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Phenological models representing physiological and behavioral processes of organisms
are used to study, predict, and optimize management of ecological subsystems. One
application of phenological models is the prediction of temporal intervals associated with
the measurable physiological development of arthropods, for the purpose of estimating
future time points of interest such as the emergence of adults, or estimating past time
points such as the arrival of ovipositing females to new resources. The second of these
applications is of particular use in the conduct of forensic investigations, where the time
of a suspicious death must be estimated on the basis of evidence, including arthropods
with measurable size/age, found at the death scene. Because of the longstanding
practice of using necrophagous insects to estimate time of death, standardized data and
methods exist. We noticed a pattern in forensic entomological validation studies: bias
in the values of a model parameter is associated with improved model fit to data, for a
reason that is inconsistent with how the models used in this practice are interpreted.
We hypothesized that biased estimates for a threshold parameter, representing the
lowest temperature at which insect development is expected to occur, result in models’
accounting for behavioral and physiological thermoregulation but in a way that results
in low predictive reliability and narrowed applicability of models involving these biased
parameter estimates. We explored a more realistic way to incorporate thermoregulation
into insect phenology models with forensic entomology as use context, and found that
doing so results in improved and more robust predictive models of insect phenology.

Keywords: behavior, blow flies, forensic entomology, phenology, physiology, prediction, thermoregulation

INTRODUCTION

The prediction of phenology or physiological development as a function of ecological and
environmental factors facilitates study and management of many types of ecosystems, with a mature
application being the modeling of insect development to estimate time points of interest (Catts,
1992; Catts and Goft, 1992; Amendt et al., 2007; Byrd and Tomberlin, 2019). Estimating insect
developmental rates and intervals is useful for the management of insects (pests or beneficial species
alike), and can be employed in optimizing intervention times or allocation of monitoring resources
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(e.g., Chappell et al., 2020; Crimmins et al., 2020). The ability
to accurately estimate temporal intervals on a case-by-case basis
is especially valuable in the conduct of forensic investigations
where the interval of interest is the time between a death and the
discovery of human remains, and for this reason the application
of phenology models has been studied regularly by forensic
entomologists (Catts and Haskell, 1990; Catts, 1992; Catts and
Goff, 1992; Grassberger and Reiter, 2001, 2002a,b; Amendt
et al.,, 2007; Michaud and Moreau, 2011; Tarone and Sanford,
2017; Byrd and Tomberlin, 2019; Matuszewski, 2021). Through
understanding the processes of insect development, forensic
investigators are able to estimate temporal information related
to a death, often considered to reflect the postmortem interval
(PMI) or minimum postmortem interval (mPMI) (Tarone and
Sanford, 2017). Many such applications of insect phenology
models are common in ecology and agriculture, and continued
improvement of the models requires ongoing research into
phenology to increase model realism.

Models of insect phenology generally predict physiological
age as a function of abiotic inputs: the interaction between
an individual organism and its environment (especially the
temperature of its environment) determines the rate of
physiological development. Many applications of phenology
model output are especially useful in cases of unusual or locally
unprecedented abiotic conditions (e.g., Chappell et al., 2013),
because these are situations in which inductive assumptions
based on prior occurrences are likely to be invalid. For example,
in conditions of extreme heat or cold, insects that develop as
a function of heat may be present or active very early or late
relative to their average phenology, with wide-ranging potential
impacts to ecosystems both natural and managed (Kemp et al,,
1986; Tobin et al., 2008; Singer and Parmesan, 2010). For accurate
extrapolative predictions to be generated by a phenology model
given unusual or unprecedented environmental conditions, the
model must sufficiently capture the mechanisms relevant to
organisms’ responses to environmental inputs. For example,
climate change is expected to result in environmental conditions
that are locally unprecedented, such that unprecedented
phenological outcomes may be expected (Singer and Parmesan,
2010). For phenology models to continue providing useful
output for ecosystems experiencing climate change, the models
must be able to represent phenology in conditions that are
potentially warmer or more variable than has been observed
in situ to date.

In the spirit of Stephen Jay Gould’s baseball analogies
which relate processes to statistics (and which are familiar to
ecologists and evolutionary biologists) (e.g., Gould, 1992), the
difference between description and prediction can be illustrated
for phenology. It is possible to statistically predict the location on
a field to which a specific batter will most likely hit a ball without
having thorough mechanistic understanding of the processes
involved. Concerning applications, shifting the fielding team’s
position according to such a prediction will on average result in
the most effective defense. However, on a day with strong winds,
a model that does not account for the mechanistic relationship
between wind and baseball trajectory will be inaccurate in
predicting where the ball will go on that particular day. The

particular challenge addressed here (and described in more detail
below) is also interesting in that it seems to represent a situation
where, in this analogy, the ball appears to want to land in a
particular spot on the field, regardless of where it is hit. The details
of a particular day on which baseball is played are analogous
to the details of a particular forensic case, which may or may
not conform to the expectations of a typical case. Thus, while
models based on analysis of large numbers of scenarios are useful
for capturing averages, a lack of mechanistic understanding can
harm the application of scientific knowledge to a particular case -
something that is desirable to avoid as much as is feasible in
any forensic science application because of the consequences of
individual predictions.

