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Hormonal pathways have been proposed to be key at modulating how fast individuals
grow and reproduce and how long they live (i.e., life history trajectory). Research in
model species living under controlled environment is suggesting that insulin-like growth
factor 1 (IGF-1), which is an evolutionarily conserved polypeptide hormone, has an
important role in modulating animal life histories. Much remains, however, to be done
to test the role played by IGF-1 in shaping the phenotype and life history of animals in
the wild. Using a wild long-lived bird, the Alpine swift (Tachymarptis melba), we show
that adults with higher levels of IGF-1 had longer wings and shorter telomeres. Hence,
telomeres being a proxy of lifespan in this species, our results support a potential role of
IGF-1 at shaping the life-history of wild birds and suggest that IGF-1 may influence the
growth-lifespan trade-off.
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INTRODUCTION

How fast an individual grows and reproduces and how long it lives are referred to as its life
history trajectory (Flatt and Heyland, 2011). Although life history traits exhibit a wide range of
variation among species, consistent patterns of covariation between traits are widespread (Gaillard
et al., 1989). Such patterns of covariation are thought to be regulated by competitive allocation of
limited resources (Stearns, 1992), although other proximate mechanisms have also been suggested
(Harshman and Zera, 2007). Accordingly, hormonal pathways have been proposed to play a key
role in regulating life-history trade-offs (Ricklefs and Wikelski, 2002). One candidate hormone
is insulin-like growth factor 1 (IGF-1), which is an evolutionarily conserved polypeptide known
to have effects on three key life-history traits: growth, reproduction, and survival (Swanson and
Dantzer, 2014; Lodjak and Verhulst, 2020). Moreover, IGF-1 is suspected to be involved in the
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regulation of the trade-offs among these three life-history
traits, but this hypothesis has only been scarcely tested
in free-living animals (Swanson and Dantzer, 2014;
Lodjak and Verhulst, 2020).

In laboratory models (i.e., worms, flies, and mice), IGF-
1 signaling and circulating levels are linked to the growth
of somatic (Musarò et al., 2001; Yakar et al., 2002) and
reproductive structures (Kaaks et al., 2000), gonadal function
regulation (Bartke et al., 2013), and reproductive performance
(Li et al., 2011). Moreover, the inhibition of IGF-1 signaling is
associated with increased lifespan (Holzenberger et al., 2003),
but the proximate mechanisms underlying this association are
less well understood. Although IGF-1 levels are highly repeatable
within individuals, 0.41–0.85 (Roberts et al., 1990; Yuan et al.,
2009), they respond to environmental fluctuations on nutritional
resource availability and temperature (Gabillard et al., 2003;
Sparkman et al., 2009; Regan et al., 2020). Therefore, studies
on the role played by IGF-1 on growth, reproduction, and
survival, in natural settings may be particularly relevant. In
free-living animals, ecological conditions have been shown to
influence the direction of the links between IGF-1 and life-history
traits. For example, in free-ranging garter snakes (Thamnophis
elegans) the presence of a positive association between IGF-
1 levels and adult body size is dependent on the habitat type
(Sparkman et al., 2009). So far, general conclusions reached in
laboratory models, on the positive association between IGF-1
with growth have been (at least partially) confirmed in several
non-model species (inter-specific comparison, Lodjak et al.,
2018). Moreover, although the number of studies evaluating the
link between IGF-1 and lifespan in non-model species has been
very limited, they mostly confirmed the negative association
between IGF-1 and lifespan reported in model organisms, both
at the interspecific (Swanson and Dantzer, 2014; Lodjak et al.,
2018) and at the intraspecific level (Lewin et al., 2017, but
see Chaulet et al., 2012; Lendvai et al., 2020). Still, the nature
of the proximate mechanisms implicated remains elusive, and
one of the putative candidates is oxidative stress (Holzenberger
et al., 2003), which is known to accelerate the shortening of
telomeres (Reichert and Stier, 2017), one of the hallmarks of aging
(López-Otín et al., 2013).

