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With the rapid development of global industrialization and urbanization, as well as the
continuous expansion of the population, large amounts of industrial exhaust gases and
automobile exhaust are released. To better sound an early warning of air pollution,
researchers have proposed many pollution prediction methods. However, the traditional
point prediction methods cannot effectively analyze the volatility and uncertainty of
pollution. To fill this gap, we propose a combined prediction system based on fuzzy
granulation, multi-objective dragonfly optimization algorithm and probability interval,
which can effectively analyze the volatility and uncertainty of pollution. Experimental
results show that the combined prediction system can not only effectively predict the
changing trend of pollution data and analyze local characteristics but also provide strong
technical support for the early warning of air pollution.

Keywords: atmospheric contamination prediction, temporal convolution network, fuzzy information granulation,
multi-objective dragonfly optimization algorithm, interval prediction

INTRODUCTION

With the continuous development of the economy and the rising living standards, the deterioration
of the environment, land desertification, greenhouse effect, and other problems have begun to
plague us. In addition, the United States and other developed countries have classified indoor
air pollution into the five environmental factors that endanger human health. The Health Effects
Institute from the US released “State of Global Air (2020),” which indicates that, at least 6.7 million
people worldwide, will die from chronic exposure to air pollution in 2019 (State of Global Air,
2020).

Up to now, many studies have been conducted to study the problem of air pollution. Recently, to
accurately measure the quality of air, particulate matter (PM) has become a significant and common
index to be monitored (Beaulant et al., 2008). PM2.5 is one type of PM, which means that the
particulate matter in the ambient air has an aerodynamic equivalent diameter less than or equal to
2.5 µm (van Donkelaar et al., 2006). It can be suspended in the air for a long period, and the higher
the concentration of its content in the air, the more serious the air contamination. Compared with
coarser atmospheric particles, PM2.5 has the following features: small particle size, large area, strong
activity, easy adhesion, and long residence time in the atmosphere; thus, it has a greater impact on
human health and the quality of the atmospheric environment (Sun and Li, 2020).

As a result, PM2.5 has become a worldwide problem to be solved, and many institutions have
established various methods to accurately monitor PM2.5 concentrations (McKeen et al., 2007;
Borrego et al., 2011; Air Quality Expert Group, 2012; Bergen et al., 2013; Wakamatsu et al., 2013).
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Bai et al. (2019) proposed the DL-SSAE method as an
autoencoder model to consider the advantages of seasonal
analysis and deep feature learning to predict the hourly PM2.5
concentrations. Irina et al. developed the Community Multiscale
Air Quality method with five different data preprocessing
strategies to analyze the concentrations of PM2.5, and they found
that the Kalman filter correction could compute the most precise
results (Djalalova et al., 2015). In addition, Samia et al. (2012)
combined autoregressive integrated moving average (ARIMA)
and Ann to enhance predicting performance, and the results
show that the proposed hybrid system could be used to efficiently
forecast and provide useful air quality information. In addition,
multiple linear regression have been utilized to forecast PM2.5
or PM10 concentrations in the air to make decisions related to
traffic restrictions in the future or support the control of air
quality (Akyüz and Çabuk, 2009; Genc et al., 2010). Moreover,
Banik et al. (2020) employed long short-term memory (LSTM)
to analyze wind speed in various seasons, and they concluded
that LSTM performs better than Elman and non-linear auto-
regressive models. Osowski and Garanty (2007) used support
vector machine (SVM) to decompose the original data and to
predict the air quality of Poland based on wavelet representation.
Another common method is the gray model (GM), which was
employed by Pai et al. After comparing with other models for
predicting the performance of PM2.5 and PM10 concentrations of
Taipei, they demonstrated that GM (1, 1) could be a useful early
warning system for nearby citizens (Pai et al., 2013).

Additionally, the temporal convolutional network (TCN) is
widely used to achieve more accurate performance. For instance,
Zhu et al. (2020) solved the problem of long-term dependencies
and performance degradation of a deep convolutional model by
TCN, which shows that the power system with TCN performs
better and more stably compared with others. Li et al. (2018)
predicted oil consumption with various parameters according
to TCN and found that the proposed model could obtain more
satisfying results and help make decisions for the energy market.
Wei designs a convolutional spiking neural network to deal with
temporal datasets, which corrects and optimizes the historical
performance, and more accurately forecasts wind speed. Also,
this method could quantify the differences in predicting the
performances that resulted from uncertainties (Wei et al., 2021).
Chen et al. (2020) established a structure with the convolutional
neural network (CNN) to forecast associated sequences and to
handle more complex seasonal problems, which helps make
useful decisions to assess power generation by providing more
evidence. Yang W. et al. (2020) combined empirical mode
decomposition (EMD) and TCN to forecast the remaining useful
life and reduce the cost during the operation. Tian and Wang
(2021) applied the temporal convolution networks with the
quantile regression (TCNQR) method to judge the period of
health and operation. In this study, we used TCN as one of the
forecasting tools to obtain the results of air quality.

The recently developed approaches mainly belong to point
forecasting, which includes some disadvantages and limitations
(Wang J. et al., 2021). For example, Wang et al. (2022b) have
pointed out that the point predicting approaches produce an
unavoidable error during the operation, which might result in

immense risks for an electric power system since it only depends
on the accurate results. In addition, a considerable amount of
time and high cost will be wasted if precise information cannot
be provided, which is also a loss to the entire power system.

Unlike point prediction, which gives a “specific numerical
prediction,” the interval forecast aims for a future period and
gives an interval in which the predicted values are likely
to occur, with a prediction interval corresponding to the
expected probability. The interval forecast gives more prediction
information than the point forecast, which means that we can get
the value of the point forecast within a certain interval based on
a certain probability, thus more scientifically characterizing the
uncertainty of the model forecast.

As for data preprocessing, information granulation (IG) is
a technique for studying the formation and representation of
information grains and for information pre-processing. Fuzzy
information granulation (FIG) is one type of IG first proposed
by Zadeh (1997) to discuss how to deal with fuzzy datasets.
FIG has been employed to acquire original data of fluctuating
traffic and construct a traffic flow, predicting the approach with
interval forecasting (Guo et al., 2018). Zhang and Na (2018)
applied FIG to transform the historical agricultural price into
FIG particles, and the forecasting results show that the proposed
price predicting system model performs more efficiently with
better accuracy. FIG could also be used in the power system.
For example, the authors utilize FIG to remove the variability
of the historical series of wind and solar energy, and the
experimental results demonstrate that the developed approach
performs efficiently and could help decision-makers stabilize the
energy system (He et al., 2019b). Additionally, to forecast the
actual streamflow data, FIG is combined with support vector
regression (SVR) to provide more precise computation and
eliminate the fluctuation of the streamflow, which means that the
proposed model has a more accurate prediction interval of the
hydrologic system (He et al., 2019a).

According to the existing research about PM2.5 concentrations
and forecasting, we found that the majority of the models are
combined models. Compared with the traditional single model,
the combined models avoid the error of individual approaches
and yield more accurate results. Therefore, more researchers have
adopted combined models for prediction. For example, Wang S.
et al. (2021) applied a novel wind power combined predicting
system to obtain more precise performance, which supports
further research in wind generation. Wang et al. (2022a) used
four foundation models and optimized the weight coefficient
using a multi-objective water cycle algorithm (MOWCA) to
predict hourly PM2.5 concentrations. Details of a single model
and combined models are summarized in Table 1. In Table 2 for
detailed nomenclature in the article.