The insect phenology and development models used by
forensic entomologists are standardized to a degree because of the
nature of their use. In the United States of America, output from
these models becomes part of scientific testimony which is subject
to criteria for admissibility known as the “Daubert standard,”
in reference to the United States Supreme Court case Daubert
v. Merrell Dow Pharmaceuticals, Inc., in which the criteria were
first articulated. Two of these criteria are that a given scientific
technique must be accepted by the relevant scientific community,
and that the technique must have standard operating procedures
(Faigman, 2002; Amendt et al., 2007; Gaudry and Dourel, 2013;
Sanford et al.,, 2019; Gelderman et al., 2021, also see OSAC,
2021). As a result, the insect phenology models used by forensic
scientists are among the more standardized ecological models,
which in turn results in the generation of intercomparable
validation data due to standardized application. Additionally,
studies aimed at validating the models have been conducted by
forensic scientists, to purposefully investigate the appropriateness
of their application across geographic space, in environmental
or other conditions of interest, and to ensure that the models
continue to serve the purposes for which they are used. Validation
effort has been directed to several aspects of models used in
forensic entomology: representativeness of microenvironmental
temperatures by available ambient temperature data (Archer,
2004; Dourel et al., 2010; Johnson et al., 2014; Dabbs, 2015),
accuracy of estimates for temperature “thresholds” below which
physiological development ceases (Day and Rowe, 2002; Tarone
et al., 2011; Cervantes et al., 2017), and empirical fit of model
forms to relevant phenology data (Tarone and Foran, 2008;
Baqué and Amendt, 2013). Development rate functions are
typically fit to data generated by raising insects at constant
temperatures, but temperature fluctuation has been studied as
an effect on development since the modeling work of Kaufmann
(1932) described the potential for rate summation across varying
temperature to impart bias to development rate estimates, now
called the “Kaufmann effect.” Proposed explanations for the
effect have included the consequences of mathematical order
of operations, for example a sum of a function-transformed
variable, versus the functional transformation of a sum, the
difference of which being proved in the theorem now known
as Jensen’s Inequality (Jensen, 1906). Attempts to develop
models that accurately predict instantaneous development rate
under conditions of temperature fluctuation have shown that
curvilinear or non-linear functions better describe development
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rate variation than do rectilinear ones, and that interpreting
temperatures relative to an optimum can enhance predictive
performance (Worner, 1992; Ikemoto, 2005; Ikemoto and Egami,
2013). Theoretical treatment of fundamental assumptions and
mechanisms represented by phenology models in general is
an enduring ecology research topic of interest (Stinner et al.,
1974; Sharpe and DeMichele, 1977; Wagner et al, 1984;
Post, 2019).

Validation studies that involve deployment of a model in
its intended use context are an indispensable component of
modeling research and application. Such studies may forfeit
some ability to isolate causes in the way that laboratory studies
can when focused on individual model parameters, but in-
field validation is the only setting in which all assumptions
and all aspects of a model can be confronted by realistic data.
Forensic entomological validation studies that involve field data
have been used for purposes such as assessing applicability or
generality of models across geography or scenarios, recovering
parameter estimates from data that are distributed across greater
variability in conditions, or simply for quantifying error that
should be expected as a result of using models in practically
relevant scenarios (Tarone and Foran, 2008; VanLaerhoven,
2008; Matuszewski, 2011; Flores, 2013; Nuiiez—Vazquez et al.,
2013; Harnden and Tomberlin, 2016; Matuszewski and Madra-
Bielewicz, 2016). While these aspects of model use are specific
to a discipline, the conventions of that discipline are such that
the example serves as a basis for addressing a general issue
with empirical modeling, being the use of validation results
to inform subsequent investigation, model development, and
model utilization.

We recognized a pattern in the results of forensic entomology
laboratory research and validation studies taken together:
biased error in development threshold temperature (DTT)
estimates. These thresholds, which can be species-specific
(Higley and Haskell, 2001) or potentially vary within species
(potential examples in Lamb, 1992; Gallagher et al., 2010;
Tarone et al, 2011; Addeo et al., 2021) and represent a
temperature above which development occurs as a function
of temperature. At temperatures below DTT, environmental
heat does not contribute to development. DTTs are used to
adjust environmental temperature data so that summations
of species-relevant heat units can be made. The conventional
model used to predict insect development, the accumulated
degree-day (ADD) model, outputs heat units as the product of
temperature and time (typically degree-days), for temperatures
above the DTT. For temperatures below the DTT, no
development is accumulated per the model. Lower DTTs
result in greater quantities of heat accumulation for two
reasons: first, degree-days are always reported for a given
DTT and any temperature’s degrees-above-DTT will be
higher for a lower DTT; and second, lower temperatures
are associated with development (non-zero degree-days) for
lower DTT values. To estimate DTT, a function relating insect
development rate to temperature can be used to extrapolate
the temperature at which zero development should occur
(Ikemoto and Takai, 2000; Ames and Turner, 2003). Laboratory
control of environmental temperature simplifies the process of

estimating DTT, and DTT is most commonly estimated under
constant temperature.

