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There are many scales at which to quantify stability in spatial and ecological networks.
Local-scale analyses focus on specific nodes of the spatial network, while regional-
scale analyses consider the whole network. Similarly, species- and community-level
analyses either account for single species or for the whole community. Furthermore,
stability itself can be defined in multiple ways, including resistance (the inverse of the
relative displacement caused by a perturbation), initial resilience (the rate of return after
a perturbation), and invariability (the inverse of the relative amplitude of the population
fluctuations). Here, we analyze the scale-dependence of these stability properties. More
specifically, we ask how spatial scale (local vs. regional) and ecological scale (species
vs. community) influence these stability properties. We find that regional initial resilience
is the weighted arithmetic mean of the local initial resiliences. The regional resistance
is the harmonic mean of local resistances, which makes regional resistance particularly
vulnerable to nodes with low stability, unlike regional initial resilience. Analogous results
hold for the relationship between community- and species-level initial resilience and
resistance. Both resistance and initial resilience are “scale-free” properties: regional and
community values are simply the biomass-weighted means of the local and species
values, respectively. Thus, one can easily estimate both stability metrics of whole
networks from partial sampling. In contrast, invariability generally is greater at the
regional and community-level than at the local and species-level, respectively. Hence,
estimating the invariability of spatial or ecological networks from measurements at the
local or species level is more complicated, requiring an unbiased estimate of the network
(i.e., region or community) size. In conclusion, we find that scaling of stability depends on
the metric considered, and we present a reliable framework to estimate these metrics.

Keywords: scale, stability, resistance, invariability, regional, community, initial resilience

INTRODUCTION

Ecological stability is a property that can be broadly defined as the ability of an ecosystem to remain
unaltered when challenged by perturbations. However, there exist multiple ways of characterizing
stability, which leads to different stability definitions or components (Pimm, 1984; Grimm and
Wissel, 1997; McCann, 2000). Different components include resistance (to perturbation), initial
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resilience (i.e., the ability to recover from a perturbation) or
invariability (i.e., the ability to remain unaltered to repeated
perturbations) (Figure 1A). Different stability components can
also vary with scale, impeding cross-system comparison of
stability, or be scale-independent instead (Levin, 1992; Wang
etal,, 2017; Dominguez-Garcia et al., 2019; Kéfi et al., 2019; Greig
et al., 2022; Figure 1B). Thus, the ecological and spatial scale at
which one studies an ecological system can be hypothesized to
influence stability assessments.

Previous studies have found that species diversity increases
the invariability of communities (Thébault and Loreau, 2005;
Tilman et al., 2006; Gross et al., 2014), usually as a consequence
of the asynchrony of the population dynamics (Yachi and Loreau,
1999; Ives et al., 2000): variability decreases with species diversity
because of the statistical averaging of the fluctuations in species’
abundances for not perfectly synchronous dynamics (Doak
et al., 1998). Hence, communities are more invariable than their
constituent species, and the ratio of the community and species
invariabilities has been proposed as an estimate of the across-
species synchrony of the population dynamics (Loreau and De
Mazancourt, 2008). This result can create differences between
species- and community-scale stability assessments (Floder and
Hillebrand, 2012; Mougi and Kondoh, 2012; Downing et al,
2014).

Analogously, studies of meta-communities (defined as sets
of local communities that are linked by dispersal of multiple
potentially interacting species; Leibold et al., 2004) have also
proven that temporal invariability increases from local species
to meta-communities (Wang and Loreau, 2014), again as a
consequence of decreasing synchrony (Wang et al., 2019). The
ratio between regional and local invariabilities could be employed
as a proxy for a region-wide synchrony, which would represent
the global degree of synchrony in the spatial network (not to
be confused with the regional synchrony that might occur at
smaller spatial scales: Moran, 1953; Lande et al., 1999; Jarillo et al.,
2018, 2020). Heterogeneous environmental conditions (Chesson,
2000) and the dispersal ability of the species (Amarasekare, 2008)
might further cause the spatial scale to influence population and
community dynamics, and therefore spatial scale-dependence of
stability. Similarly, also the precise spatial organization of the
network may influence meta-community stability, as has been
found when comparing riverine vs. linear networks (Fagan, 2002;
Carrara et al,, 2012; Altermatt, 2013; Liu et al., 2013; Peterson
etal., 2013).

Finally, ecological and spatial scales may interact. For instance,
spatial scale affects stability more in communities than in
populations (Mougi and Kondoh, 2016), depending on the
position of the focal species within the community (Limberger
etal., 2019). Furthermore, decreasing the size of spatial networks
reduces species richness more than one would expect from spatial
samplings (Chase et al., 2020).

To understand the scaling of stability in meta-communities,
which will allow the comparison of stability of systems
analyzed at different scales, Clark et al. (2021) provided general
scaling laws of common stability components: resistance, initial
resilience, and invariance. They found that—if these measures
are not normalized by biomass—invariance, resistance, and
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FIGURE 1 | (A) Different stability components considered throughout the
manuscript. In solid lines, we represent the hypothetical dynamics of the
biomass of one species affected by multiple periodic disturbances.
Resistance (blue lines) is defined as the inverse of the change of biomass as a
consequence of the direct effect of the disturbance. The growth rate and the
initial resilience of the system (green lines) both quantify the rate at which the
system tends to recover to the equilibrium after the effect of the disturbance.
The main difference between growth rate and initial resilience is whether it is
computed relatively to the biomass prior the disturbance (growth rate), or
relatively to the distance between the biomass after the perturbation and the
equilibrium biomass (initial resilience). In both cases, we will consider the
short-term response, in contrast to the asymptotic resilience (not considered
in this manuscript). Finally, invariability (red dashed lines) represents the ability
of the systems to remain close to the equilibrium when multiple disturbances
affect (periodically or randomly) the species. Panel inspired by Clark et al.
(2021). (B) In meta-communities, multiple species (“sp”) form communities
located at multiple locations (“loc”) forming a region. We define the regional
stability as the stability of the total biomass of one species across locations,
and community stability as the stability of the total biomass across species in
one location.

initial resilience decrease with the spatial scale (the size of the
considered spatial region). While they found that ecological scale
(the number of species) also in most cases reduced invariance and
resistance, it increased initial resilience. Because total biomass
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often changes with scale, we first wanted to revisit the scaling
laws established by Clark et al. (2021) by considering normalized
stability measures.