Although understanding variation in lifespan is a major focus
of evolutionary ecology, accurately measuring lifespan in the wild
can be logistically challenging (Nussey et al., 2008). Remarkably,
telomere length has been shown to be linked to life expectancy
in non-model species (Wilbourn et al., 2018). Telomeres are
non-coding sequences of repetitive DNA located at the end of
linear chromosomes that shorten with each cellular replication
(Backburn and Epel, 2012), in response to cellular stressors
including oxidative stress (Reichert and Stier, 2017), and under
increased metabolic demand (Casagrande and Hau, 2019). Both,
IGF-1 and telomere length, have been shown to diminish with age
(Moverare-Skrtic et al., 2009) and are linked to longevity (Deelen
et al., 2013). The association between IGF-1 and telomeres has
mainly been explored in laboratory animals and human patients
exhibiting pathological disorder of their somatotropic axis as
well as cancer cell lines (Aulinas et al., 2013; Matsumoto et al.,
2015). While cross-sectional and correlative studies in humans

and laboratory animals showed that IGF-1 and telomere length
are positively related (Barbieri et al., 2009; Moverare-Skrtic et al.,
2009; Yeap et al., 2019), studies conducted in cell lines found a
negative association between these variables (Matsumoto et al.,
2015; Matsumoto and Takahashi, 2016). Hence, the direction
and strength of association between IGF-1 and telomeres is still
equivocal, and much remains to be done to understand whether
telomere dynamics is part of the mechanisms underlying the
covariation observed between IGF-1 and lifespan.

The Alpine swift (Tachymarptis melba) is an insectivorous
migratory bird that live up to 26 years of age and has a slow
pace of life (i.e., late age at sexual maturity, only one reproductive
attempt per year, and small clutch size per breeding attempt)
(Bize et al., 2009). The fact that adult Alpine swifts with longer
telomeres have higher survival rate (Bize et al., 2009) makes them
a good model for exploring the links between IGF-1 and telomere
length. We propose that, if IGF-1 is a proximate mechanism
underlying trade-offs between growth and lifespan, then IGF-
1 should show a positive association with body size and a
negative relationship with telomere length. As effects of IGF-
1 on size can be tissue specific (Sharma et al., 2012), and thus
may affect the growth of different body parts in dissimilar ways,
we measured wing length, sternum length and body mass as
proxies of body size.

METHODS

Fieldwork was carried out in 2018 in two Alpine swift colonies
located in Bienne and Solothurn, Switzerland, where nestlings
have been ringed each year since at least 1968 and adults have
been subjected to an individual based study since 2000 (Bize et al.,
2009). Forty-three adult Alpine swifts were captured on their
nests or roosting during the breeding season. After capture, each
adult was weighed with a digital scale to the nearest 0.1 g, the
same person (PB) measured their wing with a ruler to the nearest
mm and their sternum with a caliper to the nearest 0.1 mm. Wing
length was measured as the distance on the closed wing from
the foremost extremity of the carpus to the tip of the longest
primary feathers; the wing being flattened and straightened to
give maximal wing length. Sternum was measured from one end
to the other of the keel. We collected a 200 µL blood sample
from the foot vein using heparinized microvette tubes (Sarstedt,
Germany) to quantify telomere length and IGF-1 levels. Blood
samples were kept on ice in the field before being centrifuged at
10 000 g × 10 min to separate plasma from red blood cells, and
then stored at –80◦C until laboratory analyses. The Alpine swift
is a monomorphic bird species, and thus adults were genetically
sexed (Bize et al., 2005). The exact chronological age was known
for 38 birds that had been ringed as nestlings (range: 2–17 years).

Telomere Length
Multiplex quantitative PCR was used to quantify relative telomere
length (RTL). Full protocols for genomic DNA extraction using
nucleated red blood cells and of multiplex qPCR description
adapted for swifts are available in Criscuolo et al. (2017).
The concentration and purity (presence of residual proteins or
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solvents) of the extracted DNA were checked with a Nano-Drop
ND-1000 spectrophotometer (Thermo Fisher Scientific, MA,
United States). The quality and the integrity of DNA were
confirmed by gel electrophoresis on 1% agarose gels stained with
ethidium bromide (checking for the absence of DNA smears
corresponding to degraded DNA). Our 43 adults’ RTL were
measured within a batch of chick and adult samples (total
109 samples) measured in duplicates over one 384 wells plate.
Amplification efficiencies of control and telomere sequences
were of 99.6% (identical for both sequences) and r2 of dilution
curves of 0.97 and 0.98, respectively. Based on duplicates
within plates, intra-class correlation coefficient for final RTL
values was 0.689.