Numerous  studies  have  explored = mathematical
representations of development rates as functions of temperature
(e.g., Sharpe and DeMichele, 1977; Schoolfield et al., 1981; many
more reviewed in Wagner et al., 1984), with some of these
obviating the need to include a DTT. However, logical and
operational considerations limit the application of such models
(Lamb et al, 1984), and inadequate performance increases
over more parsimonious (and more readily conforming to
the Daubert standard, in the case of forensic practice) models
have prevented general adoption of perhaps more realistic
but less generalizable models for insect phenology prediction.
We commenced a modeling study motivated by the three
findings described earlier: (1) the existence of models that
are more realistic than the simplified linear ADD model, but
which do not offer appreciable predictive performance increase
(suggesting that the simplified ADD model accounts for more
biological mechanisms than are explicit in the formulation);
(2) DTT estimates including some that are lower than can
be empirically corroborated in terms of physiology; and (3)
researcher and practitioner use of different DTT depending
on season or geography (Saunders and Hayward, 1998;
VanLaerhoven, 2008). We asked why a known-underspecified
model would perform as well or better than a more realistic
one for insect phenology, and what the consequence of DTT
estimation error may be for phenology prediction. Modeling
revealed that biased DTT estimation can cause a linear ADD
model to better fit a field-validation dataset, and as we will
argue, one reason for this improvement is that a negatively
biased DTT results in an increased correlation between heat
accumulation and the passage of time. The reason for improved
fit is not physiological per se, but rather because increasing
the heat-time correlation allows the model to accommodate
behavioral thermoregulation, the importance of which is
reduced in controlled-temperature laboratory studies vs. the
field where models are validated. For this and other reasons,
temperature data has been aptly described as the “weak point”
of forensic entomology (Charabidze and Hedouin, 2019), and
it is similarly a weak point in related disciplines that seek
to predict ectotherm physiology or phenology as functions
of temperature, such as agricultural pest management or
medical/veterinary vector ecology. In situations of changing
climate and unprecedented variability, it is a modeling issue
of general importance to have predictive models that fit
well for valid reasons and require minimal calibration, and
capture the processes through which organisms affect the
microclimates that in turn determine development (Kaspari,
2019; Pincebourde and Casas, 2019).

MATERIALS AND METHODS

Models

We begin with the general accumulated degree-day (ADD)
model that is commonly used in the practice of medicolegal
death investigations by practicing forensic entomologists (after
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Catts and Goff, 1992; Byrd and Tomberlin, 2019):

VT > DTT, Ratepe,. =B (T —DTT)
VT < DTT, Ratepeye, =0 (1)

in which T is a variable describing momentary temperature
recorded periodically at some interval, DTT is the development
temperature threshold below which development is set to zero in
the model, and P is a parameter relating change in temperature
to change in development rate. Though there are both lower
and upper temperatures beyond which development ceases,
often in practice only a lower threshold as DTT is used in
ADD calculation. Hence, in this study DTT represents only the
lower developmental threshold. We call this the general model
because the functional relationship it includes for temperature
vs. development rate is strictly rectilinear, whereas less general
models can involve curvilinear functional relationships, often
based on empirically described growth curves (e.g., Byrd and
Butler, 1996). The principal reason for our focus on this general
model is its direct involvement in the field and other validation
studies, wherein adjustment of DTT can be demonstrated to
affect model fit.

A translation of the general model results in output in units of
developmental time instead of a rate:

tEn,
Development = / ‘ B - (T—DTT))dt (2)

tBegin

in which the temporal interval during which development occurs
is arbitrarily defined or unknown, spanning the “begin” and
“end” time points. If defined for the purpose of parameter
estimation, this development interval can be the time between
the oviposition of an egg and its hatching, or the duration of a
larval instar, or a combination of life stages such as those between
egg and adult. If unknown and the model is used to predict
the interval given insect developmental ages and temperature
data, the value of fpegin Or gy is optimized for fit to data,
often iteratively in practice. Also in practice, the integral is
often approximated by summation, considering the periodicity
of temperature measurements (e.g., hourly) and the conversion
of output to desired time units (e.g., days).

