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Agents on a Landscape: Simulating
Spatial and Temporal Interactions in
Economic and Ecological Systems

Justin Andrew Johnson* and Colette Salemi

Department of Applied Economics, University of Minnesota, St. Paul, MN, United States

Modeling how communities benefit from common-property, depletable ecosystem
services, such as non-timber forest product (NTFP) extraction, is challenging because it
depends on agent proximity to resources and competition among agents. This challenge
is greater when agents face complex economic decisions that depend on the state
of the landscape and the actions of other agents. We address this complexity by
developing an agent-based model, founded on standard economic theory, that defines
household production and utility functions for millions of spatially-explicit economic
agents. Inter-agent competition is directly modeled by defining how NTFP extraction
of one agent changes the extraction efficiency and travel-time of nearby agents,
thereby modifying agents’ profit functions and utility maximization. We demonstrate our
simulation using Tanzania as a case study. Our application relies on estimates of NTFP
stocks, local wages, and traversal times across a landscape network of grid-cells, which
we derive using geospatial and household data. The results of our simulation provide
spatially explicit and aggregate estimates of NTFP extraction and household profit. Our
model provides a methodological advance for studies that require understanding the
impacts of conservation policies on households that rely on natural capital from forests.
More broadly, our model shows that agent-based approaches to spatial activity can
incorporate valuable insights on decision-making from economics without simplifying
the underlying theory, making strong assumptions on agent homogeneity, or ignoring
spatial heterogeneity.

Keywords: ecosystem services, non-timber forest products, agent-based simulation, Tanzania, geographic
information systems, economic theory

1 INTRODUCTION

Today, the tremendous value of ecosystem services is widely recognized among social and
environmental scientists. Scholars have developed a suite of tools focused on estimating the value
of ecosystem services ranging from carbon sequestration to pollination (Costanza et al., 2014;
Turner et al.,, 2016; Johnson et al., 2021). These models provide important estimates on the value
of nature to humanity and offer essential guidance to policymakers seeking to achieve sustainable
development goals. But some ecosystem services are more challenging to model than others. The
harvesting of nontimber forest products (NTFP), for example, requires that we consider not only
spatial heterogeneity, but also inter-agent competition.
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Unfortunately, many models of human resource allocations,
such as standard models in economics, fall short in their ability
to convey these critical components. Economics models have
been successfully expanded to incorporate geographic, social, or
other conceptions of space (Chael et al., 2019; Glenk et al., 20205
Graubner et al,, 2021). But with respect to NTFP harvesting,
a model must factor in space and inter-agent competition,
and here we find that standard economics approaches often
fall short.

In this paper, we extend the standard economic model of the
representative agent to an agent-based simulation that predicts
firewood harvesting and the value of harvesting to agents.
Our approach uses agent-based simulation (ABS), a method
widely used in the life sciences to convey phenomena such
as wildlife movement (Blackwell, 1997; Patterson et al., 2008;
Kranstauber et al., 2012). Past research has also used ABS to
evaluate interactions between human and ecological systems
(Hare and Deadman, 2004; Schreinemachers and Berger, 2011;
Le et al, 2012; Huber et al, 2018; Dou et al., 2020). We
define a model consisting of millions of agents, defined spatially,
who can influence each other’s set of potential payoffs as they
maximize their respective utility. Specifically, we modify a well-
known economic household consumption and production model
from Bardhan and Udry (1999) and show how interacting
agents and spatially-explicit information modifies the production
and utility functions. An important contribution of this paper
is that we explicitly map the agent-based simulation rules
to the corresponding functions, maximizations and definitions
of equilibrium typical to the standard economics model,
illustrating that these two approaches can be merged and are
complementary (so long as one takes an iterative approach to
finding equilibrium). And by conducting a simulation, we can
incorporate non-cooperative behavior and spatial heterogeneity
of natural capital availability directly into our framework. We
use our model and data from Tanzania to predict the location of
firewood extraction, the amounts of firewood consumed, and the
value of this firewood to households.

Since Hotelling (1929), economists have been aware of the
importance of space and distance for particular conceptual
frameworks. This effort was further advanced by the development
of the widely used Sugarscape Model, which simulates agent
interactions to study phenomena such as group formation
(Epstein and Axtell, 1996). In recent years, there have been several
important efforts to directly incorporate spatial heterogeneity
into models of human-ecosystem interactions (Albers and
Robinson, 2013). Previous studies often use static household
production and consumption models that do not account for
the repeated activities of agents over time or competition among
agents (Sterner et al., 2018). Moreover, most existing spatially
explicit models from economic theory operationalize resource
proximity based on one-dimensional access to a homogenous
stock of natural capital. Agents, however, operate in at least two
dimensions as they navigate landscapes over which natural capital
resource availability varies considerably.

Our model places both agents and NTFP goods on a high-
resolution landscape of grid-cells, where agents must move over
a non-uniform landscape characterized by terrain and road

networks to gather goods. The corresponding ABS accounts for
the unique configuration of the landscape by using relatively high
resolution data inputs (here, 500 m) and generates results at an
equally high resolution. We also developed the simulation such
that it can accommodate large numbers of agents.

Modeling many agents at a high resolution is computationally
challenging, so we also present computational methods capable
of efficient simulation at this scale in the Supplementary
Material section. Specifically, the advances include an efficient
route-finding algorithm used to estimate agent traversal times
(Supplementary Section 3), as well as the creation of
a customized simulation environment that vectorizes all
computation in multi-dimensional arrays to allow for efficient
computation (Supplementary Section 6) rather than using a
generalized simulation environment (such as NetLogo or other
tools commonly used for ABS). These advancements align with
recent innovations that improve on the efficiency of stochastic
simulations in fields such as chemistry, biology, and ecology
(Gillespie, 1977; Cao et al.,, 2006; Black and McKane, 2012;
Wilkinson, 2019; Oraby et al., 2021).