Based on the analyses above, this study employs a novel
combined predicting system to monitor PM2.5 and PM10. It
integrates FIG, TCN, ARIMA, and LSTM to forecast PM2.5 and
PM10 concentrations, then uses a weight generation structure
to compute each coefficient, and finally combines the single
approaches to achieve a better result of the experiments.

The primary contributions and innovations of this study are
shown as follows.
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TABLE 1 | Summary of predicting approach types.

Category References Advantages Disadvantages

Physical model Xiao et al., 2019 Physical model concentrates on long-term
predicting data series where it could perform
better

Physical models have difficulties in
predicting data series in short term, and
they need to collect sufficient data as
an initial dataset

Statistical approach

Auto-regressive moving average
(ARma)

Wang et al., 2012; Wang and
Hu, 2015

Statistical approaches achieve satisfying
performance in dealing with linear data

The assumption of statistical approach
is tough to realize, and they cannot
operate well in non-linear patterns

Auto-regressive integrated moving
average (ARIMA)

Grey method (GM) Ding, 2019

Artificial intelligence

Artificial neural network (Ann) Wang et al., 2016

Support vector machine (SVM) Zhang et al., 2019

Fuzzy logic (FL) Sfetsos, 2000

Back propagation neural network
(BPnn)

Bin et al., 2014 They are suitable to handle non-linear data
series and could obtain better results and
stability.

Artificial intelligence approaches cannot
perform well due to the over-fitting
problem, and single approaches have
some limitations.

General regression neural network
(GRnn)

Majumder and Maity, 2018

Long short-term memory (LSTM) Banik et al., 2020

Particle swarm optimization (PSO) Liu W. et al., 2019

Combined model

WPD-PSO-BPnn Liu H. et al., 2019

FT-CS Yang H. et al., 2020 Combined models consider the strengths and
weaknesses of single approaches to achieve
more precise results

The running period of the combined
models is longer than other single
models, and the weight coefficient
needs to be considered

VMD-BEGA-LSTM Mencar and Fanelli, 2008

FIG-SVR He et al., 2019a

(1) To avoid the limitations of point predicting methods, this study
proposes a useful interval predicting approach. This technique
could deal with the fluctuation associated with the PM2.5
and PM10 concentrations by quantifying the information of
the original dataset. The performance of interval predicting
is shown to be more effective than that of other point
forecasting approaches.

(2) According to the decomposition and reconstruction techniques,
this study applies the data pretreatment method to eliminate the
negative influence of the initial data series. As a superior data
preprocessing strategy, FIG is used to decrease high-frequency
noise and to reconstruct the novel data sequences to acquire
the significant elements of the historical data and facilitate the
smooth implementation of the next phase.

(3) A combined model is developed in the predicting section
to obtain the results of PM2.5 concentrations. It obtains
more accurate prediction results when compared with
the traditional PM2.5 and PM10 concentrations of
prediction approaches.

(4) The developed model could be employed in air quality
monitoring. The proposed system and the predicting
results are clearly improved by providing more useful
information on air quality to people and analyzing and

predicting PM2.5 and PM10 concentrations even in more
complicated conditions.

The rest of this article is organized as follows. Section
“Forecasting System Development” touches upon the design
of the forecasting system, including data fuzzy information
granulation and the proposed combined forecasting system.
Section “Framework of the Proposed Forecasting System
and Parameter” describes the framework and parameters
of the proposed prediction system. To further verify the
accuracy and effectiveness of the proposed combined model
from various aspects, detailed experimental results and
analysis are presented in section “Experimental Results
and Discussion”. Finally, section “Conclusion” concludes
this research.

FORECASTING SYSTEM DEVELOPMENT

This section develops an innovative combined predicting system
to predict the PM2.5 and PM10 concentrations in the air, which
enhances the performance of the results by a data denoising
strategy and a predicting approach.
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TABLE 2 | Nomenclature.

Nomenclature

Abbreviate

Anns Artificial neural networks WPD Wavelet packet decomposition

BPnn Back propagation neural Network FT Fuzzy theory

ARIMA Auto-regressive integrated Moving Average CS Cuckoo search

ARma Auto-regressive moving Average BEGA Binary encoding genetic optimization Algorithm

GM Gray method VMD Variational mode decomposition

GRnn General regression neural Network MSE Mean squared error

LSTM Long short-term memory Network MAPE Average absolute percent error

PSO Particle swarm optimization MAE Mean absolute error of N predicting results

SVM Support vector machine RMSE Root of mean error squares

TCN Temporal convolution network SSE Sum of squared error

PICP Prediction interval coverage probability PBW Prediction band width

FL Fuzzy logic MOWCA Multi-objective Water Cycle Algorithm

SVR Support vector regression FIG Fuzzy information granulation

IG Information granulation TCNQR Temporal convolution network with the quantile regression

EMD Empirical mode decomposition MLR Multiple linear regression

PM Particulate matter MODOA Multi-objective dragonfly optimization algorithm

CNN Convolutional neural network

Decomposition and Denoising Strategies
Fuzzy information granules (FIG) construct information
granules by building fuzzy sets for each subsequence formed by
discretizing the time series (Mencar and Fanelli, 2008). The core
of fuzzy information granulation is to complete the fuzzification
process after the window is created, which mainly includes
window division and information fuzzification.

The window division is to convert the time series
R =

{
R1,R2, . . . ,Rγ

}
into the granular time series

¯̄2 =
{
¯̄21,
¯̄22, . . . ,

¯̄2ς

}
after information granulation by

setting the time granularity
_
E to divideR =

{
R1,R2, . . . ,Rγ

}
into H subseries ¯̄2 =

{
¯̄21,
¯̄22, . . . ,

¯̄2ς

}
, where H = γ

_
E

and

theηth subseries is ¯̄2η =

[
R
(η)

1 ,R
(η)

2 , . . . ,R
(η)
_
E

]
.

{
R1,R2, . . . ,Rγ

}
⇒

{[
R
(1)
1 ,R

(1)
2 , . . . ,R

(1)
_
E

]
, ...,[

R
(H)
1 ,R

(H)
2 , . . . ,R

(H)
_
E

]}
(2− 1− 1)

The information granulation of the time series
R =

{
R1,R2, . . . ,Rγ

}
is to construct the information particles

0̃ =
{
0̃
′

1, 0̃
′

2, . . . , 0̃
′

ς

}
using the fuzzy method for each of

theH subsequences ¯̄2 =
{
¯̄21,
¯̄22, . . . ,

¯̄2ς

}
formed by the

discretization operation.
Suppose that Z is a given theoretical domain, then a fuzzy

subset3 = {χ,� (χ) |χ ∈ Z} on Z,� (χ) : χ→ [0, 1] represents
the affiliation function of 3. Two fuzzy subsets, 8 and 4,
are equal, denoted by 8 = 4, if they have the same affiliation

function, i.e.,
_
� ′8 (χ) =

_
� ′′4 (χ ).