Our objective is to investigate whether normalized regional
and community stability measures are simple summary statistics
of local and species stability, respectively, and do not change
with the spatial or ecological scale at which they are studied
(Figure 1B). Additive quantities (also known as extensive)
are quantities that are simply added when combining several
subsystems (IUPAC, 2019). They include the total biomass, its
derivative, or its change due to a perturbation. The quotient of
two additive quantities gives what is call an intensive quantity,
which are scale-free quantities (independent of the number
of subsystems) (IUPAC, 2019). Therefore, additive quantities
automatically give scale-free quantities when normalized by
another additive quantity like the number of subsystems or
the total biomass.

We begin our paper (section “Biomass Normalized Stability
Measures”) by introducing biomass-normalized stability
measures of growth rate, resistance, initial resilience, and
invariability. In section “Spatial and Ecological Scaling of
Stability Measures,” we then show that resistance, growth
rate, and initial resilience are all independent of scale. This
is because the introduced normalized definitions of these
stability components are intensive magnitudes, which do not
scale with the size of the systems. In contrast, invariability is
shown to be independent of scale only in the case of perfectly
synchronous dynamics of species and local nodes (the different
locations forming the spatial network). In the more realistic
scenarios with at least some level of asynchrony, invariability
is not an intensive quantity, and it increases with the network
size. We then discuss how to use these results to statistically
estimate regional/community stability from partial information
(values on some local nodes or species). Section “Model
Simulations” shows that our formulas compare well with model
simulations. Finally, Section “Discussion” discusses various
ecologically relevant aspects of the results: the influence of
low-stability nodes or species on network stability, the relevance
of the mathematical definitions, the implications for the
empirical measurement of stability, and the implications for the
stability-complexity debate.

BIOMASS NORMALIZED STABILITY
MEASURES

We introduce biomass-normalized measures for the main
stability components: resistance (to a perturbation), growth
rate (after a perturbation), initial resilience, and invariance
(Figure 1A). These biomass-normalized measures avoid potential
scale effects due to the usual scale-dependence of biomass.
Biomass, its derivative and the change of biomass due to a
perturbation are additive (extensive) quantities. Their quotients
are expected to be scale-free measures (intensive magnitudes).
We advance that for invariance the study will be more
complicated as the variance is not additive.

Growth Rate

We define the growth rate R as the relative instantaneous return
rate to the equilibrium of the biomass N after any sudden biomass
change caused by any external perturbation at time f,

1 dN@
R= Nt dt |_, W

Growth rate after a perturbation could be argued not to be
a proper stability measure. Growth rate provides the rate of
change of the population relative to the remaining population.
Instead, initial resilience (section “Initial Resilience”) provides
the rate of change of the population relative to the departure of
the population to its equilibrium value. This makes the initial
resilience a more intuitive stability measure, as it estimates the
initial rate of return to equilibrium. However, as we will show
below, the growth rate is directly proportional to the scale-
dependence of initial resilience, which shows that it contains
information on stability and therefore can be considered a
component of stability.

Resistance

We define the resistance Q as the inverse of the relative change
of biomass as a consequence of a perturbation (Isbell et al., 2015;
Baert et al., 2016),

_ N (o)
" N(ty) — N (to+3t)°

)

Instead of working with this measure, sometimes its inverse
Q7! is referred to as resistance (Yang et al.,, 2019), with the
possible conceptual disadvantage of presenting smaller values
for more resistant systems. Other studies define resistance as
the logarithm of the ratio of biomasses before and after any
disturbance, In (N (tp + 8¢) /N (ty)) (Hillebrand et al., 2018),
whose absolute value will also decrease as systems become
more resistant. Actually, in absolute value this logarithmic
definition is at first order equivalent to Q7! for small
perturbations (as can be proven by applying a Taylor expansion
on |N (to + 3t) — N (tp)| /N (tp) < 1), so its inverse is at first
order equivalent to Eq. (2).

Initial Resilience

We define the initial resilience as the initial rate at which a
biomass perturbation disappears, normalized by the extent of the
perturbation

1 d (N () — N*)
IN (t) — N*| dt b=ty

3)

°
|

where N* stands for the equilibrium biomass, which is assumed
to be equal to the biomass just before the perturbation (N (y)).
This definition stands for the short term recovery rate after a
perturbation (Arnoldi et al., 2018), and has been sometimes
referred to as reactivity (Neubert and Caswell, 1997). This initial

Frontiers in Ecology and Evolution | www.frontiersin.org

June 2022 | Volume 10 | Article 861537


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Jarillo et al.