This work contributes to economic discourses on renewable
resources and household NTFP extraction.! We build on several
recent works in spatial natural resource economics. For example,
Miteva et al. (2017) and Boskovi¢ et al. (2018) develop household
decision models in which households differ in their ability to
reach the forest and (in Miteva et al., 2017) the market. These
models predict household consumption, collection, buying, and
selling patterns of NTFP given heterogeneous market and forest
proximity. Our study expands on this work by defining resource
availability based on a two-dimensional grid instead of a binary,
one-dimensional indicator. Our work is also complementary to
this previous research, which seeks to understand who extracts.
In addition to who, our model helps us determine where
extraction happens.

To account for non-cooperative behavior among agents,
Sterner et al. (2018) use a game theory approach based
on sorting models to evaluate possible locations of natural
resource extraction at equilibrium. Like Sterner et al. (2018), we
incorporate non-cooperative behavior among agents by factoring
in NTFP depletion over time, which forces other agents to search
elsewhere. The simulation component of our paper builds on this
work, as we can incorporate repeated actions of agents competing
for resources over landscapes over which the distribution of
resources is not homogeneous.

This paper proceeds as follows. In Section 2.1, we describe
the general modeling framework, including how we define the
agent, the passage of time, behavior rules and the definition of
equilibrium in this type of model. Section 2.2 reviews the data
used for the empirical application of the model with emphasis on
how data can be created for any location on the globe. Section
3 provides detailed results on foraging behavior in Tanzania,
as well as a sensitivity analysis. We offer concluding remarks
in Section 4.

'Other studies have applied a spatial natural capital lens to studies of resources that
are not stationary, such as fish populations. See for example Costello et al. (2019).
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2 MATERIALS AND METHODS
2.1 Model

The foraging model presented in this section defines the elements
that comprise our simulation model. These include the landscape
network, the passage of time, and the agent and behavior
rules. This section describes each of these parts of the general
model and incorporates examples from NTFP collection in
Tanzania to illustrate the importance of each element. Given the
complexity of our simulation, we organize information about
our model in an ODD+D protocol in Supplementary Section 7
(Grimm et al., 2020).

2.1.1 Behavior Rules: Household Production and
Utility Maximization

Our approach builds on traditional agricultural household
models used extensively in development economics (Singh et al.,
1986, Bardhan and Udry, 1999). Each agent chooses to allocate
their full labor time to leisure, foraging or wage work. The agent
maximizes their utility in time period t by choosing to allocate
their labor to gathering firewood, a wage generating activity (that
yields income to purchase a firewood substitute) or leisure. Their
choice is constrained by the foraging production possibilities, a
budget constraint, and the amount of labor they have available to
allocate on each activity. The utility maximization problem facing
each agent i is therefore as follows:

I ¢ bl
Max u; (c,-, Li) =aic;' L;"

F+LY+L<L
g = f (LINi, Rjei)

=&+ ¢

Subject to :

g=6q+q
poct = puwL} + psc;

The agent’s utility u; is a function of their consumption of
cooking fuel ¢; and non-labor (leisure) time Lf. We use a Cobb-
Douglass functional form with constant scalar o; and parameters
B + Bg = 1. This functional form is well suited for our model.
Our agent values consumption of both goods but will experience
diminishing marginal utility as they consume more and more
of one good at the expense of the other. The Cobb-Douglas
utility function captures these important characteristics of the
agent’s preferences. Moreover, the exponential parameters reflect
the agent’s relative preferences over the two goods: for example, if
the agent prefers fuelwood over leisure, then pf > 65.

The agent has finite resources to allocate towards consuming
these two goods. Each agent is endowed with labor L, which they
may allocate to gathering a spatially defined good (L‘Ig), to wage
work, (L}") and to leisure (Lg). The agent can use an allocation of
their labor (L‘;g ) to collect firewood, producing the gathered good
gi- The agent’s production of g; is affected by the agent’s location
on a landscape, Nj, as well as the gathering actions of other
agents, Rje;. This is one of the ways in which our approach builds

on previous household models, as the production function is
determined by the spatially heterogeneous distribution networks
of firewood stocks that are unique to each agent and the actions
of rival agents to change the production function.

Once produced, the gathered good can either be consumed
((f ) or sold (c;). Agents may purchase cooking fuel in the market
as an alternative or supplement to their gathering behavior, such
that total consumption of the gathered good, ¢;, is the sum of c‘zg
and the quantity of cooking fuel purchased from the market, cf-” .
Please note that the cooking fuel that our agent encounters in the
market is an energy source that is not harvested from the forest,
such as kerosene. The purchased good is bought at price p;, from
the money income of the agent. Income is earned either by selling
the gathered good at price p; or working for wages at price p,,.

We simplify the model further by assuming that agents do not
sell any of the firewood they have gathered due to transport costs
and distance to markets so that p; = 0 and ¢} = 0. As discussed
in the Introduction, the assumption that agents do not sell the
firewood they collect holds quite broadly in Tanzania, the case
study we use in this paper (Faf3e and Grote, 2013). And under this
simplification of the model, agents may still purchase a firewood
substitute from markets. Additionally, we assume that agents
spend their full budget each time period and all of the endowed
labor is allocated to one of the three possible choices. With these
assumptions, we can simply the agent’s maximization problem to
the following:

Bi 4
o o (s (7))
Po
Subject to : L;g +LY+ Lf, <L

The full profit function the individual faces combines the
wages they receive and the firewood they gathered, valued at the
price of the firewood substitute (the market-purchased cooking
fuel):

IT* (puw, pos L) = puf (LFINi, Rie~i) + pwL!

