desert region). The total number
of tracks that did not spend any periods within the Sahara
region (including those with a southern extent in Europe)
was 2,520 (21.6%).

Where there was clear distinction in the overall values
of abiotic variables experienced between tracks staying in
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Europe compared to those with a greater southern extent,
we partitioned tracks according to this metric to investigate
the conditions and consequences experienced temporally. For
minimum temperature (Figures 1A,B) we partitioned tracks
conservatively at −7◦C (a threshold for no quantile overlap
between tracks remaining in Europe compared to those crossing
the Sahara) to investigate properties of tracks that maintained
relatively warmer conditions. A similar pattern was observed
for precipitable water, where tracks with a southern extent in
Africa encountered 20.7% greater mean precipitation than those
remaining at altitudes above 5◦N. Again, there was no overlap in
quartiles between the two regions. Therefore, to control for the
interaction with precipitation (17.8% greater precipitation was
associated with warm tracks), we partitioned tracks at 18 kg m−2.
Over the course of the annual cycle, tracks grouped by mean
precipitation profiles did not return periods without quartile
overlap; there was also substantial overlap in all resource metrics
between the high and low precipitation groups.

Optimizing Seasonal Vegetation
Thorup et al. (2017) reported that tracked long-distance avian
migrants experienced overall NDVI (common cuckoos Cuculus
canorus) and Surplus NDVI (thrush nightingales Luscinia
luscinia and red-backed shrikes Lanius collurio) within the
upper 5% of simulated tracks with a representative Southern
Extent. Mean overall values were 0.610 NDVI in cuckoos and
1.180 Surplus NDVI in red-backed shrike (lower than thrush
nightingale for the same latitudinal range, hence used in this
study). The top 5% performing simulated track data for all
southern extents is equivalent to 0.619 and 1.182, respectively. As
such, we conservatively used the values presented for the tracked
birds which represent 6.3% and 5.4% of all simulated tracks from
our model run.

RESULTS

The minimum temperatures experienced were lowest for tracks
with southern limits in Europe (North of 33◦N), and higher
for those that travelled into Africa (Figures 1A,B). Tracks
remaining in Europe experienced a lower median minimum
temperature of −14.4◦C compared to the −6.2◦C for the tracks
with southern extents in sub-Saharan Africa that did not stop in
the desert (Figure 1B; no overlap of upper- and lower-quartiles,
respectively). A minimum temperature of −7.2◦C separated the
upper quartile of tracks remaining in Europe and the lower
quartile of tracks extending into sub-Saharan Africa (Figure 1B).
Tracks that maintained temperatures above −7◦C experienced
the highest minimum temperatures from December to end-
March (Figure 1C) and improved vegetation conditions for the
same period (Supplementary Figure 3).

Tracks with a southern extent south of 40◦N experienced very
low minimum NDVI (Figure 2A). For tracks crossing the desert
non-stop, minimum NDVI increased (Figure 2B). The highest
NDVI was experienced during breeding (Figure 2C). As the
season progressed there was overlap in resources experienced for
all tracks that did not stop within the desert region, regardless

of whether they continued into the African subcontinent or
remained in Europe (Figure 2C), although for half the non-
breeding periods median values were greater than those of tracks
remaining north of 35◦N.

Simulated tracks with high overall NDVI were concentrated
in the tropical rainforest of Central Africa (most time spent;
Figures 3Ai,ii). Only a small proportion of tracks had a southern
extent within the Sahara or Sahel zones (1.5%) or remained north
of the desert (11.3%; Figure 3Aii). Tracks with high Surplus
NDVI were more widely distributed, with main utilization
areas across the Mediterranean and the northernmost region
of South Africa (tropical shrub-land to moist deciduous forest;
Figures 3Bi,ii) and had a tendency to extend further south
than tracks with high NDVI. For each southern extent, there
was little overlap in resource metrics encountered between
high performance NDVI tracks and high performance Surplus
NDVI (Supplementary Figures 4, 5). The greatest differences
occurred for tracks reaching the Sahara and Sahel region
(Supplementary Figure 4).

Tracks with overall high NDVI had a tendency to depart
the breeding grounds later and be more synchronized (early
November; Figure 3Aiii) and arrive earlier (end April),
compared to high Surplus NDVI tracks (early September
and mid-May; Figure 3Biii). Tracks with high Surplus NDVI
(Figure 3Biii) had a larger temporal and spatial longitudinal
spread compared to a narrower, more directed range of cells used
by tracks with high NDVI (Figure 3Aiii).