Our approach was first to investigate the consequences on
development interval estimation that result from changing the
value of DTT. Because DTT is conventionally estimated by
extrapolating from a fit of calculated development rates as
a function of temperature, values of DTT are not typically
empirically estimated at the time of estimating the value of f in
Eq. 1. Thus, the ADD equations used by forensic entomologists
are definitively non-linear in the parameters (8 and DTT). The
blow fly species Lucilia sericata and Cochliomyia macellaria are
common in southern Texas and were commonly observed in our
field sites, and we thus chose a DTT of 8°C because DTT for these
species have been reported as 8°C for L. sericata (Reibe et al.,
2010) or can be estimated from published results concerning
C. macellaria as 8.5°C (data from Byrd and Butler, 1996) or
9.2°C (data from Boatright and Tomberlin, 2010). A DTT of
8°C is general with respect to varying blow fly species in our

observation. To investigate the consequences of using negatively
biased DTT, we explored multiple values iteratively.

We expected there to be a reason why increasing the
correlation between heat accumulation and the passage of time
would increase model’s predictive performance, and considered
that endotherm/homeotherm development is highly predictable
on the basis of time irrespective of environmental thermal
variation, because of regulation through both physiological and
behavioral processes. To investigate the use of more mechanistic
interpretations of behavioral thermoregulation in phenology
models for insects, we developed a way to use biased ambient
temperatures to drive accumulated degree-day models of the
forms shown above. We use ambient temperatures to estimate a
derivative variable, Tyeqg:

Treg = Tamp — C (Tumb - Tpref) -P (Tpref|Tumb9 Scalef(Tmb))

3)
in which the subscripts reg, amb, and pref indicate three
temperatures: reg (a predicted value) indicates the expected
temperature of an insect that is behaviorally thermoregulating,
amb (an independent variable) indicates the ambient temperature
given at the location for which a phenology estimate is desired,
and pref (a parameter) indicates a temperature that is “preferred”
by the subject insect exposed to a range of temperatures.
C is a constant used to represent the degree to which the
subject organism is thermoconforming (Angilletta, 2009): a
value of zero for C indicates a completely thermoconforming
organism, and a value of 1 for C indicates that the organism is
maximally able to maintain preferred temperature depending on
what temperatures are available in the local environment, as a
function of processes such as niche construction, aggregation, or
physiological thermoregulation (Heaton et al., 2018; Pincebourde
and Casas, 2019; Aubernon et al., 2022). We expect that
ectothermic organisms whose body temperature is determined
by environmental input, but who can choose microenvironments
in which to dwell, are homeothermic to a degree determined by
the configuration of their local environments. The availability of
preferred temperature in the local environment is represented as
the probability P(T)s) of the value T, given a distribution
of temperatures with location parameter T, and a scale
parameter Scalef(gump), calculated as the probability of Tj.r
in a normal distribution centered at T,,;, to describe
variation in temperature.

Equation 3 predicts insect temperature (as Treg) as function
of two generalities: the distribution of temperatures in the
local environment, and the insect’s behavioral and physiological
processes of thermoregulation. Behavioral processes include
movement to non-randomly experience temperature, and
physiological processes in blow fly larvae include metabolic heat
generation. While additional processes are likely to be relevant,
we use these as literature-supported examples of explanations
for why insect temperatures can be different from ambient
temperatures (Turner and Howard, 1992; Slone and Gruner,
2007; Charabidze et al., 2011; Heaton et al., 2014; Gruner et al,,
2017). We use the term “preferred” in recognition of the potential
for there to be a difference between an optimal temperature
for development (or other process related to phenology) and
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the temperature that organisms seek out in local environments
(Martin and Huey, 2008; Aubernon et al., 2016).

Data Collection

We used digital thermography to record surface temperatures of
remains at individual time points, for the purpose of studying
temperature distributions and selecting a way to represent them
with a scale parameter in Eq. 3 (Figure 1). A FLIR 650sc infrared
camera was used to record thermal images. As decomposition
progresses, insects become increasingly likely to be found at
the surface of remains, such that thermographic images of
remains were reasonable to use as a means of studying the
shape environmental temperature distributions. Although we
did not focus on human remains for this modeling study, we
were contemporaneously collecting data from human remains
at the Forensic Anthropology Research Facility (FARF) of the
Forensic Anthropology Center at Texas State (FACTS) in San
Marcos, Texas, and chose to use thermal images from human
remains as a better basis than porcine remains for inferring
Tpref- The reason for this decision was that human remains
were more consistent in terms of size, age, and physical
orientation in the field than were hogs used in our local study.
We did not use human remains for regular observations of
maggot masses due to logistical/geographic constraints. We used
thermographic observation of human remains to generate a
standard, the utility of which was thereafter tested in context
of greater variation during our field study in College Station,
Texas. Human cadavers that were thermographed were received
by the FACTS under The Universal Anatomical Gift Act and
were placed at the FARF by personnel there. Institutional
Review Board (IRB) approval was not required for use of
human cadavers because no personal or identifiable information
was collected.