Figure 1 graphs one example agent’s labor allocation choice
and specifies an example production function, profit function
and a utility indifference curve at the optimized labor allocation
choice. In this case, the individual forages for most of their fuel
needs (gf) but supplements firewood with purchased fuel (cib*),
shown as quantities on the vertical axis. The labor decisions made
by this agent are shown on the horizontal axis. Note that the
horizontal axis also plots the negative value of leisure so that
utility is represented with a flipped indifference curve between
the gathered good and leisure.

2.1.2 The Landscape Grid

We enhance the household model by defining a gridded
landscape that captures variation in natural capital stocks over
two-dimensional space. Our approach is similar to modeling
methods in studies from fields such as transportation and
civil engineering (see Rodrigue, 2020 for an overview), physics
(Barthélemy, 2011), fishery management (Rassweiler et al., 2012),
and ecology (Kool et al., 2013). Our grid cells are defined at
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FIGURE 1 | Conceptual model of household production and consumption decisions. Note: The asterisk indicates that the time allocations maximize household utility

(welfare).
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a 500 m resolution, and each grid-cell is characterized by a
travel network (defined from road, river, terrain, and other
inputs), the abundance of firewood, and the predicted wage.
We describe how we derive these estimates for each grid-
cell in Section 2.2.

In our model, we assume that agents have complete
information over the firewood stocks in each grid-cell over the
landscape grid. For our model, this assumption is appropriate
because, as we discuss in Section 2.2.2, each agent’s choices
represent the choices of all people living in the agent’s village.
In this sense, our agent represents a group of people who likely
share collective knowledge of all natural capital stocks nearby.
Future extensions of our model could certainly add imperfect or
asymmetric information, if such additions were important for the
goals of the analysis.

Because agents have complete information, they do not incur
penalties from changing their foraging strategy.

2.1.3 Two Conceptions of Time

Throughout this analysis, we refer to the passage of time with
two different concepts: the iteration step (subscripted s) and the
time period shown in the household model (subscripted ). One
time period is composed of many iteration steps. The reason for
this differentiation is to distinguish between the actual passage
of time and the iteration method used to make the simulation
possible. Within this framework, the resource stock in each
cell can change in two ways. First, changes may occur when
transitioning from time ¢ to t 4 1. These shifts reflect changes
that occur independent of the activities of agents, such as the
regrowth of trees. The resource stock can also change as the result
of an agent action at time s (e.g., harvesting the dead wood in the
cell, planting a crop, etc.).

Additionally, we define the action order, a list of agents
ordered by when they can make an action relative to other agents.
During each time period, the first agent in the action order makes
one action in step s, followed by the second agent in the action
order in step s + 1. This process continues with new steps until
the end of the action order list is reached, at which point the
simulation loops through the agents again. We repeat this until
no valid agent actions remain.

Having a time-step smaller than the full time period is
necessary to simulate agent competition and also is a mechanism
to increase fidelity of the simulation. It is possible that biases
arise based on how the action order is defined, but in most cases
the bias approaches zero as the size of the step decreases. For
example, if we define an action order in which agents may forage
firewood from a forest and we choose a large step size in which
each agent is allowed to satisfy their full demand on their first
action, then the results will be very sensitive to the order in which
actions happen. However, if we limit the amount an agent can
forage during each step to ever smaller quantities, the results
become less sensitive to the initial ordering.

If we only define the action order once for all time periods,
the predictions will be biased, as agent outcomes will largely be a
function of the order in which they took their actions. Past ABS
approaches have randomly assigned agent waiting times between
events to overcome this source of bias (Lehman et al., 2012).
We reduce bias by re-generating the action order for each time
period. That’s to say, at the start of each time period ¢, the action
order is randomized anew, which reduces the bias in our results,
since no agent will move early in every time period.

We denote the two conceptions of time with sets S and T. Set
S contains the action order and the definition of what may be
done within one iteration step. Set T assumes time progresses
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from t =1 to t = T and includes the full set of the landscape
changes between time periods that are exogenous to agent actions
(such as forest regrowth). Our model assumes that the landscape
grid of firewood stock fully regenerates between each time
period. Future extensions of this model could draw on insights
from the forestry literature to augment the characterization of
firewood regeneration.

2.1.4 The Agent

As mentioned, agents in our simulation have full information
on the NTFP stocks in nearby grid-cells. The set of agents, A,
is described by an attribute table consisting of an agent identity
column (unique for each agent) and corresponding columns
of agent attributes. This data type is different from the cell
networks because the agent identity is not tied to a fixed location
as it is for a cell. Rather, the cell network is a space through
which agents move.

Although agents do not have fixed locations, agent locations
and attributes can be aggregated, at a given time and step, to
create a matrix that describes a static moment (this process is at
the heart of the computational methods used in the simulation).
For each agent, ajes, the agent attribute table must denote the
agent’s geographic location at every time period and iteration
step defined in reference to a cell within a valid geospatial cell
network and steps within the time structure. Although we do not
do so for our study, the agent attribute table could be expanded
to include important agent characteristics, such as agent-level
demographic indicators, current assets, other location references
like work location and house location, or relationship status
with other agents.

We now consider the addition of spatially heterogeneous
production and competition. Consider first the production
decisions an agent faces when on a heterogeneous landscape
but while temporarily assuming there are no competing agents.
Above, we denoted the production function as subject to a term
N; that represents the gridded landscape as viewed from the ith
position. Two key matrices in this set are the firewood abundance
matrix and the net-profit matrix. Net profit depends both on how
much firewood is present in each grid-cell and the travel costs
incurred getting to that cell from the center of the matrix. We
define net profit more precisely in Section 2.2.