Insulin-Like Growth Factor-1
IGF-1 concentrations were measured from 10 µl of plasma using
an enzyme-linked immunosorbent assay (for further details see
Mahr et al., 2020). We used chicken plasma in quadruplicates to
determine intra- (5.3%) and inter-assay coefficient of variation
(10.4%). We validated the assay for the Alpine swifts by
showing that serially diluted plasma samples were parallel with
the standard curve.

Statistical Analyses
Statistical analyses were performed in R version 4.0.0, using
the R package lmerTest (Kuznetsova et al., 2017; R Core
Team, 2021). A preliminary analysis exploring the effect of
sampling date, hour, and breeding site on IGF-1 levels showed
that only sampling date accounted for variation in IGF-1
levels; sampling date was therefore retained as a covariate
when analyzing variation in IGF-1. Firstly, we tested for an
association between IGF-1 and wing length, sternum length
and/or body mass by fitting a general linear model with IGF-
1 as response variable and all three biometric traits, plus
sampling date, as explanatory variables (model 1). Variance
inflation factors in this first model were below 1.24 indicating
no collinearity issues between biometric traits. Secondly, we
investigated how IGF-1 (response variable) was related to
telomere length by including as explanatory variables telomere
length while controlling for possible confounding effect of
chronological age and traits identified as significant in our model
1. Sample sizes vary across analyses due to missing values in
some of the traits.

RESULTS

Plasma levels of IGF-1 in adult Alpine swifts were positively
associated with wing length (Figure 1A and Table 1A) but
not related to body mass and sternum, those results being
obtained after controlling for the date of sampling (Table 1A).
Adults sampled later in the season had lower IGF-1 levels
(Table 1). Hence, wing length and sampling date were included
as covariates in the follow-up analysis. Adult birds with higher
IGF-1 levels had shorter telomeres (Figure 1B and Table 1B),
after controlling for the date of sampling, wing length, and
chronological age (Table 1B).

FIGURE 1 | Panel (A) shows the relationship between wing length and
plasma levels of insulin-like growth factor 1, in adult Alpine swifts. Panel (B)
presents the association of relative telomere length and plasma levels of
insulin-like growth factor 1, in adult Alpine swifts.

DISCUSSION

Overall, as predicted, we found that circulating levels of IGF-
1 were positively associated with wing length and negatively
to telomere length, in adult Alpine swifts. Those opposite
associations of IGF-1 with body size and telomere length support
the idea that IGF-1 may regulate, at least partially, the life-history
of this long-lived bird species.

Our results show that adult birds with higher levels of IGF-1
had longer wings, which matches recent findings in adult bearded
reedlings (Panurus biarmicus) showing a positive association of
between IGF-1 levels and tail feather length (Mahr et al., 2020)
and in nestling pied flycatchers (Ficedula hypoleuca) showing
a positive association between IFG-1 and growth and size at
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TABLE 1 | Linear models showing positive association between plasma levels of
insulin-like growth factor 1 and wing length (model 1), and negative relation
between plasma levels of insulin-like growth factor 1 and relative telomere length
(model 2), in adult Alpine swifts.

(A) Model 1: Linking IGF-1 to body size

Variable Estimate ± SE F P

Wing 1.46 ± 0.71 4.21 0.049

Sternum 2.34 ± 2.45 0.92 0.34

Body mass −1.06 ± 0.59 3.20 0.08

Sampling date −1.14 ± 0.51 4.91 0.03

Residual DF 30

(B) Model 2: Linking IGF 1 to telomere length

Variable Estimate ± SE F P

Telomere length −16.62 ± 5.56 8.92 0.006

Wing 0.83 ± 0.63 1.75 0.20

Chronological age −0.54 ± 0.70 0.59 0.45

Sampling date −0.68 ± 0.49 1.93 0.18

Residual DF 29

Table shows results from the initial model, no stepwise deletion was performed.