A total of twelve hog carcasses donated by two landowners
in south-central Texas, United States were obtained between
2018 and 2019. Each carcass was initially placed in a freezer
for storage, and then partially thawed before being placed
into the field at planned times, at the Texas A&M Ecology
and Natural Resources Teaching Area in College Station, TX,
United States. The animals were deceased at the time of
acquisition; therefore, the Texas A&M University Institutional
Animal Care and Use Committee required no animal use
protocol. Temperature data were collected from microcontroller-
based dataloggers constructed for the purpose of observing
the environmental variables of human and porcine remains
during decomposition, especially to facilitate observation of
temperatures at different body regions (Barton et al., 2021).
Dataloggers were based on a previous design (Chappell et al.,
2020) and configured to each include five digital temperature
sensors as probes, which were used to record temperatures at
high temporal resolution, in situ. Loggers measured temperatures
each minute and recorded 10-min averages for five locations per
hog (shown as a scheme in Figure 1): between the carcass and
the ground (“beneath”), in a shallow (2”) incision (“chest”), in
the anus 4” from exposed surface but without incision (“groin,”
because decomposition quickly results in there not being much
anatomical structure in this area, hence it is initially the hog’s

anus and soon thereafter only a physical location), in the mouth,
without incision (“mouth”), and in sheltered but ventilated shade
within approximately two feet of the body (“ambient”). These
locations provide the following general observations at high
temporal resolution: ambient, a location likely to be colonized
early (the head), secondary colonization areas such as a shallow
flesh wound, or deep flesh via an orifice, and the remains/ground
interface expected to have maximal thermal inertia.

We regularly observed decomposing porcine remains in the
field to note the spatial position of necrophagous insects. We
observed hogs to conceptually inform model development, and
used data from recordings on a subset of six for quantitative
optimization of models. By regularly observing the location of
aggregated insects, we were able to determine which temperature
probes were most representative of insect temperatures at a
given time. Because of the tradeoff between realism of observed
environments and control/observation of the environments,
insect locations were not tracked continuously, and locations
of insect aggregations (i.e., “maggot masses”) did not include
every insect on a given hog. Porcine remains were able to
be observed without disturbance in an outdoor environment,
and maggot mass location on hogs was able to be regularly
associated with thermal probe location for the purpose of
estimating temperature being experienced by the insects through
time. In general, maggot masses were found in the heads of
porcine remains throughout observation: from the time maggots
first appeared until substantial numbers of larvae entered a
“wandering” phase in search of locations at which to pupate.
The commencement of pupation marks an important time
point for a given case addressed by forensic entomology,
because after the earliest arriving insects have departed from
the scene, the assumption that the oldest present insects can
be used to estimate PMI becomes less valid. Accordingly, the
temperature observations we involved in modeling are those
between the time of placing porcine remains into the field, and
the time when large numbers of maggots began moving away
from the remains.

RESULTS

Blow fly larvae were consistently aggregated and located in/on
remains in a repeated pattern associated with the rate of
decay, consistent with reports from formal studies of blow fly
oviposition site preferences (Archer and Elgar, 2003): beginning
near orifices (eyes, mouth, anus) and progressing into the head
and trunk (Figure 2). All hogs were colonized by blow flies, and
for six of the hogs, colonization was followed by a period of
larval feeding and development of between 3 days and 3 weeks.
The remaining hogs were either consumed by blow fly larvae
so rapidly that we were limited in ability to visit the remains
and confirm thermal sensors were associated with maggot masses
(this occurred in summer), or otherwise were disrupted with
respect to decomposition (two hogs were submerged/floated
during flooding rains).

A DTT value of 0°C was chosen for demonstration of
the consequences of biasing DTT relative to a biological
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FIGURE 1 | Thermograph of porcine remains placed in the field, using a FLIR 650sc infrared camera. Thermal probe positions are labeled.

Phase 1: Oviposition,
microbial activity

Phase 2: Insect larval
metabolismin head

Phase 3: Insect larval
metabolismin trunk

Phase 4: Resources consumed; temperatures
become environmentally determined

40 -|
30 | }

20 +

l‘\_ /|
If

Temperature, C
g
/i‘
= —

10

‘ ; |
/ ‘ J M, i ||

Substantial heat generation in

\ ( colonized locations of the

i “ body during this interval
h y i

il |

I I

{ | |
\\ ,‘ \ |

21Mar
2019

23Mar 25Mar 27Mar

29Mar 31Mar 02Apr 04Apr

Date

[—— Mouth —— Chest —— Beneath

Groin —— Ambient |

Blow fly larvae were abundant on the remains between March 25 and March 30.
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of the pattern observed in the temperature traces, and corroborated by in-field observation of the decomposing remains. This placement of porcine remains was
chosen for the figure because of the relative consistency of ambient temperature fluctuation, allowing isolation of environmental input from insect heat generation.

limit for development. This value is reported to be used
in practice (VanLaerhoven, 2008), and potentially negatively
biased values (between 6 and 10°C) are also used for
multiple blow fly species (Higley and Haskell, 2001). To
investigate the consequences of using Eq. 3 to predict the

insect temperatures that would thereafter be used to drive
ADD models, we varied the values of parameters C and
Tpref naively and again observed resulting changes to the
correlation between Ty and temperature recorded by the
relevant thermal probe.
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the two larger areas was greater than for the insect-occupied sub-areas. Insect temperature bias was toward an apparent central tendency of 32°C irrespective of
whether it resulted in sampling the upper or lower range of the corresponding area.