The agent follows a max-marginal-gain set of behavior rules
that specifies how the agent considers the marginal gain they
would get from expending one step’s worth of labor on each
of the possible labor choices. The agent then does whichever
action maximizes this gain. For example, if the marginal gain
from foraging is higher than from wage work or leisure, then
the agent will spend the full simulation step foraging (note that
simulation steps will be defined sufficiently small such that this
assumption does not affect the results). If the agent still has
available labor after foraging from one grid-cell, they may spend
it on another action, continuing until the labor they have in the
current step is depleted.

Figure 2 provides a hypothetical example to help illustrate the
process of agent foraging in our model. Please note that in the
actual model, the amount an agent harvests per iteration step
will be much smaller and grid-cells will only be exhausted of

their firewood stock once multiple agents have foraged on them.
For this illustration, the upper-right corner shows an example
net profit matrix. In this example, there is a high-quality forest
in the northwest and a lower-quality forest in the southeast.
In both cases, the forests have diminishing net profit available
on the sides furthest from the center of the matrix (the agent’s
location) because foraging from these cells will incur additional
travel costs. When it is the i agent’s iteration step, the max-
marginal-gain behavioral rule discussed above implies that the
agent will gather from grid-cell N;,; where the net profit is 6.
After a cell has been foraged, assume its remaining value is zero.
Assume further that the step-size in this example is defined so
that an agent may only deplete one grid-cell per step. Thus, in this
case, the agent gets a marginal value on this step equal to 6. This
value is plotted in the blue line, which represents the marginal
product of foraging, and also the orange line, which represents
the production function. On the agents next turn, they will
choose to forage either on Ny 1 or Ny o, will gain a marginal value
equal to 5, and will increase total production to 11. This process
will iteratively continue, one action per iteration step, until the
agent has no remaining grid-cells with positive net profit.

Our production function ignores the non-production
activities the agent may do. At each iteration step in the full
decision framework, the agent chooses to allocate labor to
L‘f , LY, or Lﬁ, based on whichever has the highest marginal
value. The marginal value from L‘f is derived from Nj as described
above, while the marginal values from leisure and purchased
fuel depend on the shape of the agent’s utility function and the
prices of wage labor and fuel. Given concave production and
concave utility from leisure, this means in the initial iteration
steps of a time period, the agent will alternate between producing
firewood and enjoying leisure. Eventually, diminishing returns
will cause the agent to switch to wage labor for the final units of
fuel consumed. This process is depicted in Figure 3, where each
blue arrow indicates the action chosen on the sth iteration step.

The iterative process by which the agent moves towards the
maximized point allows for events to happen in between each
decision step the agent takes. The main type of inter-step event we
include is depletion of the forest by other agents. The production
function and corresponding iterative solution method defined
above assumed no competing agents were present. Below, we
extend this to multiple agents.

Situations in which agents engage in strategic interdependence
may lead the max-marginal-gain decision rule to suboptimal
allocations. For instance, agent 1 may have predicted that
agent 2 would want to forage from the contested cell and
would thus choose to forage there earlier. This type of strategic
behavior can easily be included in agent simulation by using
modified decision rules (such as doing the best-response
action in a Nash equilibrium). But in many applications, this
becomes computationally impossible when millions of agents are
considered simultaneously and does not present large deviations
from the naive max-marginal-gain decision rule. Thus, we
assume there is no strategic interdependence between agents.

We solve the model iteratively, allowing each agent at
each iteration step to make their utility maximizing choice.
Throughout our model, competition between agents occurs
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FIGURE 2 | Generating a production function from a net profit geospatial grid-cell matrix given no competition.
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FIGURE 3 | Max-marginal-gain choices between leisure, production, and wage earnings over multiple iteration steps.

6 2

implicitly, as the private actions of each agent influence other
agents’ access to firewood.

2.1.5 Definition of Equilibrium

The results of our simulation are compatible with the underlying
economic theory and can be expressed as inter-temporal and
intra-temporal equilibria. Because the application used in this
section focuses on sustainable harvest rates, we focus on the intra-
temporal equilibrium, using a conception similar to the Ramsey
(1928) approach.

To define equilibrium, first define zero-profit zones for each
agent B; = {N,- Y i where f; (N,-, Rjei = Q) > O}. The zero-profit
boundary B, is the set of all grid-cells where the agent has positive
net-profit assuming no other agents deplete the grid-cells and
assuming the agent spends their entire endowment of labor on
foraging. Outside the zero-profit boundary, the agent has no
profitable cells even in the best circumstances, so ignoring these
cells has no impact on the outcome.

An intra-temporal equilibrium is characterized by allocation

choices of labor (L‘f , LY, Lf) Vi € A and a geospatial grid-cell
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matrix of local prices Py for each kth good such that each agent
satisfies the following conditions:

1. There does not exist any grid-cell within the ith agent’s
zero-profit zone B; where U; (N,' (net proﬁt)) > U; (Lf)

2. There does not exist any possible purchase where
ui((5) ) > v (1)),

Although we have specified this model so that it is based
only on one good (produced two ways) and leisure chosen with
a single decision rule, it is very easy to extend the analysis to
include additional goods, additional behavior rules, or a very
wide set of heterogeneity among agents. In the next sections, we
use this model with data on firewood foraging from Tanzania to
perform the simulation.

Our model is designed to capture short-run outcomes,
parameterizing ecosystem service value over a relatively limited
time scale. Because of this, it does not incorporate longer-term
dynamics such as social-ecological feedbacks. But future research
could certainly incorporate a longer time horizon and such long-
run dynamics into the model as well.

2.2 Data

Performing a simulation of our household model with many
agents and heterogeneous access to natural capital requires four
spatial data inputs: a resource abundance map, a map identifying
the location of agents over the landscape, a wage surface, and
arrival cost mappings. In this section, we describe the process
of preparing each of these four inputs, which we summarize in
Table 1.