Scaling of Stability in Networks

resilience p can be expressed in terms of the already considered
growth rate R (Eq. 1) and resistance Q (Eq. 2),

1 d(N(t) — N¥)
[N (t) — N*| dt
. N* 1 dN (¢)
T IN(t) — N*|N*  dt

p=

t=1y

= QR (4)
t=ty

Invariability

We define invariability I as the ratio of the square temporal mean
of the biomass and its temporal variance (Thibaut and Connolly,
2013):

_ [mean, (N (1))

var, (N (1)) ©)

This quantity is the inverse of the squared coeflicient of
variation of the biomass. Note that if the system is stable enough
to stay away from extinction, this invariability will necessary
be greater than 1; otherwise, environmental fluctuations might
bring the biomass to zero. Other invariability estimates further
normalize this invariability by the amplitude of environmental
stochasticity (Haegeman et al., 2016; Arnoldi et al., 2019), in
order to compare the invariability of systems subject to different
environmental variability conditions.

SPATIAL AND ECOLOGICAL SCALING
OF STABILITY MEASURES

In this section, we address the spatial (local vs. regional) and
ecological (species vs. community) scaling behavior (Figure 1B)
of the previously introduced stability measures (section “Biomass
Normalized Stability Measures,” Figure 1A). Spatial scaling refers
to how the measure changes from the local level (e.g., one
location) to the regional level (e.g., all locations). Ecological
scaling refers to how the measure changes from the species
level to the community level (e.g., all species). Knowing
the response of stability metrics to scaling is important to
build estimators that can be applied to the empirical study
of extended ecological networks, which can only be partially
sampled. We start with the study of the growth rate, as
the simpler case, and follow with resistance, initial resilience,
and invariability.

Growth Rate

Using our definition of growth rate (Eq. 1), we can compute the
growth rate after a perturbation of a given species i at a given
specific location x, R ;, as the normalized time derivative of the
species local biomass, Ny ;,

1 de,i (t)

R, —
o Nyi(t) dt

(6)

t=1y

Defining the regional biomass of one species as the sum of
all local biomasses of that species across the spatial network,
N;i = >, Ny and based on the mathematical definition of

growth rate (Eq. 1) and on the sum rule of the derivative, we
obtain that the regional growth rate R of the species i is

2 Nui (o) Ry
> Neilto)

meaning that the regional growth rate of the species is the
weighted arithmetic mean of local species growth rates, Ry,
with weights equal to the local species biomasses at the moment

of the perturbation, Ny ; (fo) (Figure 2). Analogously, the local

community growth rate R, or the growth rate of the sum of

biomasses across all the species of the community at a specific
location Ny = > Ny, is

R) _ 1 dN;(¥)

TN dt

)

t=1y

1 AN ()

Ne(H) dt

_ z,’Nx,i (tO) Rx,i
Zi Nx,i (tO)

i.e., the local community growth rate is the weighed arithmetic
mean of local species growth rates of each of the species, Ry,
with weights equals to the local species biomasses at the moment
of the perturbation, Ny ; (ty) (Figure 2). Finally, we can define
regional community growth rate R7*¢) (equal to the regional
growth rate of the community, or to the community growth
rate of the spatial network), as the growth rate of the total
biomass across species and locations, Ny = » . >, Ny, which

R)(CC) =

(8)

t=ty

is given by
R(RO) — 1 dNr(®) _ 2 2.i Nxi (to) Ry
Nr (t) dt t=tp Zx Zi Nx,i (tO)
SN R TNi(1) R o)
2 Nx (to) 2. Ni (to)
Thus, the regional growth rate of a community after a

perturbation, R7%€), is the arithmetic mean of local community
growth rates, weighted by the local total biomass; or equivalently
the community growth rate of a spatial network is the arithmetic
mean of the regional species growth rates, weighted by the species
regional biomass.

Generally speaking, the network growth rate Ry, of any
ecological or spatial network is then given by the biomass-
weighted arithmetic mean of the growth rates at the nodes (either
representing the species for an ecological network, or the local
nodes for a spatial network). R,,¢; can represent either the regional
value in a spatial network, the community value in an ecological
network, or even the regional community value; computed using
Egs. (7), (8), or (9), respectively. This R,; can be also expressed

as
ON OR
Rpet = MR (1 + —— CN,R) ,
N

where uy = mean (N) and pr = mean (R) denote unweighted
population arithmetic means of biomasses and growth rates,
respectively, oy = +/var (N) and op = +/var(R) are their
standard deviations computed as the square root of the
variances, and cy,r the normalized correlation between biomass
and growth rate (see Table 1 for all the mathematical definitions).
Given that —1 < ¢y r < 1, the network growth rate R, can be

(10)
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as expected from the results shown in the text.

FIGURE 2 | Regional (A) and community (B) growth rates, compared to local and species growth rates and to their unweighted arithmetic mean (AM) (yellow
circles), and biomass weighted arithmetic mean (AMy,) (green circles). AM and AM,, values closer to the identity line (black, dashed) estimate more precisely the
regional (A) and community growth rate (B). Black dots are the growth rates of individual localities (A) or species (B) on which the means AM and AM,, were
computed. Data were generated for 6,300 random communities of 10 competitors in 10-node random spatial networks (Supplementary Figure 1A and
Supplementary Text), after a biomass decrease from the equilibrium affecting all species at all locations. AM,, are found to be better estimators of the growth rate,
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TABLE 1 | Summary table: symbols used in the article and their descriptions.

Symbol Description

N Biomass. The equilibrium biomass is denoted as N*. Moreover, the biomass of species i at location x and time t is denoted as Ny ().

R Growth rate of the biomass after a perturbation, R = ﬁt) dAd’f) ) Measures of growth rate at regional (R®)), community (R©)), and
regional community (R(*€)) scales can be computed or estimated with weighted arithmetic means, Egs. (7-9), or with Eq. (10). The error of the
estimate is given by Eq. (11).