On average, negatively biasing DTT and incorporating
thermoregulation both led to improvements in the prediction of
larval temperature and ADD, with positive consequences for any
application that relies on insect development time estimation. We
use individual periods of hog decomposition as examples of what
results from changing models, and then summarize the global
consequence to prediction using all of our data.

Values to Be Used as Tper

Temperatures optimal for development, and temperature limits
of development, vary by species and life stage (Aubernon et al,,
2016; Ahmad and Omar, 2018), but species composition and
life stage distributions within the larval communities are not
continuously observable in practice. Our model represents a
simplification: we used a value of T, to use in Equation 3
that was intended to represent an average preferred temperature
across species and life stage variation. To estimate this value, we
used thermography. We visually delineated (using visible-light
versions of photographs) areas in which insects were found, and
then statistically summarized the temperatures recorded for those
and other areas in a given image. We find that areas in which
insects are found (primarily 2nd- and 3rd-instar blow fly larvae)
are on average approximately 32°C, both for environments that
are warmer than or cooler than that temperature (Figure 3).
We interpret this result as an indication that the insects will
behaviorally and physiologically act to achieve this temperature,
and we used 32°C as a generalized value of T, thereafter.
The simplification of Ty, used here for the purpose of proving
concept in a modeling framework could be specified to relevant

species and life stages in application, depending on the species
present in a given sample.

Shape of Temperature Distributions

Surface temperature distributions from thermographs were
similar to slightly positive-skewed normal distributions
(Figure 4). For the purpose of this study we decided to
model temperatures as normal distributions centered at T,,.
We emphasize that this distributional shape is used for proof
of concept and should be investigated for applications to
other systems, and suggest that the development of the model
framework described here will provide opportunity for such
thermal-variation studies of relationships between surface
and carrion-mass temperature in blow fly habitats to result
in data that can be used by the models to generate improved
phenology predictions. Based on this decision we modeled the
term P in Eq. 3 as the normal probability distribution function,
scaled to have a maximum value of 1, and with a value of 3 for
sigma, being low relative to the observed standard deviation
of temperature distributions from thermography data and
thus a conservative interpretation of the range of temperatures
realistically available to insects.

Consequences of Biased Development
Threshold Temperature Parameter

Values

Biased DTT parameter values can correct for differences between
ambient and relevant (taken within or near maggot masses)
temperatures in hindsight in two ways. The first is simply
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become close to the area under the curve for temperature of the colonized area. Reducing the DTT results in improved prediction for this case and other cases with

similar durations and temperature differences, but not for others.

and not necessarily a momentary difference of temperatures.

because biasing DTT can compensate for bias in temperature
recordings. If the average difference between ambient and
relevant temperatures is appreciable, then area under the curve
for one vs. the other temperature trace will be different in a way
that is correctable by adjusting the temperature value equivalent
to “zero degree days,” which is the DTT. Decreasing reference
against which temperatures are measured to calculate degree-
days results in more degree-days per day (Figure 5). The reason
this change to DTT works in hindsight and not predictively is that
it offsets an accumulation of degree-days (area under the curve)

To offset area under the curve, the beginning and end times
for the given curve must be known, which is definitively not
the case in forensic entomology. In Figure 5, the biased DTT
value overcompensates for the temperature difference between
ambient and the colonized area in the first 3 days, after which
it undercompensates for the subsequent 3 days.

The second way in which biased DTT parameter values can
improve prediction is because decreasing the value of DTT
increases the correlation between heat accumulation and time
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(Figure 6). For example, given a 10-degree change in temperature
from 20 to 30 degrees during one time period, a DTT of 10
degrees results in a 100% change in the rate of degree day
accumulation (10 above to 20 above the DTT), whereas a DTT
of 0 degrees results in a 50% change in the rate of accumulation
(20 above to 30 above the DTT). At negatively biased values
of DTT, the result is that the degree day accumulation curve is
smoothed, and time becomes an increasingly informative predictor
of the accumulation of degree days. Conversely, for positively
biased values of DTT, time becomes a less informative predictor
of DTT. The smoothing outcome of negatively biased DTT
also inevitably results in an increase in the absolute value of
degree-days accumulated (note the two axes used for Figure 6).
If insects thermoregulate to maintain temperature differences
relative to ambient and to maintain temperatures that vary less
than do ambient temperatures, then these two consequences of
biased DTT may both result in improvement for prediction,
though with the earlier-mentioned significant caveat of the
improvement only applying in hindsight for a known temporal
interval, and in situations where ambient temperatures are below
insect temperatures.