In this study, the triangular fuzzy particles are chosen to
construct the information grain and its affiliation function is as
follows:

ATf (x) =


x–ITf

KTf−ITf
, ITf ≤ x ≤ KTf

0, x<ITf ∪ x > NTf
NTf−x

NTf−KTf
,KTf < x ≤ NTf

(2− 1− 2),

where x is the variable in the theoretical domain and ITf , KTf , and
NTf are the three parameters of the triangular type fuzzy example
affiliation function, which correspond to the lower boundary,
average level, and upper boundary of the window after fuzzy
particleization, respectively.

Fuzzy sets get rid of the either-or duality in classical set theory
and extend the value domain of the affiliation function from the
binary {0, 1} to the multi-valued interval [0, 1], which is a kind
of extension of the set theory. Information fuzzification is the
fuzzification of each information grain, and the fuzzification of
a single sub-window, ¯̄2µ, generates multiple fuzzy sets 0̃

′

µ =[
0̃
′′

µ;1, 0̃
′′

µ;2, 0̃
′′

µ;3

]
.

Considering the single-window problem, ¯̄2µ =[
¯̄T(µ)1 , ¯̄T(µ)2 , . . . , ¯̄T(µ)_

E

]
should first be viewed as a window

for fuzzification. The task of fuzzification is to build a triangular

fuzzy particle TFP on ¯̄2µ =

[
¯̄T(µ)1 , ¯̄T(µ)2 , . . . , ¯̄T(µ)_

E

]
, which can

reasonably explain the fuzzy concept M of ¯̄2µ. The fuzzy particle

0̃
′

µ =

[
0̃
′′

µ;1 =
_
I

µ

Tf , 0̃
′′

µ;2 =
_
K

µ

Tf , 0̃
′′

µ;3 =
_
N

µ

Tf

]
can be constructed

by the relevant parameters in the determined affiliation function
(2-1-2) of the triangular fuzzy particle.
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Predicting Algorithm
In this section, the basic theory and equations of some forecasting
approaches are described.

Auto-Regressive Integrated Moving Average Model
The AR(p) model means the auto-regressive approach of the pth

order, expressed as (Hamilton James, 2015):

yt = c+ a1yt−1 + · · · + apyt−p + ut (2− 2− 1),

where a1, · · · , ap are indicators; c is a constant; and ut is referred
to as the random variable.

Besides, the MA(q) model represents the moving average
model of the pth order, which is defined as:

yt = a+ ut +m1ut−1 + · · · +mqut−q (2− 2− 2),

where m1, · · · ,mqare the factors of the approach; yt is always
set as 0, and the expectation of yt can be written as a. Also,
ut , ut−1 and ut−q could describe the white noise error terms of
the initial series.

Then, the ARMA(p, q) combines the two approaches listed
above, which is shown in the following formula:

yt = c+ a1yt−1 + · · · + apyt−p + ut +m1ut−1 + · · ·

+mqut−q (2− 2− 3)

If these three approaches are employed in dealing with
samples with non-stationarity evidence, we could consider taking
various steps to decrease this limitation, which is regarded as
ARIMA (p,d,q), where d is the degree of differencing.

Deep Learning Using Long Short-Term Memory
Recurrent Neural Networks
Recurrent neural network (RNN) is one type of ANN, and the
combinations of various samples become a directed cycle. LSTM
is proposed to handle long series. Both LSTM and RNNs could
employ some gates to fix the gradient problem. Some scientists
have proved that RNNs are included in the hidden layer, which is
one of the features of LSTM (Gers et al., 2000). The three layers of
RNNs with LSTM demonstrated in Figure 1 present the memory
cell functions.

ft = σ(Wf • [Ct−1, ht−1, xt] + bf ) (2− 2− 4)

it = σ(Wi • [Ct−1, ht−1, xt] + bi) (2− 2− 5)

ot = σ(Wo • [Ct, ht−1, xt] + bo) (2− 2− 6)

Ct = ft × Ct−1 + it × C̃t (2− 2− 7)

C̃t = tanh(Wc • [ht−1, xt] + bc) (2− 2− 8)

ht = ot × tanh(Ct) (2− 2− 9),

where xt is the input value; ht is the output vector; Ct represents
the cell state variable; W and b are indicator matrices and
indicator; ft , it , and ot are forget, input, and output gate
variables, respectively. In the equation, σ means the sigmoid
formula and tanh refers to a rescale logistic sigmoid function
belonging to (−1, 1).

Temporal Convolutional Network
A TCN, an interval predicting method, is a special kind of
CNN (Shelhamer et al., 2017). It includes three sections: causal
convolution, dilated convolution, and residual network. The first
section makes sure of the result at time β, and we assume the
input value ←→µ ∈ 2̃

−→

Band a filter π :
{

0, . . . , k− 1
}
→ 2̃
−→

.
The historical convolutional layer is stated by two
equations: ̂̃3

←→
(←→µ β) = (

←→
µ � π)(β) =

∑k−1
j=0 πj

←→
µ β−jand˜̂ouse = ( ̂̃3

←→
(←→µ 1),

̂̃3
←→

(←→µ 2), · · · ,
̂̃3
←→

(←→µ B)), where k is the

size of convolutional kernel, ˜̂ouse is the output series, and ̂̃3
←→

(•)

is the process of convolution.
The second part uses a hyperparameter to jump some

input values; thus, a range longer than it used to be could
be accepted by the filter. In detail, if the causal convolution
mixes, the mth layer dilated convolution can be described by:̂̃3
←→

(←→µ β) = (
←→
µ � dmπ)(β) =

∑k−1
j=0 πj

←→
µ β−dmj

β− dmj
and ˜̂ouse =

( ̂̃3
←→

(←→µ 1),
̂̃3
←→

(←→µ 2), . . . ,
̂̃3
←→

(←→µ B)), where dm means the
dilation indicator of the mth layer and the range could be set
to 2m−12m−1. Here, β− dmj represents the historical direction.
The second formula is a temporal convolutional layer, which
constructs TCN in many layers.

If the layers are deep, to deal with the issue of decreased
efficiency of the CNN results, a residual block is utilized.
During the training procedure, we added a residual connection
into the block to ensure normal operation in the deep
layers. Moreover, TCN prevents the over-fitting problem by
introducing the dropout layer after each dilated convolution
(Srivastava et al., 2014).

Combined Model
Combining forecasts has long been recognized as an effective and
a simple way to improve forecast stability, an improvement over
a single model. This study proposes a new combined forecasting
model that fuses ARIMA, neural networks, and the non-positive
constraint theory.

The traditional forecasting combination method attempts to
find the best weight of the combined models based on minimizing
SSE:

min F=DTED=
T∑

t=1

m∑
j=1

m∑
i=1

didjeitejt

{
RTD = 1
D ≥ 0

(2− 3− 1),

where D =
(
d1, d2, . . . , dm

)T is the weight vector;
R = (1, 1, . . . , 1)T is a column vector where all elements
are 1; and E =

(
E =ij

)
m×mis called the error information matrix

(Eij = eT
i ej, ei = (ei1, ei2, . . . , eiN )).

Frontiers in Ecology and Evolution | www.frontiersin.org 5 April 2022 | Volume 10 | Article 855606

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-855606 April 18, 2022 Time: 13:39 # 6

Wang et al. Prediction of Air Pollution Interval

FIGURE 1 | Three-layer long short-term memory (LSTM) of two LSTM memory blocks (Gers et al., 2000).