Q Resistance of the biomass to a perturbation, Q@ = N (tg) / (N (fo) — N (fo + 8t)). Measures of resistance at regional (Q(™)), community (Q(©)),
and regional community (Q(™©)) scales can be computed or estimated with harmonic means (Eq. 13), or with Eq. (14). The error or the
estimate is given in Eq. (A5) in Supplementary Material.

0 Initial resilience of the biomass after a perturbation, p = W(t)t,\,*‘ % - Measures of initial resilience at regional (p(™)), community
(0(©)), and regional community (p(™€)) scales can be computed or estimated wit% the estimates of growth rate R and resistance Q (Eq. 16).
The error or the estimate can be also determined with the estimates of R and Q (Supplementary Appendix A.3).

/ Invariability of the biomass, defined as the inverse of the squared temporal coefficient of variation of the biomass, | = %. Measures of
invariability at regional (™)), community (/(©)), and regional community (/(*)) scales can be computed or estimated with Eq. (22) (and Eq. D14
of the Supplementary Material), and generally depends on the number of locations and species. The error of the estimate should be
determined with bootstrapping techniques.

wx and My Population and sample unweighted means of variable X. The population mean is computed when all n nodes of the network were measured,
Wy = % Z,”: 4 X;, while the sample mean is computed when just a sample of 7 < n nodes are measured, My = % Z,”Z 1 X

0% and S Population and sample variances of variable X: 02 = 1 37_ 1 (G —ux)? and S3 = 1 ST 06— My)2.

Cxy and Cxlyy

Population and sample Pearson correlation coefficients of variables X and Y : cx.y

[% ST G —wx) (Y — lw)] / (ox oy) and

Cxy = [% Z/ﬁ: 1 X —Mx) (Y — l\/ly)] / (Sx Sy). Even though they are usually denoted as px,y and rx,y, the employed notation was

preferred to avoid possible confusions with initial resilience.

greater or smaller than the unweighted mean of growth rates g
depending on the positive or negative correlations between the
node biomasses and node growth rates.

Previous Egs. (7-9) provide accurate computations of the
regional, community or regional community growth rate if we
know the growth rates of all involved nodes (either species or
locations) (Figure 2). However, in many practical situations, we
only can sample a limited number of nodes, n. We can then
estimate the network growth rate R, using Eq. (10) with the
sampled nodes, replacing the population means (jy and pgr)
by the sample means (My and Mp), the population standard
deviations (on and og) by the sample standard deviations
(Sy and Sg), and the population correlation (cy,r) by the

sample correlation (Cy r) (see Table 1). Le., computing the
biomass-weighted arithmetic mean of the sampled node growth
rates. As the network estimate of growth rate corresponds
to the weighed arithmetic mean of the node growth rates,
we can estimate the standard error that arises from a partial
(but representative) sampling using the formulas provided by
Cochran (1977) and validated by Gatz and Smith (1995) (see
Supplementary Appendix A)

SE (Rpet) =

ta SR\/1+(102 ) Sv 2+C2 Sv 4(11)
n—l\/ﬁ N,R MN N,R MN ’
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where SE (R:e/t) is the standard error of the network,
corresponding to a 95% confidence level; 7 is the sample
size (i.e., the number of sampled nodes); and t;_; is the Student’s
t distribution with 72 — 1 degrees of freedom associated with a
95% confidence level, whose value is approximately 1.96 for large
enough sampling sizes. Eq. (11) shows that the uncertainty in the
determination of the regional community growth rate SE (1/{;;),
as expected, decreases when sampling more localities or species
(larger 7), and when the growth rates vary less across localities
or species (smaller Sg). Note that, generally, Sy < My, and so
also biomasses that vary less relative to their average biomass
will lead to less variable estimates of R,¢. Another implication
is that positive or negative correlations between biomass and
growth rate will mostly decrease SE (1/2;1;), because Sy/My < 1
and so (Sy/My)* < (Sy/Mn)?. Nevertheless, since negative
correlations decreases the network growth rate (Eq. 10), negative
correlations between N and R require larger sample sizes to
control the relative error on the estimated network growth
rate (Figure 3).

Resistance
The resistance of species i at location x, defined as in Eq. (2), is
Ny (¢
Qx,i = X,1 ( 0) (12)

Ny (to) — Nyi (to + 8t)°

Then, from its definition, the regional and community
resistances are the harmonic means of local or species
resistances, weighted by the local or species biomasses
(Supplementary Appendix B and Figure 4),

-1

R > Nai () o

o = | S O
> Nyi(to)

Nei(fo) o= 17"
QO — Zilei ) g . (13)
Z,‘Nx,i(tO)
Hence, for any ecological or spatial network the

network resistance is the weighted harmonic mean of
node resistances, weighted by the node biomasses (see
Supplementary Appendix B). Again, network resistance
can be also rewritten in a more general way as

1 1
Qnet = (14)
_ oN %g-! ’
Ho-t 1+ N o1 ‘N,Q!

where again | represents unweighted arithmetic means, o
the population standard deviations, and cy -1 the correlation
between biomasses and the inverse of resistance (see Table 1).
Hence, it is possible also to estimate the network resistance from
a partial sampling of the network, replacing in Eq. (14) the
population means, standard deviations and correlations by their
sample equivalents.