A greater number of stationary sites (Supplementary
Figure 5C) were used by individual tracks with high Surplus
NDVI compared to tracks with high NDVI where 42% of tracks
used a single non-breeding site in central Africa, generally used
between November and April (Figure 4A). High Surplus NDVI
tracks with 2-11 stationary periods were equally represented
(Supplementary Figure 5C). Monthly distributions (Figure 4)
indicate high-use fall stopover sites (August/September) in
coastal Western Europe and Eastern Europe for high NDVI
tracks, and a broad area ranging from Continental to Steppic
Europe north of 45◦N in the fall (August/September) and north
of 35◦N in spring (April/May) for high Surplus NDVI tracks.
Overall, tracks with high NDVI were more westerly distributed
than those with high Surplus NDVI (which also moved further in
winter). In particular, tracks were highly concentrated in western
sub-Saharan Africa in fall and spring, compared to the broad
space use of high surplus NDVI tracks. High NDVI tracks showed
earlier northbound migration than high Surplus NDVI tracks.
During northbound spring migration high surplus NDVI tracks
were concentrated along the east coast of East Africa.

DISCUSSION

Temperature Drives Sub-Saharan
Migration
Our fundamental conceptual simulation framework based on
physiological constraints and resource availability suggests that
the movement patterns of free-flying avian migrants reflect
different responses to trade-offs in these parameters. We
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FIGURE 1 | Absolute minimum temperature (◦C) encountered over the complete round-trip for simulated tracks grouped by the total number of latitudes crossed for
(A) all tracks n = 11692 and (B) only tracks that do not use the Sahara region n = 2520. The dotted line indicates the −7◦C threshold used to partition tracks more
likely to cross the Sahara Region from those in Europe. Latitudes crossed are the accumulated latitudes from the breeding site to the breeding site, i.e., a track
crossing 20 latitudes had a southern extent 10◦ south of the breeding site. (C) Minimum temperature (◦C) for tracks that did not use the Sahara region, for each
temporal period. Tracks are partitioned by minimum temperature experienced: tracks maintaining temperatures above –7◦C (n = 798) in red and those with at least
one period with temperatures below this in blue (n = 1722). Whiskers represent the 95% confidence interval and outliers are shown by dots. Variable widths of
boxplots represent the sample size.

show a distinct temperature advantage from wintering in
sub-Saharan Africa which might be associated with reduced
physiological cost. The thermal advantage of crossing the
ecological barrier from Europe into sub-Saharan Africa coupled
with no obvious cost differential in resources, is evidence
that ambient temperature could be an ultimate driver of
obligate long-distance avian migration. Staying in areas with
cold temperatures in Europe entail costs associated with a
facultative or endogenous acclimatization response (Swanson,
1991; Eppley, 2008; Swanson and Vézina, 2015; Yahav, 2015).
Metabolic or structural evolutionary adaptations are also likely
to have occurred in response to temperature (Swanson and
Vézina, 2015; Yahav, 2015; Blix, 2016; Nord et al., 2021). For
example, a European robin has almost twice the ventral feather
mass compared to a thrush nightingale (0.058 and 0.032 g
cm−2, respectively; Osváth et al., 2018). In this case, the looser
plumage in the long-distance migrant thrush nightingales could

enhance heat loss in the warmer wintering environment that
they experience. Thus, the thermal environment and phenotypic
constraints or associated metabolic costs may drive species-
specific adaptations to stay or leave.

Optimizing Seasonal Vegetation
Resources
Our high-performing simulated tracks replicated much of
the complexity of migration patterns observed in free-flying
avian migrants in nature (Tøttrup et al., 2006), and indicate
distinct differences between tracks optimized for high NDVI or
high Surplus NDVI.

Tracks with high overall NDVI spend around an additional
three months at the breeding site outside the defined two-
month breeding period in June and July and generally used
a single distinct area of Central Africa from September until
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FIGURE 2 | Absolute minimum NDVI encountered over the complete round-trip for simulated tracks grouped by the total number of latitudes crossed for (A) all
tracks n = 11692 and (B) only tracks that do not use the Sahara region n = 2520. Latitudes crossed are the accumulated latitudes from the breeding site to the
breeding site, i.e., a track crossing 20 latitudes had a southern extent 10◦ south of the breeding site. Median mean NDVI for all tracks south of 40◦N was 0.06 lower
than tracks in Europe. (C) NDVI for tracks that did not use the Sahara region, for each temporal period. Sampled cells within Europe generally return decreasing
resource values (NDVI, NPP and Surplus NDVI) with latitude (median values of 0.72, 3.39 gC m−2 day−1 & 1.27 at the breeding site respectively and 0.39, 1.07 gC
m−2 day−1 & 1.06 respectively at 35◦N). Latitudes with highest values NDVI and NPP during migration were located at cells between 15◦S to 5◦N and 15◦S to 1◦N
in central Africa (between 0.60-0.72 and 1.61-2.32 gC m−2 day−1, respectively). Tracks are partitioned by those with a southern extent in sub-Saharan Africa in
orange (n = 1220) and those that remained ≥ 35◦N in grey (n = 1300). The boxplots represent the median value and upper and lower quartiles. Whiskers represent
the 95% confidence interval and outliers are shown by dots.