An improvement of the traditional combination method
based on the non-negative constraint theory (TCM-NNCT) and
non-positive constraint theory is given as follows:

min J=DTED=
T∑

t=1

m∑
j=1

m∑
i=1

didjeitejt (2− 3− 2)

st RTD = 1 (2− 3− 3)

In Eq. (2-3-1), the weight vector has no limitation in the range
[0,1]. The experiment results show that the combination model
can obtain desirable results if the weight vector has a value in
the range of [−2,2]. This section provides a weight-determined
method that will be assessed by experimental simulation rather
than a theoretical proof.

Interval Prediction Based on Temporal
Convolutional Network
In this section, we constructed a novel multidimensional time
series CNN prediction model for air contamination forecasting
and uncertainty analysis.

Interval Prediction Module
There is no need to presuppose an error distribution in an
interval forecasting model that, based on a linear model, is
expressed as:

Y = β̃0 (θ)+ β̃1 (θ)X1 + · · · + β̃n (θ)Xn + u

= Q̃ (θ;X)+ u (2− 4− 1),

where X is n explanatory variables, β̃i is a vector
that can be determined based on X and θ, and β̃i
is a vector that can be identified based on X and θ.
Given K samples, the vector is statistically estimated:
β̃i (θ) = arg min

β

∑K
i=1 f (θ)

[
Yi − Q̃ (θ;X)

]
(i = 1, 2, . . . ,K),

where f (θ) is a piecewise linear loss function that can be defined
as:

f (θ) =
{

θu, u ≥ 0
(θ− 1) u, u < 0

(2− 4− 2)

Evaluation Index of Prediction Model and Interval
Forecasting
Due to the advanced non-linear characteristics and uncertainty
of air contamination data, the prediction error of a single model
is usually possible. For this case, the calculation of the prediction
interval, i.e., the higher and lower bounds for predicting future
values, is appropriate for the prediction of air contamination
data. Below the given prediction interval, the predictions are
often created higher and therefore the stability of prediction
can be additionally improved. Different indicators can judge the
prediction results and quality of the interval prediction model,
such as the following common evaluation indicators.

Prediction interval coverage probability (PICP) is the most
important index to measure the quality of the prediction
interval, which reflects the probability result of the observed
value falling into the prediction interval, namely reliability.
In other words, the greater the probability value, the more
the observations covered by the prediction interval and vice
versa. In general, within the established prediction interval, the
calculated probability p (PICP) should be higher than the rated
confidence level, namely: p = P

(
fi ∈

[
L
(

Xi

)
,U

(
Xi

)])
≥ µ,

i = 1, 2, . . . ,K, where P (•) is the expressed probability;
L
(

Xi

)
,U

(
Xi

)
represent the lower and upper bounds of the

prediction interval predicted by Xi, respectively; fi is the predicted
value; and µ is a given confidence level. According to Bernoulli’
law of huge numbers, χ̃cp will be expressed by the frequency
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that the prediction interval covers the determined value, and its
likelihood converges to P, namely:

χ̃cp =
1
D

D∑
i=1

ci × 100% P
−→ P

(
fi ∈

[
L
(

Xi

)
,U

(
Xi

)])
(2− 4− 3)

where D is the predicted sample size and Ci is a Boolean quantity.

Ci=

 1, if fi ∈
[

L
(

Xi

)
,U

(
Xi

)]
0, if fi /∈

[
L
(

Xi

)
,U

(
Xi

)] (2− 4− 4)

If χ̃cp ≥ µ, it indicates that the established prediction interval
is valid; otherwise, it indicates that the established prediction
interval is invalid, and it should be reestablished.

To decide the prediction interval more reasonably, it is
necessary to depend on the prediction interval mean width
percentage (PIMWP), which is the parameter basis for evaluating
the prediction interval. If the forecast interval is wide enough, the
coverage of the forecast interval will be on the brink of 100%.
However, such a good interval cannot effectively provide the
uncertainty data of the predicted value, rendering the results of
the forecast interval meaningless.

If χ̃cp is larger and ¯̃χMWP is smaller, the prediction interval of
the model is more accurate and the performance is better.

¯̃χMWP =
1
D

D∑
i=1

U
(

Xi

)
− L

(
Xi

)
f i

× 100% (2− 4− 5)

In addition, single high reliability and high clarity cannot
reflect the performance of the interval prediction model, which
is one of the biggest differences with the evaluation index of the
deterministic prediction model. χ̃cpThe performance evaluation
indexes, χ̃cp and ¯̃χMWP, are often used to predict interval
models. However, if some special situations occur, these two
indicators cannot achieve a reasonable and scientific performance
evaluation of the interval prediction model. For example, if
the observed value is not within the prediction interval and if
there is a small difference between χ̃cp and ¯̃χMWP at the same
time, it is impossible to measure the degree of deviation of the
observed value from the prediction interval. The extent to which
observations deviate from the predicted interval is immeasurable.
To compensate for the shortcomings of χ̃cp and ¯̃χMWP, this study
introduces another evaluation index of the prediction interval
model, namely accumulated width deviation (AWD), which
can clearly measure the deviation degree of observed values
outside the prediction interval. Here, χAWD =

∑D
i=1 ζi, where ζi

represents the degree to which the observed value deviates from
the upper and lower bounds of the predicted interval.

ζi=


L
(

Xi

)
−fi

fi
, if fi < L

(
Xi

)
0, if fi ∈

[
L
(

Xi

)
,U

(
Xi

)]
fi−U

(
Xi

)
fi

, if fi > U
(

Xi

) (2− 4− 6)

Under the condition of the same χ̃cp and ¯̃χMWP, the
smaller the value of χAWD, the higher the quality of the
prediction interval.

The above three evaluation indicators, χ̃cp, ¯̃χMWP, and χAWD,
are independent of each other, and only a certain feature of the
prediction interval is considered. However, if only one evaluation
index is selected, it is not enough to explain the quality and
performance of the prediction interval. A high-quality prediction
interval should conform to the confidence level requirements, i.e.,
χ̃cp should be as high as possible while ¯̃χMWP and χAWD should
be as low as possible. However, the definitions of χ̃cp, ¯̃χMWP,
and χAWD show that these three metrics are conflicting with
each other: the higher the χ̃cp, the higher the ¯̃χMWP; the lower
¯̃χMWP, the lower χ̃cp and the higher χAWD; the lower the χAWD is,
the higher the ¯̃χMWP is. Therefore, taking these three indicators
into consideration, this study proposes a comprehensive index
that can quantitatively evaluate the prediction interval, namely,
prediction interval satisfaction index (PISI). It can be calculated
by:

χPISI =

[
1−

(
1+ λ× χAWD

)
¯̃χMWP ×

(
1+ e−η

(
χcp−µ

))]
×100% (2− 4− 7),

where λ is the penalty factor of χAWD, η is the penalty factor of
χ̃cp, and µ (95%) is the given confidence level. In this study, we
choose λ = 0.5 and η =50.

If χ̃cp is greater than the given confidence level µ, the curve
of χPISI is flat and the value of χPISI tends to 1. At this point,
χPISI is mainly determined by ¯̃χMWP and χAWD. If χ̃cp is less
than the given confidence level µ, the value of χPISI changes
according to the difference between χ̃cp and µ, and χPISI is
mainly determined by χ̃cp at this time. Therefore, χPISI can
further reflect the quality of the prediction interval by combining
χ̃cp, ¯̃χMWP, and χAWD, making the evaluation of the prediction
interval more effective and accurate.