Even though the resistance of a network €, is the weighted
harmonic mean of resistances, the network estimate of its
inverse (Q’l)m is the weighted arithmetic mean of the sub-
units estimates of Q1. This result again allows us to estimate

its standard error arising from incomplete but representative
network sampling (Supplementary Appendix A), which let
us to obtain an expression for the standard error of the
resistance obtained from a partial sampling of a network
(Supplementary Appendix B, Eq. B8). The relative uncertainty
of the network resistance will be dominated by the number
of samples from the network, and by the variance of the
inverse of resistances.

Initial Resilience

In Eq. (4), we show that initial resilience p is given by the product
of resistance Q and growth rate R, i.e., p = QR. Therefore, to
estimate p for different scales one can use the already obtained
scaling of Q and R (which are scale invariant and have the simple
estimators described). For example, defining the local species
initial resilience as

_ 1 d (Nyi (1) = N}))
T Ny () — Nz dt

)
t=1y

P

and by defining the regional species initial resilience as the initial
resilience of the regional biomass of a given species, it is easy to
see that it coincides with the product of the regional resistance
and the regional growth rates

p(R) _ 1 d(Nl 6) —Nl*)
! N (t) — N} | dt

=™ rR™ (16)
t=1p

That is, we can express the regional initial resilience as the
product of the regional estimates of resistance (the weighted
harmonic mean of local resistances) and growth rate (the
weighted arithmetic mean of local growth rates). An analogous
result links the community initial resilience to the community
estimates of resistance and growth rate. In particular, since both
resistance and growth rates were scale invariant (the network
estimates of R and Q were, respectively, the harmonic and
arithmetic mean of the node estimates), also the initial resilience
would be scale invariant. Actually, the regional initial resilience
can be also expressed as

R _ SN QL oxi 17
' Zx N:,i Q;Jl

Thus, the network estimate of initial resilience is the
arithmetic mean of the node estimates of initial resilience,
weighted by the change of the node biomass caused by a
perturbation, N Q! (Figure 5). This result reinforces that
initial resilience is another scale invariant stability property of
ecosystems, and that less resistant nodes with higher biomass
will disproportionally influence the initial resilience of the total
network. Again, for any spatial or ecological network, we can
express the network estimate of the initial resilience in a general
way, as the product of the network resistance (the weighted
harmonic mean of node resistances, highly influenced by nodes
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FIGURE 3 | Sample size required to estimate the growth rate of an ecological or spatial network from estimates at the nodes such that the standard error of the
estimate is smaller than 10%. The required sample size mainly increases with the coefficient of variation of the node estimates of growth rate (Sg/Mg), and to a
lesser extent with the coefficient of variation of the node biomass (Sy/Mp). Larger sampling sizes are required for more negative values of the cross-correlation

network regional resistance

the resistance, as expected from the results shown in the text.
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FIGURE 4 | Regional (A) and community (B) resistances, compared to local and species resistances and to their biomass weighted arithmetic mean (AMy,) (blue
circles), unweighted harmonic mean (HM) (yellow circles), and biomass weighted harmonic mean (HMy,) (green circles). AMy, HM, and HM,, values closer to the
identity line (black, dashed) estimate more precisely the regional (A) and community resistance (B). Black dots are the resistances of the individual localities (A) or
species (B) on which the means were computed. Data were generated for 6,300 random communities of 10 competitors in 10-node random spatial networks
(Supplementary Figure 1A and Supplementary Text), from the biomass decrease caused by a reduction of the species growth rates at all locations. The
harmonic mean of resistances is always smaller than the arithmetic mean (see Supplementary Appendix C). Moreover, HM,, are found to be better estimators for

network community resistance

with higher biomasses and lower resistances) and the network
growth rate:

Pret = Quet Ryet
oN Op Op O’Q—l
OoN % 2o _
wy iy Nop T g e Q7!
=, |1+ — . (18)
14 oM 2al o0 o
PN Hg1 N.Q

This result indicates that correlations between the node
biomass, resistances and initial resiliences can make the network
initial resilience higher or smaller than the unweighted mean of
node initial resilience estimates.

As for growth rate and resistance, we can also estimate
network initial resilience from an incomplete sampling
of the network as pner ﬁ;,:t Ryt~ And assuming no
correlations between resistance and growth rates, the
standard error committed with such sampling would be

SE (pret) = Quet SE (Ruet) + Ryer SE (Qper ). In such a case,
the relative uncertainty of the estimated initial resilience would
be first given by the sample size, and then by the variances of the
growth rates and reciprocal resistances.

Invariability
We consider the invariability definition of Eq. (5), so the local
species invariability reads

[meant (Nx,,' (1‘))]2
L =
’ vary (Nx,i (t))

(19)

The regional invariability can be defined as the invariability
of the total biomass of one species across all locations in
a spatial network. For the synchronous space (“ss”) case,
for which the local biomass dynamics are perfectly positively
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FIGURE 5 | Regional (A) and community (B) initial resiliences, compared to local and species initial resiliences and to their unweighted arithmetic mean (AM) (yellow
circles) and biomass weighted arithmetic mean (AMyy) (green circles) (with weights given by the difference between the actual and the equilibrium biomasses,

Eqg. 17). AM and AM,y values closer to the identity line (black, dashed) estimate more precisely the regional (A) and community initial resilience (B). Black dots are the
initial resiliences of the individual localities (A) or species (B) on which the means were computed. Data were generated for 6,300 random communities of 10
competitors in 10-node random spatial networks (Supplementary Figure 1A and Supplementary Text), after a biomass decrease from the equilibrium affecting all
species at all locations. AM,, are found to be better estimators of the initial resilience, as expected from the results shown in the text.

network community resilience

correlated, the regional invariability of species i reads (see
Supplementary Appendix D)