The key data inputs to our model the—firewood abundance
mappings and arrival cost maps—are measured at a 500 m
resolution. This may seem coarse when we're modeling human
movement on foot: perhaps we will miss some interesting intra-
cell dynamics. But our choice to use this spatial resolution was
motivated by the following factors. First, our model is intended
to be policy relevant, such that it can be executed for any country
or even on a global scale, as is the case with many other ecosystem
service models (Johnson et al.,, 2021). But many countries do
not have land cover data at high spatial resolution. By using
coarser and globally available land cover data, we can enhance
the generalizability of our approach. Moreover, our model still
implicitly captures intra-cell competition since the remaining
stock of agent i depends on the foraging activities of other agents
over the cells in agent i's zero profit zone.

An additional concern is that, at such a coarse resolution,
agents will often forage at the grid cell they start at and will
rarely travel. But again, agent competition will often prevent
this from occurring. Agents with earlier iteration steps will often
deplete the grid-cell that agent i starts out on, forcing agent i to
leave their grid-cell in order to harvest. Moreover, the simulation
only reaches equilibrium when agents have exhausted all net-
positive profits. As stocks are depleted, the agent will have to
go further from their starting point until all possible profits
have been collected.

2.2.1 Case Study Area

We apply the simulation to a case study on firewood collection
in Tanzania. Firewood is the predominant energy source for
many Tanzanians. Fafle and Grote (2013) find that 97.5% of
Tanzanian households use firewood for heating and cooking.
Luoga et al. (2002) argue that firewood provides 88% of all energy
consumption in Tanzania. Firewood consumption is especially
high for households further from urban areas (Luoga et al., 2002).
For low-income African countries such as Tanzania, per person
daily firewood consumption estimates range from 1.0 to 1.8 kg
(Bério, 1984; Biran et al., 2004; Fafle and Grote, 2013), though
economies of scale with respect to the number of household
members do exist (Biran et al., 2004).

Past literature suggests that Tanzanian households
collect firewood for their own consumption, with very little
firewood bought and sold in markets (Fafle and Grote, 2013).
Consumption of firewood may not require pecuniary costs for
the household, but the time costs can be substantial. Average
time requirements generally range from 10 min to over an hour
per day on firewood collection, which is often undertaken by
women and children (Biran et al., 2004; Levison et al., 2018).
Although firewood foraging may impose time costs on the
households, there are many scenarios in which household

TABLE 1 | Summary of key variables and data sources.

Derived variable Description Data inputs used to

produce variable

MODIS 2012 land
use/land cover data

Firewood abundance
mappings

We use spatially explicit data on
land use / land cover and
insights from the literature on
firewood production in Tanzania
to estimate the stock of
firewood present at each
grid-cell at the start of the
simulation.

Arrival cost maps We generate unique arrival cost ~ MODIS 2012 land

Spatial population
mapping

Wage surface

maps for each of the Tanzanian
grid-cells. For each map, there
is a reference grid-cell gj. Al
other grid-cells gmn (mj, nk)
contain estimates of the time
required to travel from gi to
grid-cell gmn

Using gridded population
mappings, we generate a map
in which all grid-cells with
nonzero populations are
defined by a grid-cell-specific
representative agent

We used local wages as a
proxy for opportunity cost.
Given that wages vary
considerably within Tanzania,
we use household survey
information from the National
Panel Survey (2008) to
construct a wage surface, a
map that estimates average
wages over space

use/land cover data,
topographical data
on presence of roads,
rivers (HydroSHEDS),
and terrain
ruggedness

WorldPop Gridded
Population data,
2012

Tanzanian National
Panel Survey (NPS)
2012
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collection for consumption is an optimal strategy that maximizes
the household’s welfare returns to its time allocations.

The model is designed to provide estimates of ecosystem
service value under short-run conditions. It does not incorporate
charcoal production and consumption, given the low usage of
this energy source in Tanzania (Luoga et al., 2002). Relative to
firewood, charcoal is considered more threatening to forest cover
given that its production requires the burning of forested areas
and is often done at larger scales (Hosier, 1993; van der Plas,
1995). But even if firewood consumption does not negatively
impact the tree canopy, household extraction may still prove
unsustainable if the forest cannot regenerate dead wood quickly
enough to keep up with household demand (Luoga et al., 2000).

2.2.2 Firewood Abundance Mappings
Our simulation requires an initial mapping of firewood available
in all grid-cells at the first iteration step. To produce this yield
mapping over Tanzania, we use the Moderate-resolution Imaging
Spectroradiometer (MODIS) Land Cover Type dataset for 2012.
From the MODIS data product, we specifically choose the data
derived from the global vegetation classification scheme (Friedl
et al,, 2010). Figure 4 shows the MODIS data for all of Tanzania
(Panel A) as well as a subset near Mount Kilimanjaro (Panel B).
We calculate the supply of firewood in each grid-cell by
combining MODIS LULC data with literature values on firewood
per hectare on different land types (see Supplementary Section 2
for a discussion of the literature values used for estimated cubed
meters of firewood by LULC classification).

2.2.3 Mapping Agent Locations

We use WorldPop 2012 gridded data to identify the distribution
of the Tanzanian population over space. WorldPop uses
country census data and remotely sensed imagery on settlement
characteristics to estimate annual population counts at the grid-
cell level (Gaughan et al., 2013).

We re-classify the 2012 gridded population maps such that
each grid-cell with population greater than zero is defined as
having one representative agent. This representative agent makes
production choices at its respective iteration step, but its demand
reflects the size of the entire population on the representative
agent’s grid-cell. Hence, if there are x,,, residents on grid-cell
Zmn> the representative agent’s firewood demands are equivalent
to the collective demand of all x,,, residents. This approach
enhances computational efficiency (by reducing the number of
agents) while ensuring that demand still reflects the grid-cell’s
population size.