FRAMEWORK OF THE PROPOSED
FORECASTING SYSTEM AND
PARAMETER

This section presents the description of the material analyzed
(section “Dataset Description”) and the entire probabilistic
forecasting system applied in this study (section “Flow of the
Proposed Ensemble Probabilistic Forecasting System”).

Dataset Description
This study took the PM2.5 and PM10 pollution data of Beijing,
Shanghai, and Shenzhen as the experimental data set, which
are daily data from January 2020 to December 2021. From
each dataset, we extracted 4,386 point values as experimental
sequences and selected 80% of the total length as training sets.
The remaining 20% points were divided into test sets as shown in
Figure 2.
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FIGURE 2 | Information of the research areas.

Flow of the Proposed Ensemble
Probabilistic Forecasting System
In accordance with the aforementioned data processing
approaches and forecasting models, the proposed forecasting
system includes Fuzzy information granulation, ARIMA, LSTM,
TCN, multi-objective optimization, and interval prediction.

Step 1: The original three data sets were divided into a training
set and a test set. A total of 4,386 pieces of data were collected.
There were 3,500 pieces of data in training sets and 877 pieces of
data in test sets.

Step 2: The pollution values of PM2.5 and PM10 are
reconstructed by graining Fuzzy information granulation and the
data after noise reduction has been obtained.

Step 3: ARIMA, LSTM, and TCN were used for forecasting,
and they were used as the comparative models of the multi-target
dragonfly combination prediction results in the fourth step.

Step 4: The prediction results of ARIMA, LSTM, and TCN
were combined with a multi-objective Dragonfly algorithm
for optimization.

Step 5: Probabilistic forecasting module: The upper and
lower bounds and the prediction interval were obtained by
using interval prediction to forecast the progress of PM2.5 and
PM10 data.

By constructing the prediction interval, the probability
prediction of air pollution is carried out. To determine the
distribution of forecast errors resulting from point forecasts,
three metrics were used: the PICP, the BW, and the PINAW.
Furthermore, interval forecasts were created by combining upper
and lower bounds with an optimal distribution with a design
confidence level of 95%.

Model Selection and Parameter Setting
In general, a hybrid forecasting system adopts a decomposition
strategy using a shallow neural network; all of the ARIMA and
LSTM have satisfactory performance in solving regression
problems. In DL, the TCN based on multidimensional
time series is sensitive to the prediction of statistical
data. Therefore, we selected the multi-objective dragonfly
optimization algorithm based on the multidimensional
time series for interval prediction. The model naming
and argument details of the other models are presented in
Table 3.

Evaluation Index
In this study, five evaluation indexes [such as the mean
absolute percentage error (MAPE) and root mean square error
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TABLE 3 | Compare the parameter settings of each model.

Model Symbol Meaning Value Reason

LSTM ni Number of input layer nodes 5 Number of feature inputs

nh Number of hidden layer nodes [100, 100] Trial-and-error manner

n0 Number of output layer nodes 1 Number of feature inputs

et Epochs of training 5000 Trial-and-error manner

ARIMA p Auto-Regressive term [p-site1, p-site2, p-site3] = [5,5,3] AIC and BIC

d Integrated term 1 ADF test

q Moving Average term [q-site1, q-site2, q-site3] = [3,6,3] AIC and BIC

TNC ←→
µ input value DataSet Preset

˜̂ouse output series \ Preset̂̃3
←→

(•) The process of convolution \ Preset

dm dilation indicator \ Preset

(RMSE)] were used to assess the prediction system stability and
accuracy, and other indicators were used to evaluate the interval
prediction capability. Table 4 presents the specific equations
and definitions.

EXPERIMENTAL RESULTS AND
DISCUSSION

This section discusses in detail the fuzzy granulation strategy
based on multi-dimensional time series, the multi-objective
dragonfly optimization algorithm, and the simulation results of
interval prediction. To further improve the prediction results,
the prediction efficiency (FE) and improvement rate (IR) of the
proposed combined prediction model and interval prediction, as
well as sensitivity, are analyzed in the study.

Data Pre-processing: Fuzzy Information
Granulation
Through fuzzy information granulation, the pollution data of
PM2.5 and PM10 are processed.

Specific steps are as follows:
(1). To confirm sample extraction and fuzzification

processing, sample information needs to be extracted to a certain
extent. Then, the specific size of the window can be understood

TABLE 4 | Evaluation metrics applied in this study.

Metric Equation

RMSE RMSE =
√[∑N

i=1 PPi − APi

]/
N

MAPE MAPE = 1
N
∑N

i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%

MSE MSE = 1
n
∑n

i=1 (yi − ŷi)
2

Adjusted
R square

R = 1−
∑

i (̂yi−yi )
2∑

i (yi−yi )
2

SSE SSE =
∑n

i=1 (yi − ŷi)
2

PICP χ̃cp =
1
D
∑D

i=1 ci × 100%

BW XBW =
∑D

i=1 ξ i

PINAW X̃PINAW =
[
1− (1+ λ×

¯̄XAWD)XMWP × (1+ e−η(Xcp−µ))
]
× 100%

through the extracted data. Later, fuzzy information granulation
processing is carried out according to the formula (2-1-1).

(2). The minimum, average, and maximum values are
normalized after granulation treatment. The processing formula
is:

pi =
xi − xmin

xmax − xmin
,

where pi is a variable data in the sample data; xi is the normalized
data coefficient; xmin is the minimum value of the extracted data;
and xmaxis the maximum value in the sample.

In the subsequent combined prediction model, we use the
granulated average R as the input for training and testing. The
comparison result of fuzzy granulation with the original data is
shown in Figure 3.

Multi-Objective Optimization
Combination Forecasting and
Comparison Model
This section compares the proposed combined forecasting model
with the commonly used single-point forecasting models. The
single models of point prediction include ARIMA, LSTM, and
T-convolutional neural network.

Experiment I: PM2.5 and PM10 forecasting.
In this experiment, three traditional single models, ARIMA,

LSTM, and TCN, are utilized to compare with the proposed
system. The prediction results are shown in Tables 5, 6.

(a) From Tables 5, 6, we can see that the proposed model
has achieved significant improvements compared with the three
single models. In the forecast of PM2.5 daily concentration in
the three cities, the MAPE (×100%) of the model in this study
are 17.53130124, 11.52643852, and 6.00510985, respectively,
and the MAPE of PM10 are 20.10103656, 19.61939713, and
9.348984687, respectively. In addition, there are substantial
improvements in other data comparisons, which demonstrate the
superior predictive power of the proposed model in simulating air
contamination series.

(b) MAPE and RMSE are mainly used to measure the
prediction error of each model. The smaller the value, the
better the model prediction performance. In addition, the
R index mainly evaluates the fit consistency between the
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FIGURE 3 | Data preprocessing flowchart.

original value and the predicted value. The index values
of the system are all larger than the reference model,
indicating that the system has a better simulation effect

on the air pollution sequence. The R value is negative,
indicating that the model is not suitable for simulating the air
pollution series.
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TABLE 5 | Statistical errors of the proposed system and three traditional models for daily PM2 .5 concentrations of Beijing, Shanghai, and Shenzhen.