2
I(R;ss) — zx N;ck,i

(20)
1
! >N

Then, for perfectly synchronous local dynamics, the regional
species invariability is the square of the harmonic mean of
the square root of the local species invariabilities, weighted
by the equilibrium local biomass densities. Conversely, if
the local species biomass dynamics is spatially asynchronous
(asynchronous space, “as”), the regional species invariability of the
whole spatial network is

(R;as) __ (ZxN;ck,i)z
i - 2
Zx (N;:,i) I,%
1 Zx (I\’;:,l')2

. (21)
() >N

For the asynchronous-space case, the regional invariability
is proportional to the number of locations ny (Figure 6).
Le., for the asynchronous-space case, invariability would be an
extensive stability property, that grows linearly with the size
of the system. In this asynchronous case, invariability is also
proportional to the harmonic mean of local species invariabilities
weighted by the squared local species biomasses. In addition, it
is modulated by the spatial variance ci,i* and mean Ny of the

local equilibrium biomasses of species i. It can be proven that
invariability is higher for asynchronous than for synchronous
dynamics (see Supplementary Appendix D). Moreover, the
number of locations does not modify the local invariability
estimates, and there are not significative differences between cases
with synchronous or asynchronous dynamics (Figure 6B).

The more general case of not perfectly synchronous dynamics
can be expressed as
-1

_ 1
+ G | (22)
i

(R) N
Ii = (1 — Ci) (R;as)
Ii

where ¢; is the typical correlation between different locations

(Eq. D10 of the Supplementary Appendix D). For the case

¢ > 0, and since by definition ¢; < 1, Ii(R)

the weighted harmonic mean of IfR;aS) and Ii(R;SS), with weights

equal to 1 —¢; and G, respectively. And since, even though

would simply be

Ii(R;SS) does not depend on the number of locations ny, (Eq. 20),

Ii(R;“s) increases with n; (Eq. 21), the resulting regional species

invariability would increase as well with n (except for the special

I(R;as) L(R;ss) the
1 1 >

Ii(R;us).

1). For the case ¢; < 0, since
e
1

case ¢; =

regional species invariability
I-(R; as)
1

would be larger than

Since increases linearly with the number of locations, the
regional species invariability would then also increase with the
number of locations. In summary, when the local population
dynamics are not perfectly synchronized (so the typical spatial
correlation of the local biomasses ¢ is less than 1), the regional
invariability increases with the number of locations of the spatial
network (Figure 6).

For community invariability, we can obtain completely
analogous expressions to Eqgs. (20-22), In particular, this proves
that community invariability increases with the number of
species forming the community, except for the special case
of perfectly synchronous dynamics across species (Figure 6C),
while the degree of synchrony and the number of species
do not significantly affect the invariabilities at the species
level (Figure 6D).

In general, network invariability is not a mean of
the invariability estimates at the network nodes, so we
cannot estimate its standard error in the same way that
we did for resistance, growth rate and initial resilience
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(Supplementary Appendix A). We did not pursue here the
characterization of such network invariability standard error. To
estimate the error that arises from incomplete network sampling,
general bootstrapping techniques should be applied instead
(Efron and Tibshirani, 1985; Hesterberg, 2011).

MODEL SIMULATIONS

In this study, we have investigated how different stability
components such as growth rate, initial resilience, resistance,
and invariability scale from the local or species level to
the regional or community level. We now compare these
scaling laws to numerically simulated population dynamics
of a community of 10 competitors with the Lotka-Volterra
model (see Supplementary Appendix E) in 10-node
random spatial networks (Supplementary Figure 1A and
Figures 2, 4-6). To ensure that the results do not depend
on the chosen network, and motivated by fundamental
differences of meta-community stability between linear
and riverine networks (Fagan, 2002; Carrara et al, 2012;

Altermatt, 2013; Liuetal,, 2013; Peterson et al., 2013), we
complement these results with results for realistic riverine
dendritic networks (Supplementary Figure 1B) generated in
R (R Core Team, 2020) with the OCNet package (Carraro
et al., 2020; Supplementary Figures 2-5). All simulations of
community dynamics were done in Python 3.7 (Python Core
Team, 2019).

The simulation results confirm our theoretical prediction
that growth rate and initial resilience are scale-free stability
properties, where regional and community estimates equal to
the weighted arithmetic mean of the estimates at the local or
species level (Figures 2, 5 and Supplementary Figures 2, 4).
Also, the simulations confirm that resistance is another scale-
free property: the regional and community estimates of resistance
are the harmonic mean of the local and species resistance
estimates, weighted by the local biomasses or the species
proportions (Figure 4 and Supplementary Figure 3). The
numerical simulations also confirmed that invariability is a scale-
free property solely in networks with perfectly synchronous
dynamics for which all sub-units effectively act as a unique
single unit (species or location). In more realistic networks,
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with imperfect synchrony across subunits, the invariability is
higher than for the perfectly synchronous case (Figure 6 and
Supplementary Figure 5), and it increases with the network
size, so the regional or community invariability is actually
larger than the average of its elements, and this difference is
more pronounced in larger networks. Thus, realistic spatial
networks are more invariable than their individual locations, and
community dynamics are more invariable than the population
dynamics of the species forming the community (Loreau and De
Mazancourt, 2008; Haegeman et al., 2016).

DISCUSSION

We have shown that resistance and initial resilience (and growth
rate) of ecological or spatial networks, unlike invariability, are
biomass-weighted means of the estimates of these stability
measures at the nodes of the network. In this section, we will
discuss the consequences of this fundamental difference between
these stability components.