fledging (Lodjak et al., 2016). The positive association between
IGF-1 and wing length in adult swifts may be caused either by
the effects of IGF-1 on wing bone growth early in life and/or
primary feather growth. An experimental elevation of IGF-1
in adult bearded reedlings had no effects on feather growth,
but increased moult intensity (Lendvai et al., 2021), whereas an
experimental administration of IGF-1 to nestling pied flycatchers
positively affected the growth of their tarsi but not of their
wings (Lodjak et al., 2017). Hence, the present finding in adult
Alpine swifts of a link between IGF1-1 and wing length is likely
to be dependent on wing bones length rather than primary
feathers length. A positive effect of IGF-1 on bone growth has
been reported on numerous occasions [e.g., Yakar et al., 2002;
Lodjak et al., 2016; Lendvai et al., 2021]. The effect of IGF-
1 on bone growth appears, however, to be stronger on short
than long bones, at least in laboratory models (Wang et al.,
2006). It may explain why we only observed an association
between IGF-1 with wing bones length (carpals and metacarpals)
but not with sternum length, with the carpals and metacarpals
being short boned whereas the sternum is one of the longest
bones in swifts. The contrasting finding between IGF-1 and wing
length in experimentally manipulated nestling pied flycatchers
and adult swifts may come from differences between species in
the influence of IGF-1 on wing bone growth, considering that
Alpine swifts spend most of their lifetime aloft (Liechti et al.,
2013). Hence, one hypothesis is that the positive association
between IGF-1 and wing length in adult swifts comes from
early-life allocation of resources into wing bone growth. This
hypothesis also assumes that IGF-1 should be repeatable through
the individual’s life, from the nestling to adult stage, which
has been previously reported (Roberts et al., 1990; Yuan et al.,
2009). In this study, IGF-1 was found to vary with sampling
date, and thus IGF-1 may potentially change during the breeding
season. Yet, variation in IGF-1 levels among individuals can
still be higher that those within individuals, making the trait

flexible but repeatable. Many examples of this can be found
in the literature regarding different physiological traits such as
glucose levels (Montoya et al., 2018, 2020), antioxidant defenses
(Récapet et al., 2019) or mitochondrial function (Stier et al.,
2019). Further studies are now needed in swifts and other bird
species to examine the repeatability through individual’s life in
IGF-1 and test for effects early in life of IGF-1 on the growth
of short (e.g., carpals and metacarpals) and long (tarsi, sternum)
bones.

Our results also show that IGF-1 and telomere length
were negatively related in adult swifts. Studies in laboratory
models and humans indicate that IGF-1 has a positive effect
on telomerase activity (Bayne and Liu, 2005), suggesting that
IGF-1 and telomere length could be positively correlated (e.g.,
Barbieri et al., 2009; Moverare-Skrtic et al., 2009; Yeap et al.,
2019, but see Matsumoto et al., 2015; Matsumoto and Takahashi,
2016). However, the experimental disruption of IGF-1 signaling
pathway in laboratory animals has been found to extend lifespan
(Holzenberger et al., 2003; Yuan et al., 2009), and the few studies
performed in free-living animals corroborate such an inverse
correlation between IGF-1 and lifespan (Lewin et al., 2017; Lodjak
and Mägi, 2017) or in our study with a proxy of lifespan such
as telomere length (Sirman, 2019). So, if the link between IGF-
1 and telomere length is not due to telomerase, an alternative
mechanism may be oxidative stress. Interestingly, reduced IGF-
1 signaling has also been associated with increased in vivo
resistance to oxidative stress in laboratory models (Holzenberger
et al., 2003). Furthermore, administration of IGF-1 in wild birds
was found to lead to greater oxidative damage (Lendvai et al.,
2020; Vágási et al., 2020) and higher activity of glutathione
peroxidase (Lodjak and Mägi, 2017; Lendvai et al., 2020), the later
possibly reflecting up-regulated antioxidant activity in response
to oxidative stress (Lodjak and Mägi, 2017; Lendvai et al., 2020).
Variation in oxidative stress and telomere length have been linked
to the aging process, with individuals with enhanced resistance
to oxidative stress and/or longer telomeres having higher annual
survival or better fitness (Bize et al., 2009), and importantly
exposure to oxidative stress is thought to accelerate telomere
shortening (Reichert and Stier, 2017; but see Pérez-Rodríguez
et al., 2019). Therefore, a negative association between IGF-1
and telomere length as reported here in adult swifts and other
previous studies (Barbieri et al., 2009; Moverare-Skrtic et al.,
2009; Yeap et al., 2019) may come from cascading effects of IGF-1
on oxidative stress, affecting in turn telomere dynamics through
direct or indirect pathways (Casagrande and Hau, 2019), an idea
that requires now further empirical examination.

In conclusion, negative associations of IGF-1 with wing and
telomere length found here suggest that IGF-1 may play a role
in regulating life-histories, and welcome future studies exploring
the association of IGF-1 with direct measurements of growth and
lifespan in wild organisms.
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