2.2.4 Calculating a Wage Surface

We obtain wage data using the Tanzanian National Panel
Survey (NPS) 2012 wave, which includes approximately 16,000
individuals in nearly 4,000 households. Every household in the
NPS has a recorded latitude and longitude location, allowing for
spatially explicit matching of ecosystem data and economic data.
To ensure respondent confidentiality, respondent geocoordinates
are randomly displaced by 3-10 km within the respondent’s
enumeration area. Because the displacement is random, it will
reduce the precision of our wage mapping but will not induce

bias. Unfortunately, this random displacement also prevents
robust validation (see Supplementary Sections 1, 5).

We use the NPS data to calculate a wage surface for Tanzania
that reflects the opportunity costs of foraging forest products.
Because firewood can often be collected from common property
areas, the main input cost is determined by what income the
agent could have generated with their time. Because the surveys
only reflect wages for 409 enumeration areas in the country,
we developed a method for creating a wage surface from these
sparse points that predicts the wages in areas unobserved in
the NPS. This method relied on an inverse distance weighted
interpolation algorithm to create a continuous surface based
on the household survey data (see Zimmerman et al., 1999 or
Mueller et al., 2004 for a discussion of different interpolation
techniques relevant to this type of problem). This approach relies
on the assumption that the wages in grid-cells unobserved by
the NPS are systematically related to their (inversely weighted)
distance from observed cells. While we cannot test the validity
of the assumption in this paper, we feel that our estimated wage
surface serves as an improvement over approaches that assume
no geographic component to wages. This process yields a grid-
cell mapping of predicted average wages across all of Tanzania
(shown in Supplementary Figure 1).

2.2.5 Travel and Arrival Cost Networks

Our final data input required for implementing our simulation
is a set of arrival cost maps derived based on traversal cost
mappings. Traversal cost denotes the amount of time it takes an
agent to traverse from one side of one grid-cell to the other when
traveling on one of the cardinal axes. Arrival costs refer to the time
required for an agent starting at a reference grid-cell to arrive to
other grid-cells in the area. We explain the method of deriving
arrival cost and traversal cost mappings below and go into farther
detail in Supplementary Section 3.

To construct the traversal cost maps, we assume that humans
walk at 1.38 m per second on paved surfaces, based on the median
value reported in a 31-country study by Levine and Norenzayan
(1999). We account for slower travel over different land types
based on differences in traversal times relative to paved surfaces
for each land cover classification (see Supplementary Section 3
for travel time per LULC type).

Applying the estimated travel times to the MODIS LULC
data, we mapped the minutes necessary to traverse across a
given grid-cell based on the LULC information alone. We then
transform each grid-cell’s travel time based on the grid-cell’s
intersection with relevant features, such as roads, rivers, and slope
steepness. The final product is a traversal cost map that provides a
comprehensive estimate of the time needed to cross the grid-cell,
assuming all travel occurs on foot. The underlying assumption—
of travel only occurring on foot—will likely not bias our results
because walking remains the dominant mode of transport when
foraging in forests and other rough terrain.

We use the traversal cost function and a route-finding
algorithm to determine the time required to travel from one grid-
cell to all surrounding grid-cells (not just adjacent cells). Route-
finding is a common computational challenge for which there is
no perfect solution. For example, using the most sophisticated
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Panel A: Entire country

Panel B: Mt. Kilimanjaro area

FIGURE 4 | MODIS LULC data processed for Tanzania.
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route-finding algorithm is not computationally feasible across
Tanzania at this resolution, so we developed our own path-
finding algorithm that optimally combines four route-finding
algorithms with varying degrees of precision (presented in

Supplementary Section 3). The composite algorithm matches
grid-cell pairs with the most efficient route-finding algorithm
of the possible four, given the grid-cell's position on the
landscape. For each grid-cell, the optimal route-finding algorithm
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FIGURE 5 | Traversal cost and arrival cost maps over an M by N matrix of grid-cells.

Legend
Supply Original

o
11
[ 25
[ 150
B 500
I 1000+

FIGURE 6 | Firewood supply (m® firewood per grid-cell).

is the one that greatly increases accuracy while greatly reducing Using the composite algorithm, we define a set of arrival cost
computational intensity.” mappings. Each map demonstrates the cumulative traversal cost

“This approach is able to provide a large computation speed increase because many  field) and the simpler algorithms identify the optimal route in a faction of the
route finding problems are quite simple (for instance, traversing a uniformly flat ~ computational time necessary for more complex route-finding algorithms.
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incurred when traveling from a reference grid-cell g, to other
grid-cells gj based on the optimal travel route. Each arrival cost
map is constructed such that it includes all grid-cells gjx where
a representative agent starting at g,,, can obtain zero or positive
profit from foraging at gj given the initial state of the landscape.

Figure 5 shows an example of calculating traversal and
arrival cost. The left image shows the traversal cost mapping,
which uses topographical information to estimate the amount
of time required to traverse a given grid-cell. The red
paths where traversal costs are highest correspond with
rivers, and the blue lines where traversal costs are lowest
correspond with roads. The image on the right image
shows the arrival costs based on a reference grid-cell at
the center of the map. This tells us the amount of time
required to walk from the center of the map to all other
grid-cells based on the traversal cost map and our route-
finding algorithm.

2.2.6 Agent Labor Endowments

The labor endowment of each agent is taken to be exogenous
in this model. Each agent in this model represents the full
population of the 500- by 500-m grid-cell. We define the labor
endowment of an agent as the population of the grid-cell

multiplied by the labor participation rate. Future work can
easily extend this analysis to match location-specific labor
participation rates, but this was not available for Tanzania.
Figure 8 presents the total labor endowment available at the
beginning of the simulation.