Resistance and Initial Resilience Are
Scale-Free Network Properties, While
Invariability Is Not

Some stability components, such as invariability, have been found
to increase with the ecological (Thébault and Loreau, 2005;
Tilman et al., 2006; Gross et al., 2014) and spatial scale (Wang and
Loreau, 2014; Wang et al., 2019), as a consequence of not perfectly
synchronous dynamics among species and among locations
(Doak et al., 1998). Hence, communities and regions are more
invariable than their constituent species and locations. On the
contrary, other stability components seem to not depend on scale
(Haegeman et al., 2016). To solve this issue, Clark et al. (2021)
have proposed different scaling laws of three different common
stability components: resistance, initial resilience, and invariance.

Our analysis confirms that regional and community
invariability is larger than local and species invariability,
and generally increases with the size of the studied network
(Figure 6). Similar results were obtained by Wang and Loreau
(2014), who showed that the regional variability decreases with
the species richness and the region size. However, and as is the
case for asymptotic resilience (Haegeman et al., 2016), network
resistance and short-term or initial growth rate and resilience
[independent of asymptotic resilience, and a better proxy of
resilience in experiments (Arnoldi et al., 2016, 2018)] is the mean
of the local and species values (Figures 2, 4, 5). As this result is
a consequence of the mathematical definition of these stability
components, it will hold for any spatial and ecological network of
any complexity, and for any meta-community dynamics model
(Supplementary Figures 2-5).

These results contribute to a better understanding of the
multidimensional nature of ecological stability. While stability
properties can be correlated (Donohue et al., 2013), depending on
the characteristic of the environmental fluctuations affecting the
systems (Arnoldi et al., 2019; Radchuk et al., 2019), their scaling
laws can introduce another axis of fundamental differentiation
between different stability components. Indeed, one could

distinguish between network-level stability components (those
fundamentally depending on the topology and size of the
ecological network) and node-level stability components (those
reflecting network averages of the node-level estimates). As a
consequence, the analysis of multiple components of stability
of the ecosystems might be preferred to the employment of
single metrics that aim to reproduce the whole ecosystem stability
(Lemoine, 2020).

Resistance Is More Affected Than Initial
Resilience by the Presence of
Low-Stable Nodes or Species

Although both resistance and initial resilience are scale-free
properties, they differ in how the network estimate is averaged
from the node measures, which has important ecological
consequences. Harmonic means are more affected by the
presence of low numbers, and less affected by the presence of
high numbers, than arithmetic means (Ferger, 1931). Hence, the
presence of less resistant species and locations will affect network-
level resistance much more than network-level initial resilience
(see Supplementary Appendix C). High resilient nodes can easily
compensate low resilient nodes, as such bolstering network initial
resilience. This will lower the impact of stressors that only affect
a fraction of the nodes (Supp and Ernest, 2014). However, this
is not the case for resistance (Figure 7). Low-resistant nodes
limit the resistance of a network much more, which makes
resistance a stability component that is more difficult to protect
in ecological networks. For example, in spatially heterogeneous
meta-populations, meta-community resistance will be mainly
determined by the resistance of the less stable regions, while
the meta-community initial resilience will be mostly given by
the average spatial conditions. Thus, the heterogenous presence
of stressors in the meta-community (McCluney et al., 2014) is
expected to have a stronger effect on the network resistance than
in the network initial resilience.

Influence of Mathematical Definitions of
Stability

In this study, we have shown how different stability components
scale from the local and species level to the regional and
community level. Starting from common mathematical
definitions, we showed that resistance and initial resilience
are scale-free properties, while regions and communities are
fundamentally more invariable than local species population
dynamics. However, we anticipate that this result will depend
on the employed mathematical definition (and then, on the
proposed measurements) for these stability properties.

As previously noted, there is evidence that communities
and spatial networks are more invariable than local species
populations, as a consequence of imperfect synchronization on
the local population dynamics (Gross et al., 2014; Wang et al.,
2019). In this article, we have obtained the same result: except
for the unrealistic case of perfect inter-species and inter-location
synchrony, meta-communities are more invariable than local
populations, and such meta-community invariability increases
with the number of species and the size of the spatial network
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FIGURE 7 | Schematic comparison of different stability components at local or species level vs. at regional or community level, assuming normal distributions for the
local and species estimates. The regional or community growth rate (A) and initial resilience (B) is the weighted arithmetic mean of the estimates at the local or
species levels. On the contrary, regional/community resistance (C) is the weighted harmonic mean of the local/species estimates, so locations or species with low

stability will limit the resistance of spatial or ecological networks.

(Figure 6). Clark et al. (2021) have shown that invariance
(the inverse of the biomass variance, not normalized by the
average species biomasses) decreases with scale. Here, we show
that invariability (i.e., biomass-normalized) increases with scale.
Repeating our analyses using invariance recovers Clark et al’s
(2021) results (Supplementary Appendix F). Overall, this shows
that normalizing the variance by the mean biomass (which
increases with the network size) has a large influence on how
we appreciate the scaling of stability. As networks will often be
less variable than their nodes, we advocate the use of normalized
stability properties related to variability when studying the effect
of scale on this kind of stability. A similar difference between our
results and those by Clark et al. (2021) on the scale dependence
of resistance can be also explained from biomass normalization
(Supplementary Appendix G).

For initial resilience, Clark et al. (2021) already employed
a normalized definition. Here, with an analogous definition,
we showed that the network initial resilience is the arithmetic
mean of local species initial resiliences, being independent of
the network size (Figure 5). Clark et al. (2021) also found that
the median of the initial resiliences was proportional to the
ratio of the expected values of the invariance and the resistance
for linear models. Since their defined invariance and resistance
decrease with the characteristic ecological or spatial scale, their
scale dependencies cancel out. An interesting question beyond
the purpose of the present work is to what extent this relation
between stability measures holds in the non-linear case.