Dataset Model MAPE (×100%) MSE Adjusted R square RMSE SSE

Beijing ARIMA 86.97079038 290.8284471 0.447545833148643 17.053693062077780 5.816568941111197e + 04

LSTM 136.01785 413.20679 0.215077461604307 20.327488086028843 8.264135437752891e + 04

TCN 142.5970955592992 483.03770834970896 0.1626560139686989 21.9781 66176.16604391013

Proposed model 17.53130124 148.870600556075 0.658175732872686 25.2317663 29774.1201112151

Shanghai ARIMA 43.06089753 139.425587 0.448273075306167 11.807861237106376 2.788511739895187e + 04

LSTM 44.672726 173.59648 0.313053969451486 13.175601796860805 3.471929654188834e + 04

TCN 60.826491189904864 265.8895658979947 −0.8598887306068743 16.3061 36426.870528025276

Proposed model 11.52643852 67.0458435333302 0.667495893927825 15.29028516 13409.1687066660

Shenzhen ARIMA 40.30779213 37.85861391 0.624570379270827 6.152935389900167 7.571722782457183e + 03

LSTM 66.276283 89.870964 0.108783389745464 9.480030256857855 1.797419473418808e + 04

TCN 60.826401222797664 84.42822174344232 0.0699984144048289 9.1885 11566.666378851598

Proposed model 6.00510985 17.5222223250933 0.985588304 7.806397025 3504.44446501865

The indicators can be defined as SSE =
∑N

i=1 (PPi − APi)
2, RMSE =

√[∑N
i=1 PPi − APi

]/
N, and MAPE = 1

N

∑N
i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%. The most satisfactory

results are shown in bold.

TABLE 6 | Statistical errors of the proposed system and three traditional models for daily PM10 concentrations of Beijing, Shanghai, and Shenzhen.

Dataset Model MAPE (×100%) MSE Adjusted R square RMSE SSE

Beijing ARIMA 63.52736357 487.0786852 0.174520697390467 22.069859201835650 9.741573703776996e + 04

LSTM 196.7689707455670 2.432077115750104e + 03 −3.121776177956965 49.316093881714760 4.864154231500208e + 05

TCN 87.22617049732669 706.49757233221 −0.30037075679791525 26.5800 RMSE 96790.16740951277

Proposed model 20.10103656 172.374212971936 0.403054937 25.04239173 34474.8425943872

Shanghai ARIMA 29.09318151 176.4140437 0.528676587826571 13.282094853290085 3.528280873835899e + 04

LSTM 35.3052930993369 2.069021408276871e + 02 0.447221882339130 14.384093326577350 4.138042816553741e + 04

TCN 40.82371479881204 552.8902300983436 −0.09493369083894865 23.5136 75745.96152347307

Proposed model 19.61939713 98.0218221960804 0.342456465189497 19.8011941252118 19604.3644392161

Shenzhen ARIMA 25.09504498 88.93366541 0.659983745777606 9.430464750332934 1.778673308145440e + 04

LSTM 28.8580663433921 1.252390110215527e + 02 0.521179080890740 11.191023680680540 2.504780220431053e + 04

TCN 33.353551605811546 158.35503196357078 0.29102131681963195 12.5839 21694.639379009197

Proposed model 9.348984687 35.9146836500957 0.71286274 11.84927859 7182.93673001914

The indicators can be defined as SSE =
∑N

i=1 (PPi − APi)
2, RMSE =

√[∑N
i=1 PPi − APi

]/
N, and MAPE = 1

N

∑N
i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%. The most satisfactory

results are shown in bold.

Experiment II: SO2 and CO forecasting.
In Experiment I, we performed prediction experiments using

PM2.5 and PM10 data, which achieved good results. To further
verify the effectiveness of the prediction system, in Experiment
2, the SO2 and CO data of three cities were used to conduct the
experiment again.

Therefore, in this part, we selected the CO value and sulfur
dioxide data of three cities for comparative experiments. The
detailed results are shown in Table 7.

To further explore the application of the point prediction
system, this experiment used SO2 and CO daily datasets in
Beijing, Shanghai, and Shenzhen to examine the superiority and
applicability of the developed system. The results showed that
the model proposed in this study not only exhibits the best
prediction performance, indicating that the prediction system in
this study is not only suitable for the prediction of PM2.5 and
PM10, but also for the prediction of other air pollutants. Although
the randomness and complexity of different datasets are different,
the results show that the proposed model has strong applicability

and effectiveness for the prediction of various air pollution and
has potential application prospects in air pollution monitoring.

Indexes of Prediction Model and Interval
Forecasting
Point forecasting only provides each forecast point for the
target and does not show the probability of correct forecasting.
However, in several problems, it is necessary to quantify
the accuracy of estimates using countermeasures. Once the
extent of uncertainty increases, the dependability of the
point prediction decreases significantly. In contrast to point
forecasting, prediction intervals not only provide the location
in which observations are presumably made but also conjointly
provide an indicator of capability known as the confidence
level. Since interval forecasting is more reliable and informative
than the settled point forecast, it is helpful to investigate and
evaluate the data.

Experiment III: Interval forecasting and evaluation index.
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To comprehensively evaluate the forecast results of the
prediction model, four analysis indexes are adopted in the study,
including the prediction interval coverage probability (PICP),
coverage width criterion (CWC), prediction band width (PBW),
and PI normalized averaged width (PINAW).

Prediction interval coverage probability is the basic evaluation
index to assess the overall probability of the actual value falling
into the PBW, and it is expressed as follows:

PICP =

(
1
n

n∑
i=1

Ci

)
× 100% (4− 3− 1)

Ci =

{
0 yi /∈ (Li,UI)

1 yi ∈ (LI,UI)
(4− 3− 2),

Where the variable yi is the actual air contamination value. Ui
and Li represent the upper and lower bounds, respectively, and n
is the number of samples.

If the PI width is sufficiently large, the PICP can easily
reach 100%. Considering that the PICP meets the prediction
interval nominal confidence (PINC) of the required prediction
interval, the PBW should be as small as possible to guarantee the
prediction effect.

Due to the contradiction between PICP and PINRW, CWC is
used as a comprehensive evaluation index. In addition, because

PICP is a basic evaluation indicator compared with PINAW
(or PINRW) and is expected to achieve the desired nominal
confidence level µ, an improved CWC design can assess the
prediction effect better.

The modified CWC used in the experiment is defined as
follows:

CWCproposed =


η1 · PINAW(PICP ≥ µ)

(0.1+ µ1 · PINAW)[1+ exp(η2(µ− PICP))]
(PICP < µ) (4− 3− 3)

PBW, PICP, PINAW, and CWC are used to assess the IP
performance. The detailed forecasting results of the proposed
hybrid forecasting system and the comparative models are
presented in Figure 4 and Table 8.

(a) After optimization using the combined prediction
algorithm, the interval prediction can estimate the upper and
lower bounds of the probability prediction. Then, PICP, PINAW,
and CWC indicators are selected to measure the performance of
interval prediction of air pollution series. PICP mainly measures
the probability of the original data entering the prediction
interval, and PINAW is used to evaluate the normalized average
width of the interval. This section adopts the interval prediction
of PM2.5 and PM10, and the obtained results provide a practical
application for analyzing the uncertainty of air pollution.

TABLE 7 | The forecasting performances of various models for SO2 and CO in three cities.