2.3 Sensitivity Analysis

As detailed in SI2, our firewood abundance maps are sensitive
to assumptions we make about the stock of firewood over
different land cover types in Tanzania. We further evaluate the
sensitivity of our results to these assumptions by estimating
our model under a different set of assumptions. We define
eight alternative approaches to estimating the initial firewood
stock based on land cover type. To determine these “scenarios,”
we identify the assumptions in our model with the greatest
uncertainty, given the range of estimates in the literature. We
then modify our firewood stock predictions to see how these
assumptions change when we believe that the firewood stock on
a given grid-cell is higher or lower than in our main model.
For example, given the broad range of estimates of the stock
of firewood in Tanzanian forests, we re-run our simulation
with a firewood abundance map that assigns forest grid-cells
the same firewood stock as shrub grid-cells. We provide a full

Legend
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0
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1 150
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B 1000+

FIGURE 7 | Supply extracted (m*® firewood per grid-cell).
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FIGURE 8 | Initial labor endowment.
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FIGURE 9 | Labor used to purchase fuel substitute.

Frontiers in Ecology and Evolution | www.frontiersin.org 12

June 2022 | Volume 10 | Article 845435


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Johnson and Salemi

Agents on a Landscape

Labor
Endowment Used
to Collect
Firewood
(effective full-
time laborers)

0
500
[ 1000
B 1500
I 2000

FIGURE 10 | Labor used to collect firewood.

account of the different firewood abundance map production
schemes in the Supplementary section (Supplementary Table 2
and Section 5).

Our model is also sensitive to the accuracy of our wage surface.
The random spatial displacement of the village locations from
which we derive the wage estimates for our wage surface is a
source of measurement error. Consequently, we evaluate the
results of our simulation when we set the wage lower (or higher)
by reducing (or increasing) the average wage by the average
within-village standard deviation of wages in the 2012 NPS data,
which is 13.1%.

3 RESULTS

We present results that show where and how agents gather and
gain utility from firewood based on our agent-based simulation.
In our sensitivity analysis, we also evaluate how the resulting
equilibrium shifts as our assumptions about the landscape or
the agents change.

3.1 Calculating Supply

We calculate the supply of firewood by combing LULC data
with literature values on firewood per hectare on different land
types. As discussed in the data section, the LULC data comes
from MODIS, a land sensing and classification project by NASA.
MODIS identifies 16 land use categories, of which five are forest,
two are shrublands and two are savannah. We apply the literature
values discussed in Supplementary Section 2 and present the per
grid-cell abundance values for firewood in each of these 16 land
categories. In Supplementary Section 5, we report the aggregate
firewood supply in both the baseline scenarios and the alternative

scenarios used for our sensitivity analysis. Because the results
of this model are sensitive to how we parameterize firewood
abundance, the alternative scenarios show us how results change
when we make different assumptions about how much firewood
is available for each land type.

Figure 6 shows the supply of firewood available before the
first iteration of gathering. Most land is in shrublands and
savannah, though there exist areas of dense forest around Mount
Kilimanjaro and in the natural reserve land in the southeast and
northwest. The values presented for abundance are biophysical
observations only. The agent considers the firewood stock on a
grid-cell, taking into account the value of fuel, their local wage,
and the travel related collection costs.

After the simulation has run, forests near agents who find it
profitable to forage will be depleted. This is shown in Figure 7,
which plots the cubic meters of firewood supply taken from
each grid-cell. The areas shown as foraged are determined by
where demand is the greatest, where supply is the greatest, and
where costs make collection relatively more valuable than the
fuel substitute. We find high degrees of foraging on the southern
slopes of Mount Kilimanjaro, in the shrublands to the south
of Lake Victoria, and along the arterial transportation corridors
connected to Dar es Salaam. These results suggest that increasing
supply leads to more foraging when the supply is within an agent’s
zero profit zone, meaning it is nearby. Higher accessibility in
supply leads to more foraging.

3.2 Calculating Consumption and

Demand
For every cubic meter of firewood gathered, there is a
corresponding amount of firewood that arrives at an agent’s
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FIGURE 11 | Profit earned by each agent.

household location and is consumed. We can characterize the costs are accounted for; based on the amount of labor spent by
benefits of this firewood consumption in multiple ways: based each agent on foraging; or based on the raw amount of firewood
on the value of firewood that accrues to each agent after travel that arrives at the agent’s household. The last measure, while
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FIGURE 12 | Travel time spent in minutes per household per year (near Mt. Kilimanjaro).
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very easy to define, is very difficult to interpret because demand
is determined endogenously by the agent’s household utility
maximization decisions. As we point out while introducing our
model, firewood and leisure are not substitutes in consumption,
and households experience diminishing marginal utility as they
consume increasing amounts of one good at the expense of
the other. A household that consumes a lot of firewood may
in fact be worse off than a household that consumes slightly
less firewood, since the marginal returns to the household for
consuming the last units of firewood are low and come at the
expense of leisure time, another good the agent values. Thus, care
must be taken when evaluating consumption of firewood with
respect to agent welfare.

The initial distribution of labor (Figure 8) is assumed to
be exogenous, but it endogenously determines labor allocation
choices. Figure 9 presents the amount of labor on each grid-
cell that was used to purchase the fuel substitute (usually
kerosene). A clear result of this model is that locations with high
population density purchase the majority of the fuel substitute.
This is because the agents on the edges of the urban centers
deplete all nearby firewood and thus everyone on the interior
of the dense population area has no profitable firewood available
to forage.