Homeothermy Through
Thermoregulation Can Increase the
Correlation Between Time and

Development

Equation 3 represents thermoregulation, with a consequence to
distributions of temperature-above-DTT of moving all values
toward the organisms preferred temperature. Correlations

between ambient and predicted temperatures plotted in Figure 7
are similar to Q-Q plots used in fit diagnostics: here, they confirm
that the predicted temperatures that assume organisms bias their
thermal experience toward some optimum are underdispersed
relative to the distribution of ambient temperatures.

The observation that biased DTT values can result in
strengthened correlation between development and time led
us to explore mechanisms through which insects might bias
their thermal experience depending upon local conditions.
Equation 3 was used to predict the temperature of insects,
as a basis for calculating accumulated degree days as would
be done with data sourced from networked weather databases
(Figure 8). Not only does this derivative temperature estimate
improve the fit of predicted to observed degree days, it does
so irrespective of whether ambient temperature is above or
below preferred temperature. Insect temperature for each time
point was predicted as a function of the difference between
ambient and preferred temperatures. The function represents
the expectation that insects bias their own body temperatures
toward preferred temperatures. Insects are relatively more
likely to exist at optimal temperature if ambient temperature
is relatively nearer optimal, and if temperature variability in
remains is relatively higher. As ambient temperature becomes
increasingly different from optimal, and variability in remains
decreases so that the occurrence of microenvironments near
optimal temperatures becomes less likely, insects are expected
to have body temperatures nearer to ambient — as is the case
in the relatively invariant environments of laboratories in which
insects are reared for study of development rate variation at
fixed temperatures.
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FIGURE 7 | Panel of bivariate correlation plots, relating predicted, colonized area, ambient, and biased-ambient temperatures to each other. Predictions are
generated on the basis of ambient temperature; the correlation plots relating these two variables depict the function of Eg. 3 and confirm that the function results in
underdispersion relative to the distribution of ambient temperatures.

Biasing DTT and modeling thermoregulation are different
mechanisms of correcting for error in the temperature data
used to drive phenology models, and the effect of each
mechanism as a modulator of ambient temperatures is evident
in how each changes the relationship between input and output
values (Figure 7). Biasing DTT “moves” a truncated statistical
distribution of temperatures up or down, changing the average
value of degree days accumulated per unit time. When a
distribution of ambient temperatures does not include values

TABLE 1 | Summary of ADD prediction error resulting from the use of different
temperature data sources and biased DTT values.

Source Mean Std Dev Minimum Maximum
Predicted (Treg) —1.01 4.72 -13.23 7.24
Ambient —15.75 14.25 —57.41 1.20
Ambient with biased DTT 22.11 18.71 0.03 70.39

Ambient temperatures are used to calculate ADD with a base temperature of
8°C (Reibe et al., 2010). “Ambient with biased DTT” involves using ambient
temperatures to calculate ADD from a base temperature of 0°C. Six intervals of hog
remains decomposition were recorded and are represented by the summary, which
includes 58 hog-days of observation, and a total of 8,393 ten-minute temperature
recording periods for each of five positions on each hog. ADD predicted involving
thermoregulation results in distributions of error that are centered nearer to zero and
have reduced variance, leading to more precise estimation of the temporal interval.

below the DTT (as is commonly the case in warm climates),
then decreasing the DTT further does not alter the pattern of
variation in the distribution at all. In contrast, temperatures
determined by thermoregulation may not be correlated with
environmental variation at all, as is the case with endotherms or
perfect homeotherms.

Histograms of show that the predictive model changes the
shape of the distribution of temperatures (Figure 9).

Overall Improvement in the Accuracy of
Temperatures Used in Accumulated
Degree-Day Models

Using Theg as the source of temperature data for calculating ADD
improved prediction, when compared to ADD calculations made
using ambient temperatures or ambient temperatures with biased
DTTs. Using Ty, resulted in movement of the ADD prediction
error distribution toward zero, and reduction of the distribution’s
variance (Figure 10 and Table 1). Use of a biased DTT (0°C) also
improved the error distribution by reducing its variance, but also
resulted in greatest average ADD prediction error for our data.
For environments where average temperatures are lower than
those of south-central Texas, or for biases in DTT less than an
8°C change, predictions involving negatively biased DTTs would
be expected to result in less error than they do for our data.
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DISCUSSION