Dataset (SO2) Model MAPE (×100%) MSE Adjusted R square RMSE SSE

Beijing ARIMA 16.9679992 0.594247371 0.214374179 0.77087442 1.19E + 02

LSTM 62.5043641 3.575070593 −3.7264286 1.890785708 7.15E + 02

TCN 21.19875252 0.358244808 −1.246512939 0.5985 48.7212939

Proposed model 8.801941086 0.017101509 −4.775512824 0.307953961 3.129576183

Shanghai ARIMA 16.804447 1.47013432 0.242891519 1.212490957 2.94E + 02

LSTM 33.6266108 4.642820638 −1.391018856 2.154720548 9.29E + 02

TCN 17.30624383 1.627779555 −0.25163582 1.2758 221.3780194

Proposed model 13.3948766 0.120567162 −3.960236439 0.817679472 22.06379071

Shenzhen ARIMA 13.93960103 0.183750043 0.68076782 0.428660755 36.75000861

LSTM 7.4051157 0.003636823 0.659593382 0.060306074 0.727364522

TCN 7.401322957 0.323880616 0.047690701 0.5691 44.0477638

Proposed model 4.5874185 0.143997793 −7.824128059 0.893606857 26.35159606

Dataset (CO)

Beijing ARIMA 55.82851595 0.054564355 0.005877223 0.233590143 10.91287095

LSTM 63.6736338 0.123604838 −1.251990073 0.351574798 24.72096768

TCN 39.54360038 0.062681733 −0.71777545 0.2504 8.524715657

Proposed model 36.0314606 0.027527125 −3.06026958 0.390705028 5.037463826

Shanghai ARIMA 15.8161825 0.017936156 0.224697526 0.133925933 3.587231123

LSTM 23.8757882 0.041810611 −0.807291964 0.204476431 8.362122138

TCN 18.00573321 0.033547157 −0.834057427 0.1832 4.562413404

Proposed model 11.03447391 0.011493365 −5.983131272 0.07983478 0.210328539

Shenzhen ARIMA 22.46848191 0.379235401 0.341147671 0.615820916 75.84708014

LSTM 9.8188329 0.005360446 0.498262188 0.07321507 1.072089292

TCN 11.01559594 0.007725412 0.046786078 0.0879 1.050656042

Proposed model 6.6615594 0.003953843 −1.79785567 0.148073826 0.723553317

The indicators can be defined as SSE =
∑N

i=1 (PPi − APi)
2, RMSE =

√[∑N
i=1 PPi − APi

]/
N, and MAPE = 1

N

∑N
i=1

∣∣(APi − PPi)
/

AP
∣∣× 100%. The most satisfactory

results are shown in bold.
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FIGURE 4 | A graph of interval prediction results.

(b) Table 8 show the daily probability prediction evaluation
results of PM2.5 and PM10 in Beijing, Shanghai, and Shenzhen.
It can be seen that the results of a single model interval
are not good because the result of the width is too narrow
and the coverage rate is low, while the interval coverage
rate of the combined forecasting system proposed in this
study is higher than that of a single model and the results
are more accurate.

(c) It is difficult to satisfy all the optimal conditions due to
the large number of indicators that measure the performance
of interval prediction. However, the higher the confidence, the
greater the coverage probability and the wider the interval.
Therefore, the probability forecast has a certain prediction
interval, which provides a reference for the actual application of
air pollution monitoring.

Discussion
In this section, we used three methods to discuss the
performance of the proposed combined forecasting system:
forecasting effectiveness (FE), stability analysis (SA), and
improvement ratio (IR).

Forecasting Effectiveness
To verify the availability of the relevant prediction system, the
finite element method (Banik et al., 2020) is adopted in this
study. This may be determined using the expected result of the
prediction accuracy series, that is, the deviation between the
expected value and normal deviation. The indicator is explained
as follows.

Count the d-th order predicting availability element md
=∑n

i=1 QiAd
i , where Ai is the prediction accuracy, Qi is the discrete
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TABLE 8 | Interval forecasting results of the proposed system for daily PM2 .5 and PM10concentrations of Beijing, Shanghai, and Shenzhen.

PM2.5 Indicators Proposed model ARIMA LSTM TCN

Site 1 BW 27.27709623 5.588932739 5.400260609 9.399792741

CP 0.8 0.1 0.2 0.4

CWC 967.5573339 4.62E + 17 3.30E + 15 4.05863E + 11

PINAW 0.534845024 0.160988443 0.170554714 0.462680511

Site 2 BW 25.83786828 3.101276071 1.711007768 2.246018338

CP 0.7 0.2 0.1 0.1

CWC 1216.366544 1.23E + 15 9.11E + 16 3.79E + 17

PINAW 0.453295935 0.063429076 0.031777656 0.132020441

Site 3 BW 13.02474235 1.822308173 2.649576346 2.393098477

CP 0.7 0.1 0.1 0.2

CWC 1294.458165 2.17E + 17 −2.06E + 17 1.50E + 15

PINAW 0.482397865 0.075831053 −0.071902246 0.077871318

PM10 Indicators Proposed model ARIMA LSTM TCN

Site 1 BW 40.37286522 2.864634888 2.867020268 7.299477064

CP 0.8 0.1 0.3 0.2

CWC 1197.315173 3.11E + 17 2.5209E + 13 5.96E + 15

PINAW 0.66185025 0.108333022 0.193635382 0.30842717

Site 2 BW 39.53693477 3.204081672 18.80110089 4.136207351

CP 0.8 0.3 0.4 0.3

CWC 1300.436217 7.86722E + 12 3.06843E + 11 3.62306E + 13

PINAW 0.718853359 0.060429758 0.349798846 0.278294498

Site 3 BW 36.49380793 5.868071455 4.509674695 2.006110094

CP 0.8 0.3 0.1 0.1

CWC 1500.428327 2.04898E + 13 1.78E + 17 3.38E + 17

PINAW 0.829404726 0.157386217 0.062204966 0.11778856

The indicators can be defined as χ̃cp =
1
D

∑D
i=1 ci × 100% ,XMWP =

1
D

∑D
i=1

U(Xi)−L(Xi)
fi

× 100%, XBW =
∑D

i=1 ξi , and X̃PINAW =[
1− (1+ λ×

¯̄XAWD)XMWP × (1+ e−η(Xcp−µ))
]
× 100%. The most satisfactory results are shown in bold.

TABLE 9 | Forecasting effectiveness (FE) of different models (PM2 .5).

Beijing Shanghai Shenzhen

1-Order 2-Order 1-Order 2-Order 1-Order 2-Order

Proposed model 0.713962612 0.499107698 0.833677634 0.674130951 0.827274422 0.715910344

Model (PM2.5)

ARIMA 0.537758525 0.365927564 0.626486448 0.434454329 0.687655842 0.501227795

LSTM 0.419353392 0.262811053 0.620248042 0.442276111 0.552618069 0.371521413

TCN 0.380004231 0.25407457 0.509236577 0.344293544 0.58990613 0.408951676

Model (PM10)

Proposed model 0.820324675 0.612407931 0.892528922 0.780386906 0.882115673 0.798110303

ARIMA 0.584812738 0.406227792 0.71977323 0.539768394 0.776748883 0.625024691

LSTM 0.21938475 0.147504326 0.676791129 0.488168419 0.740723134 0.585249795

TCN 0.488147467 0.319256144 0.56964758 0.390169063 0.633711865 0.453582124

probability distribution, and
∑n

i=1 Qi = 1, Qi > 0. Since we
could not obtain any prior information on Qi, it is determined
as Qi = 1/n, i = 1, 2, . . . , n. The other Ai is calculated using
Ai = 1−

∣∣∣ξ i∣∣∣, in which ξ i is expressed as:

ξ i =


−1,
(APi − PPi)

/
APi,

1,

(APi − PPi)
/

APi < −1
− 1≤ (APi − PPi)

/
APi < 1

(APi − PPi)
/

APi > 1
, (4− 4− 1)

where PPi and APi indicate the i-th point
forecast value and observation quantitative value,
respectively.