The different means and behavior between resistance and
initial resilience, discussed in section “Resistance Is More
Affected Than Initial Resilience by the Presence of Low-Stable
Nodes or Species,” depend on their mathematical definition
and on the distribution of those stability components. For
example, instead of resistance Q (inverse of the relative change in
biomass after a perturbation) we can define an alternative stability
measure just given by the relative change of the biomass after a
perturbation, i.e., Q~!. More resistant systems present smaller
values of Q~!, and Q™! represents the plasticity of the system
against perturbations. Since the harmonic mean of a random
variable is the inverse of the arithmetic mean of the reciprocals,
it is easy to prove that a network estimator of Q~! would simply
be the weighted arithmetic mean of the estimates at the nodes.
For this new defined resistance, the presence of outliers affects

the network resistance in the same way than the presence of
outliers affected the network initial resilience, so nodes with
above-average values of Q! can be easily compensated by nodes
with below-average values of Q~!, having a limited effect on
the network-level estimate of Q™. This is a clear indication of
how the heterogeneous distribution of local species estimates
(particularly its skewness Stevens, 1955) affects the network
resistance and initial resilience.

The scale-free property found for the growth rate R, the
resistance €, and the initial resilience p is due to their character as
intensive quantities. The total biomass N, its derivative %, and
the change in biomass due to a perturbation N (f) — N (£o8 + 1),
are are additive for subsystems. Their quotients have allowed us
to construct quantities independent of the extent of the system,
i.e., scale-free quantities. Namely, growth rate R, resistance, Q
and initial resilience p. For the simpler cases, the growth rate R
and the inverse of the resistance Q! are given by a biomass-
weighted arithmetic mean, which compensates the total biomass
increase as the considered scale increases. The expression of
Q as a biomass-weighted harmonic mean is equivalent to the
expression of Q! as a biomass-weighted arithmetic mean and
conserves the scale-free properties. The scale-free property of
initial resilience p can then be seen as a consequence of being the
product (or quotient) of two intensive (or scale-free) quantities.

This view also shows why, in general, invariability is not
scale-free. The temporal variance var; (N (f)) is not extensive,
because var; (N) = E;[(N — E;[N])*] = E;[N?] — (E;[N])*
is not additive for subsystems. Neither y/var; (N) is extensive
in general. This makes that only for completely synchronous
dynamics the invariability is scale-free, as previously shown.

Implications for Measuring Stability
Empirically

Resistance and initial resilience of ecological spatial networks
are biomass-weighted means of the local species estimates at
the nodes of the networks, so they can be easily estimated from
partial samples of the network. This property is important for the
assessment of stability in large experiments (De Raedt et al., 2019;
Karakog et al., 2020; Saade et al., 2020) or field campaigns. Using
our equations for the relative standard error of these stability
indices (Eq. 11, and Eq. A5 of Supplementary Appendix A),
one is able to estimate the sampling size required to control
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the error committed in the estimation of the network stability
components from partial network samplings (illustrations in
Figure 3 and Supplementary Figure 6). The coefficient of
variation of the studied stability property (resistance or initial
resilience) affects this required sampling effort most (Figure 3).
Thus, the coefficient of variation will be higher for networks
with more variable stability. Two other factors influence this
variation: (1) a greater coefficient of variation of the biomasses;
(2) a negative correlation between the biomass and the stability
(see Supplementary Figure 6).

With respect to invariability, the standard error associated
with an incomplete sampling is more difficult to estimate, since
generally the network invariability is not a mean of the nodes’
invariabilities, and depends on the size of the network. Hence,
for this stability component the standard error should generally
be assessed directly with a bootstrap. Moreover, for controlling
the error associated with the estimation of network invariability
from node-level invariability, it would be important to have an
unbiased estimate of network size.

Implications for the Stability-Complexity

Debate

The stability-complexity debate (McCann, 2000; Allesina
and Tang, 2015) originated from the disagreement between
experimental observations often finding more complex systems
to be more stable (Ives and Carpenter, 2007), and theoretical
analyses finding more complex systems to be less stable (May,
1972; Pimm, 1984). To solve this disagreement, some authors
have proposed generalizations of the original work of May
(1972) that account for non-random among-species interactions
(Yodzis, 1981; Rooney et al, 2006), or the stabilizing role
of dispersal and spatial heterogeneity (Plitzko and Drossel,
2015; Gravel et al., 2016). Other approaches have suggested
that the disagreement is caused by a focus on asymptotic
resilience in theoretical studies (Pimm, 1984; McCann, 2000;
Saeedian et al., 2022), which is biased by rare species (Haegeman
et al, 2016). Our results adhere to this point of view, by
showing that more complex systems (i.e., ecological and
spatial networks, as opposed to single species and locations)
are inevitably less variable, if using normalized estimates
that correct for inherent effects on system size of system
complexity. Consequently, such correction for system size leads
to no relationship between complexity and the other stability
properties (resistance and initial resilience). Taken together, these
findings confirm that using a sole stability component (e.g., as
asymptotic resilience) does not fully capture the complex ways
in which biological systems deal with environmental changes
(Pennekamp et al., 2018; Arnoldi et al., 2019). Assessing stability
from a multi-dimensional perspective (Donohue et al.,, 2013;
Arnoldi et al., 2019; Radchuk et al., 2019) will provide a more
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