April. This region of tropical rainforest represents the greatest
ecological diversity within the continent (Jetz and Rahbek, 2002;
Somveille et al., 2018), and simulations revealed an accurate
conserved spatiotemporal wintering site (between October and
February) for tracked migratory species (Gersten and Hahn,
2016; Jacobsen et al., 2017; Thorup et al., 2017). Furthermore, we
find much overlap with a temporally explicit species distribution
model (SDM) for common cuckoos (Williams et al., 2017): in
summary, a conserved wintering region, long breeding residency
and multiple within-year movements. High NDVI was generally
available along a western/central route with wintering in the
rainforest zone in the Congo Basin, similar to migration routes
observed in common swifts, common cuckoos and European
nightjars (Åkesson et al., 2012; Catry et al., 2014; Evens et al.,

2017; Jacobsen et al., 2017). Also, the temporal schedule of
numerous sub-Saharan migratory birds conform to high NDVI
tracks (European nightjars Caprimulgus europaeus, European
rollers Coracias garrulous, common redstarts Phoenicurus
phoenicurus and European honey buzzards Pernis apivorus: Hake
et al. (2003), Åkesson et al. (2012), Kristensen et al. (2013), Catry
et al. (2014), Evens et al. (2017), Jacobsen et al. (2017)).

Tracks with high Surplus NDVI use more widely distributed
areas, with a higher frequency of cell use across continental
Europe, the Sahara and Sahel region and in southern East-
and eastern South Africa, compared to high NDVI tracks. High
Surplus NDVI tracks favor tropical shrubland, dry forest and
moist deciduous forest, and multiple wintering sites were used
in October and November before birds continued further south
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FIGURE 3 | Space use of highest NDVI and Surplus NDVI tracks across the annual cycle. (A) Tracks with high total NDVI of all those generated (n = 740) and (B)
total Surplus NDVI (n = 640). Count of cell use for high performance tracks aggregated every 10◦ of latitude south of the breeding site (i). Breeding sites are
excluded from counts. Histogram (ii) of count of the southern extent of the same high performance tracks (from 45◦N to 25◦S). Latitudinal and longitudinal profiles
(iii) for each temporal period. The boxplots represent the median value and upper and lower quartiles. Whiskers represent the 95% confidence interval and outliers
are shown by dots.

in December. This was equivalent to recorded wintering sites
of insectivorous songbirds, with a comparable over-wintering
duration within this region (Briedis et al., 2016; Thorup et al.,
2017). In particular, these species travel further south than
others tracked from Southern Scandinavia (Jacobsen et al., 2017).
The multiple, consecutive, intra-continental movements and
migratory detours observed primarily in high surplus NDVI
simulated tracks also reflect the complex strategy of birds using
multiple sites outside the breeding grounds (Jonzén et al., 2011;
Stach et al., 2012; Tøttrup et al., 2012b; Thorup et al., 2017).
Tracks of songbirds associated with high surplus vegetation
follow the trends of the modeled tracks utilizing stopover sites
in southern rather than northern continental Europe during
fall migration (Stach et al., 2012; Tøttrup et al., 2012a). This is
likely to have an advantage for migratory fattening in readiness

for crossing over the Mediterranean Sea and the extensive
Sahara Desert, as well as reducing the overall distance of the
ecological barrier. Additionally, both Surplus NDVI optimizing
tracks and tracked birds tend to move south earlier than NDVI
optimized tracks, departing from the breeding site in August
(Thorup et al., 2017). But the majority reach southern regions
considerably later than NDVI specialists. Surplus NDVI was
available along an eastern route with wintering in southern
Africa. This route coincided well with migratory tracks of
thrush nightingales and red-backed shrikes (Thorup et al.,
2017). The stopovers before or after the barrier observed in
most tracked migrants were less obviously resource-rich but, in
general, timing and location of observed stopovers coincided
with the highest local resource availability for regions in the
periphery of the barrier.
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FIGURE 4 | Seasonal space use of highest NDVI and Surplus NDVI tracks. Count of cell use for high performance tracks aggregated every 10◦ of latitude south of
the breeding site per month outside the defined breeding period: beginning June – end July. (A) Tracks with highest total NDVI of all those generated (n = 740) and
(B) total Surplus NDVI (n = 640). Breeding sites are excluded from counts.

Similarities between the modeled tracks under expected
biotic and abiotic conditions and known migration strategies
allow us to elucidate mechanistic components that potentially
shape the diversity and complexity of long-distance migratory
patterns. Closely related spatiotemporal patterns between model-
generated tracks and free-flying birds support niche-following

strategies in species apparently utilizing either NDVI or Surplus
NDVI. Yet temporal schedules, principally in spring, suggest
optimizing resources could compete with hastening arrival at the
breeding sites or an advantage of shorter flights especially before
and after the barrier crossings. Interestingly, a strategy of long
winter residence time in the northern Sahel and the Savanna
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zone (e.g., in common redstarts and pied flycatchers Ficedula
hypoleuca) is not characteristic of either of the optimal resource
strategies identified here (Willemoes et al., 2013; Ouwehand
et al., 2016). Potentially, for these species, avoiding the low
temperatures in Europe is an important driver of sub-Saharan
refuge migration rather than tracking high resource availability
of importance for the longer-distance migrant species.
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