Thereafter, the continuous function L
(
g1, g2, . . . , gd

)
of

a d-order unit is introduced to assess the d-th order
predicting availability. While there is only one variable in the
equation L (z) = z , the first-order FE can be expressed as
L
(
g1)
= g1 .
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If there are two variables in this equation, for instance,
L
(
i, j
)
= i

(
1−

√
j− i2

)
, the second-order FE can be expressed

as follows:

L
(
g1, g2)

= g1
(

1−
√

g2 −
(
g1
)2
)

(4− 4− 2)

According to the FE definition, the higher the value of L, the
better the prediction performance of the models.

Therefore, the d-th order FE is expressed as
H
(
m1,m2, · · · ,mk

)
. Thus, the first-order prediction

effectiveness is defined as H
(
m1)
= m1. If there are two

variables in the equation, the second-order FE is given by

H
(
m1,m2)

= m1
(

1−
√
m2 −

(
m1
)2
)

.

By comparing the FE values with those of other related
models, it can be easily concluded that the proposed system
obtains the highest index value in both the first-order and
second-order calculations, which shows that its performance
in air pollution prediction exceeds that of other models.
Specifically, we took Beijing PM10 data as an example in one-
step, HBeijing

1 = 0.820324675 and HBeijing
2 = 0.612407931 in

two orders, and the FE is much larger than that of other
models. In other predictions, our proposed system exhibits the
best forecast performance compared with the other models. The
specific experimental results of the other models are listed in
Table 9.

Sensitivity Analysis
In this section, the sensitivity of the proposed prediction system
is analyzed experimentally. Since the weight determination
method plays an important role in the final prediction, this
study discusses the prediction sensitivity of the combined
prediction model by adjusting the optimization parameters.
In the parameter setting stage, the important parameter of
the population size has a great influence on the optimization
performance. Therefore, the experiment adopts the method
of changing one parameter to examine its influence on the
prediction result. Here, the size of the population is set to 40, 60,
80, and 100 in turn. The specific experimental results are shown
in Table 10. The relevant conclusions are summarized as follows:

From Table 10, it can be seen that the performance of the
proposed mode is different under various parameter settings. For
example, in the Shenzhen PM2.5 forecast, MAPE values range
from 5.9821 to 6.4834%.

Consequently, the fluctuation range of the forecast values in
the three regions is small, indicating that the forecast system is
less sensitive to the two modes and has a good stability in practical
applications.

Improvement Ratio
In this section, the effectiveness of the combined forecasting
model system is analyzed by the percentage improvement of
MAPE and MSE. We proposed an index IRMAPE to measure the
improvement in the PCFM prediction accuracy. IRMAPE can be TA
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TABLE 11 | Improvement ratio (IR) for CO of different models (×100%).

Model Beijing Shanghai Shenzhen

PMAPE ARIMA 35.460472% 30.233% 70.3515%

LSTM 43.412275% 53.7838% 32.155%

TCN 8.8817% 38.71689% 39.526%

PMSE ARIMA 49.551% 35.92069% 98.957%

LSTM 77.729% 72.51089% 26.2404%

TCN 56.084% 65.7396% 48.8203%

The MAPE ×100% of the proposed prediction system is MAPEBeijing
=

36.0314606 , MAPEShanghai
= 11.03447391andMAPEShenzhen

= 6.6615594 .

expressed as:

PMAPE =
[(
MAPEcom −MAPEpro

) /
MAPEcom

]
× 100%

PMSE =
[(
MSEcom −MSEpro

) /
MSEcom

]
× 100%,

where MAPEcom is the compared model MAPE values and
MAPEpro indicates MAPE values of the prediction system.
Moreover, the three models are compared with different
indicators, which shows the superiority of the combined
forecasting model system. The detailed calculation results are
shown in Table 11.

(a) The model is improved by MAPE, which verifies the
superiority of the proposed prediction system. Compared with
the ARIMA model, this model improves by 35.460472%. For
the LSTM model, the combined prediction system achieves a
43.412275% improvement in MAPE. The results show that the
system has a good prediction effect on PM2.5 and PM10.

(b) For the three urban datasets considering mean square
error (MSE) and MAPE, the proposed prediction system still
achieves a significant improvement in prediction accuracy.
Experiments show that, compared with the TCN model (taking
Beijing as an example), the MAPE of the combined model is
improved by 56.084%.

CONCLUSION

Predicting air quality plays a vital role in the environment
and economy of energy development, which is widely discussed
worldwide. In recent years, more researchers have focused on
the methods to forecast PM2.5 and PM10 concentrations and
provide useful information for the citizens in their daily lives.
However, to overcome the limitations and negative effects of
an individual approach, this study develops a novel combined
forecasting system that takes advantage of data preprocessing,
single models, and the interval predicting approach.

The developed system includes an advanced data denoising
technique, three single forecasting algorithms, and an
optimization approach to predict the PM2.5 and PM10
concentrations. Based on the experiments, we concluded
that the combined model has the following advantages: (1) as
for data denoising strategy, the combined system computes
the data series without fluctuation and uncertainty by FIG,
which yields better performance compared with single models

by decomposing and reconstructing the initial data. (2) In
the comparative experiments, to predict the PM2.5 and PM10
concentrations of three cities, we found that the PM2.5 MAPE
(×100%) values of the proposed system are 17.53130124,
11.52643852, and 6.00510985, which provide more satisfying
results than the ARIMA models (86.97079038, 43.06089753,
and 40.30779213). (3) Consequently, MODOA is utilized as an
advanced optimization algorithm to determine the weight of
every single model and to obtain the forecasting values of PM2.5
and PM10 concentrations.

The proposed early warning system has many practical
applications, such as warning and guiding the public before
the occurrence of harmful air pollutants and mining the
characteristics of air pollutants.

(1) The fuzzy preference rough set was applied to the early
warning system to determine the main pollutants suitable for
different cities. Attribute selection simplifies the process of early
warning systems and makes the prediction of pollutants more
effective. In addition, these results can help decision-makers
in relevant sectors to monitor and analyze certain polluting
pollutants, which play a crucial role in formulating effective
strategies for each city.

(2) In the developed early warning system, the interval forecast
based on deterministic forecast provides the forecast range and
the confidence level, which can be used to analyze and monitor
the uncertainty information of the future value of pollutants. Air
quality warning systems trigger alerts when air pollution exceeds
an upper limit. According to the forecast range, different early
warning levels can also be divided as a guide for daily life.

Therefore, we concluded that the proposed combined
predicting system enhances the forecasting capacity and accuracy
of PM2.5 and PM10 concentrations by conducting and analyzing
the experiments. Accurate forecasts not only reduce the cost
and risk of dealing with air pollution systems but also help
policymakers come up with effective strategies.
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