This research demonstrates that, while ADD models are useful
for capturing environmental variation relevant to phenology,
their application becomes more problematic when organisms
have a variety of temperatures in their environment from
which to “choose” and they regulate their temperatures to an
imperfect degree. Blow flies have been demonstrated to meet
these criteria (Byrd and Butler, 1996; Huntington et al., 2007;
Rivers et al., 2011; Aubernon et al, 2019, 2022). Under

these conditions, there are predictable biases in organismal
thermal experiences that can be addressed in a few ways.
One way to account for partial regulation of temperature is
to assume a base temperature that is biased in a way that
accounts for bias in the system. This is an unrealistic model
from a biological sense, but can create accurate predictions.
These results could explain some efforts to assess the best
base temperature, where low thresholds have sometimes but
not always worked best. One example (VanLaerhoven, 2008)
reports the observation that for a blind field validation dataset,
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that relatively most accurate predictions resulted from using
a DTT of 0°C, even though the insects used for estimating
time of death have empirically higher base temperatures in lab
settings (Anderson, 2000; Nufiez-Vazquez et al,, 2013). Such
an approach leaves a prediction system open to errors. For
instance, biases work differently when experienced temperatures
are consistently above or below ambient, so deviations from
a geographically typical condition can cause challenges for
corrected models. Another way to account for this challenge
is to algorithmically assume a target temperature (justified
by organismal observations) that is sought (not necessarily
perfectly) by the organism of interest. This approach is more
biologically realistic, involves assumptions that can be empirically
confirmed through observation of insects in controlled variable
environments, and should in theory be more flexible with
respect to thermal fluctuations above and below ambient.
We note that the work herein primarily addresses behavioral
thermoregulation, because we model insect temperature as a
probabilistic function of expected environmental temperatures.
A challenge relevant to the forensic entomology discipline and
others is that carrion feeding insects themselves can be a source
of heat, especially when insects aggregate, meaning there is
clear opportunity for insects to experience biased temperatures
with respect to ambient temperatures through a mechanism
that is dependent on insect heat generation in addition to
environmental conditions (Slone and Gruner, 2007; Charabidze
et al., 2011; Gruner et al., 2017). Therefore, we advocate further
work in this area as we have demonstrated the potential for
success with this approach.

Our results illustrate an issue with modeling: correlative
methods to estimate parameter values in phenology models are
commonly realized as generalized linear modeling approaches
that do not incorporate context dependence of the modeled
process. Phenology models are typically driven by environmental
factors and are thus inherently context-dependent, but the
assumption that environment is experienced randomly ignores
the importance of behavior in determining which values of
environmental variables across heterogeneous spaces should
be expected to be driving the realized developmental process.
The reason that thermoregulation-based predictions derived
from ambient temperatures improve the fit of degree-day
accumulation to that calculated from temperatures recorded
directly from colonized areas is not because the predictions
result in temperature predictions that are highly correlated
with those of insects. Figure 8 shows that predicted and
colonized area temperatures can in fact be “out of phase” with
respect to diurnal cycles. These “out of phase” relationships
between diurnal ambient and diurnal insect temperatures
are possible and could be uncorrelated or could even
have strong negative correlations, potentially for biological
reasons such as exploiting the thermal inertia of a solar-
irradiated microenvironment to maintain body temperature
while also assimilating nutritional resources (Aubernon
et al., 2019). The reason that the thermoregulation-based
predictions improve ADD calculations in comparison to
the “true” ADD values calculated from colonized area
temperatures is that the predictions bring the average and

variation of the predicted temperature distribution into line
with reality. This improvement results whether conditions
are hot or cold relative to average, or temperatures are
above or below organisms preferred values, and can be
made through a process that is both intuitively sound and
empirically substantiated: the organisms sample environmental
temperature distributions non-randomly, and tend toward
values that improve fitness and survival (Aubernon et al., 2016;
Podhorna et al., 2018).

This research was targeted toward a specific example: carrion
feeding insects whose developmental states are important to
forensic entomology casework. This system is a good starting
point, as the system is rife with thermal variation in time and
space, attached to important issues for application of accurate
evidence for justice, and is associated with important ecological
processes (decomposition, nutrient recycling). As noted above,
the observations in the system also appear to support the
important aspects of the modeling conditions - including the
base temperature offset discussed herein. However, the model
should be evaluated under different environmental conditions
(for example at low temperatures).

Forensic entomology has a need to validate results predicted
from phenology models. A result of this need is that the field
has produced observations that address concerns of relevance
to all that implement accumulated degree models for phenology
research or applications. The field has demonstrated that cold-
biased DTT values that seem biologically unrealistic can appear
to provide good field-based predictions. The work presented
here suggests that unrealistic parameter values increase predictive
performance because of an issue with the models: the increased
correlation between heat accumulation and time is not due
to carrion-feeding flies’ being able to develop at temperatures
lower than empirically confirmed minima, but because the
flies regulate their temperatures in the face of environmental
variation through behavior and physiology. Here, we present
a means of accounting for such thermal regulation within the
bounds of a traditional accumulated degree model and explore
how this compares to use of a biased DTT. We conclude
that incorporating regulation into ADD models is a more
realistic and robust way to advance these models. Thus, we
provide a means to account for thermal regulation in ADD
models, and expect that this means enhances applicability of
ADD models across a variety of systems in which subject
insects partially regulate the temperatures on which their
development depends. The field of forensic entomology is
poised to help address such issues and in rigorous testing
of this and similar models, may be able to help a variety
of fields advance their understanding of how organismal
behavior impacts and can be incorporated into thermally driven
phenology models.
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