The majority of labor used to satisfy fuel demand was
dedicated to collecting firewood, as shown in Figure 10. The
values shown in this figure reflect agents choosing optimal travel
routes and making the utility maximizing choice among foraging,
laboring and leisure.

Accounting for labor usage and supply of firewood taken, we
can now calculate the profit (or if desired, utility) that each agent
generates. Figure 11 plots the value in 2008 TSH that each agent
collects from foraging at a national scale (top) and zoomed in to
the area around Mt. Kilimanjaro.

Figure 11 highlights the complexity of behavior that arises
in response to competition. In the western area of the Mt.
Kilimanjaro subplot, we observe agents at the outskirts of a
high quality forest who obtain a high, positive profit from
foraging, with a decreasing gradient of profit obtained as we move
southwest away from the forest boundary. The decrease arises
because the agents farther to the south must travel ever farther
to get the firewood. Note that the agents plotted with yellow or
blue (lower profits) may well gather the same (or more) firewood
than the agents right on the border of the forest due to tradeofts
implied by their household optimization decisions.

Next, we compare our predictions of aggregate firewood
collected to values derived from past literature on firewood stock

Frontiers in Ecology and Evolution | www.frontiersin.org

June 2022 | Volume 10 | Article 845435


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Johnson and Salemi

Agents on a Landscape

in Tanzania. Values from existing studies suggest that annual
firewood demand is between 25.8 and 55.5 million m?. Our
primary model predicts 66.7 million m* of firewood will be
gathered. This is above, but within the order of magnitude
reported in the literature. The overestimated value here is very
likely a result of wrong assumptions on mean harvestable volume
per hectare. The range of values identified from the literature
(14-117 m*ha~'year™") is based on a relatively small sample of
land which was primarily covered in woodlands. Newer estimates
suggest the value should be closer to the minimum value of
this distribution than to the mean value, which we used. And
since the majority of Tanzania is shrublands and savannah, which
may have lower densities of firewood, it is not surprising that
using the woodlands estimates would result in overstating the
national effect.

3.3 Sensitivity Analysis

In the SI, we report the demand met and the profit earned
for each scenario, along with a comparison of change in profit
compared to the baseline scenario, detailed in SI Table S.5.2. This
table shows that several of the scenarios with lower firewood
density yield aggregate firewood collection outcomes that are
closer to literature values. For instance, a scenario with reduced
firewood concentrations on forests and shrublands scenario
predicts approximately 41.4 million m®, which is comfortably
within the range of estimated consumption. See Supplementary
Figures 5.1 for a plotted comparison of these scenarios and their
deviation from the baseline assumptions.

4 DISCUSSION AND CONCLUSION

We apply agent-based simulation to firewood collection in
Tanzania. By doing so, we account for geospatial heterogeneity
and inter-agent competition for foraging goods to evaluate
where NTFP extraction occurs and the resulting profits for
households. Practitioners of ecosystem service valuation are eager
to include NTEFP in their valuation exercises, but challenges in
conveying spatial heterogeneity and non-cooperative behavior
have prevented widespread application of non-timber forest
product valuation to conservation planning. Our agent-based
simulation aims to break through the barrier that has prevented
the valuation of non-timber products in forests, and thus, provide
amethod for more accurately understanding values of forests that
are very often missed.

Our study provides key insights into the value of NTEFP.
Households in countries such as Tanzania often harvest NTFP
for private consumption, so we cannot rely on a market price
as an indicator of the benefit that society obtains from these
products. Without a market price, estimates of the value of intact
natural lands that generate NTFP will under-estimate the benefits
of conservation. Our model yields pecuniary estimates of the
value of a year’s worth of firewood in Tanzania: 14,800 billion
2008 Tanzanian Schillings (TSH), about 12 million 2008 USD.
This high aggregate value highlights the importance of thinking
carefully about land use policy: conservation can help ensure
that poor households can access firewood and maximize their

welfare, but conservation policies that prevent human entry onto
landscapes with firewood stocks may also hurt those who derive
high benefits from firewood harvesting. Our model also provides
insights into where people harvest firewood most, which can
help policymakers determine optimal place-specific policies with
respect to conservation and human activity.

The primary limitation of our model is that we cannot fully
validate it. We compare aggregate firewood harvests in our model
to estimates from the literature: these are within the same order
of magnitude. But such aggregations can be misleading and belie
large biases only discernable at higher resolutions (Levin, 1992;
May et al., 2015). As data limitations currently prevent further
validation, we urge our readers to consider our current study as a
“proof of concept.”

The emphasis of this model (and of most ABS) is not to predict
specific actions, but to describe overall outcomes of the system
and understand what affects these outcomes, a framework known
as pattern-oriented modeling (Grimm et al., 2005). Although our
model’s predictions appear valid on an aggregate level (relative
to other national estimates), it remains difficult to validate at
the grid-cell level due to the random displacement of village
geolocations in the NPS. If these data were not obscured, it
would be straightforward to compare model predictions on
how many hours each agent will forage for firewood, and then
compare these predictions to household survey data on firewood
collection. Specifically, household survey data that report hours
spent foraging could be compared against the foraging and travel
time predicted by the model, which is shown in Figure 12
for agents near Mount Kilimanjaro. Note that there is extreme
variation at small scales. This is an expected outcome of the model
given that firewood is not transported very far and that it has high
transportation costs, but it also highlights the difficulty of making
specific predictions on agent actions.

Future research can use our modeling and simulation
approach, along with locally representative data, to estimate
NTFP extraction for particular contexts. The model would
indeed benefit from additional calibration using more extensive
household and bioclimatic data. Researchers can also use our
model to examine how NTFP foraging and household outcomes
change under different land use policy scenarios. Such analyses
would highlight positive or negative spillovers from policies that
influence household access to NTFP, such as rezoning common
pool forests as protected areas.
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