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Understanding the effects of traditional livestock grazing abandonment on the
ability of mountain grasslands to sustain multiple ecosystem functions (ecosystem
multifunctionality; EMF) is crucial for implementing policies that promote grasslands
conservation and the delivery of multiple ecosystem services. In this study, we evaluated
the effect of short- and long-term transhumant sheep abandonment on EMF through a
grazing exclusion experiment in a grassland of the Cantabrian Mountains range (NW
Spain), where transhumant sheep flocks graze in summer. We considered four key
ecosystem functions, derived from vegetation and soil functional indicators measured
in the field: (A) biodiversity function, evaluated from total plant species evenness,
diversity and richness indicators; (B) forage production function, evaluated from cover
and richness of perennial and annual herbaceous species indicators; (C) carbon
sequestration function, evaluated from woody species cover and soil organic carbon
indicators; and (D) soil fertility function, evaluated from NH4+-N, NO3−-N, P and K
content in the soil. The EMF index was calculated by integrating the four standardized
ecosystem functions through an averaging approach. Based on linear mixed modeling
we found that grazing exclusion induced significant shifts in the considered individual
ecosystem functions and also on EMF. Long-term livestock exclusion significantly
hindered biodiversity and forage production functions, but enhanced the carbon
sequestration function. Conversely, the soil fertility function was negatively affected by
both short- and long-term grazing exclusion. Altogether, grazing exclusion significantly
decreased overall EMF, especially in long-term livestock exclusion areas, while the
decline in EMF in short-term exclusions with respect to grazed areas was marginally
significant. The results of this study support the sustainability of traditional transhumance
livestock grazing for promoting the conservation of grasslands and their ecosystem
function in mountain regions.

Keywords: abandonment, Cantabrian Mountains, ecosystem multifunctionality, grazing exclusion, livestock,
mountain grassland, sheep
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INTRODUCTION

Grasslands represent approximately one third to half of the
terrestrial land surface and support about a quarter of the
Earth’s human population (Zhang et al., 2018; Jarque-Bascuñana
et al., 2022), most of whom are largely dependent on the
services provided by these ecosystems for their subsistence
(Evans et al., 2017), as in the case of mountain regions (García-
Ruiz et al., 2020). Crucial ecosystem services provided by
mountain grasslands include (i) regulating services such as
carbon sequestration for global warming mitigation (McSherry
and Ritchie, 2013) and pollination (Bendel et al., 2019), (ii)
provisioning services like food production for humans and
livestock (Gennet et al., 2017), and (iii) cultural services
such as aesthetic values and recreation (Bi et al., 2018).
In addition, natural and semi-natural mountain grasslands
are recognized globally for their high biodiversity (Bengtsson
et al., 2019), sustaining a high number of endemic and
endangered species (Ingty, 2021). However, approximately half
of the Earth’s grasslands are being affected by unsustainable
livestock grazing practices leading to land degradation (Chen
et al., 2014), or by land use changes and land abandonment
(Jarque-Bascuñana et al., 2022).

Livestock grazing is the dominant land use in mountain
grassland ecosystems (Alkemade et al., 2013), and has played a
crucial role in people’s livelihoods for millennia (Bengtsson et al.,
2019), creating complex socio-ecological systems (Ingty, 2021).
In general, the negative effects of overgrazing on the vegetation
structure and ecosystem functioning of mountain grasslands
worldwide are well documented (e.g., Hilker et al., 2014; Dlamini
et al., 2016; Hao et al., 2018), even in productive ecosystems
(Cingolani et al., 2014). However, traditional extensive livestock
grazing in mountain regions, with low to moderate stocking
densities and short seasonal use of grasslands, has been
reported to support several ecosystem services, such as habitat
biodiversity (Odriozola et al., 2017), primary production (Jarque-
Bascuñana et al., 2022) and the conservation of cultural
ecosystems associated with the traditions of local communities
relying on pastoralism for their livelihood (Öllerer et al.,
2019). Notwithstanding, a progressive abandonment of extensive
livestock in European countries has been evidenced over the last
decades (Cocca et al., 2012). This process is particularly relevant
in mountain regions as a consequence of the low profitability
and economic competitiveness compared to intensive lowland
systems (Lasanta et al., 2006). Furthermore, the removal
of European subsidies for marginal grazing land (Aldezabal
et al., 2015) and the promotion of more productive livestock
holdings at the expense of traditional practices by the Common
Agricultural Policy (CAP) of the European Union (García-
Llamas et al., 2019), has led to a significant reduction in the
surface occupied by grassland ecosystems in Europe (Pe’er et al.,
2014). Particularly meaningful is the decline, in many European
countries, of the traditional livestock management that involves
short-term transhumance (Román-Trufero et al., 2019), i.e.,
seasonal movements of extensive sheep flocks between different
regions with complementary pasture productivity throughout
the seasons, exploiting the natural vegetation growth in summer

mountain pastures (García-Llamas et al., 2019). The gradual
abandonment of this farming practice is particularly noticeable
in the mountainous regions of northern Spain (Cantabrian
Mountains and Pyrenees) since the middle of the last century
(Velado-Alonso and Gómez-Sal, 2016).

The decline of sheep transhumance systems (Blanco et al.,
2019), such as those on the Cantabrian Mountains range (Calvo
et al., 2002; Morán-Ordóñez et al., 2013), involves the removal of
important grazing processes such as defoliation and fertilization,
and, therefore, changes in the grassland ecosystem structure
and function can be expected (Aldezabal et al., 2015). Hence,
understanding the effects of traditional grazing abandonment
on the ability of mountain grassland ecosystems to deliver
multiple functions (ecosystem multifunctionality; EMF) is crucial
for implementing sustainable policies that promote ecosystem
conservation and the delivery of multiple ecosystem services
(Ren et al., 2018). In this context, complex trade-offs between
ecosystem functions and services can arise as a consequence
of land use changes and management priorities (Bengtsson
et al., 2019). Therefore, an integrated approach for predicting
land use change effects in the overall ecosystem function (i.e.,
EMF) through standardized indices is needed to avoid a biased
perception of the ecosystem response (Odriozola et al., 2014;
Lucas-Borja et al., 2021). In addition, most terrestrial ecosystems
are valued primarily for the simultaneous provision of several
ecosystem functions or services, instead of single functions
(Hector and Bagchi, 2007; Maestre et al., 2012a), and the
magnitude of land use change effects on ecosystem response may
be stronger when multifunctionality is considered (Byrnes et al.,
2014). Moreover, if the preservation of extensive livestock grazing
is perceived as a necessary strategy for enhancing the provision of
multiple ecosystem services in mountain regions (Öllerer et al.,
2019), it is imperative to understand how grazing abandonment
affects EMF (Maestre et al., 2012b).

Several straightforward methods have been recently developed
to quantify EMF using experimental data, including the averaging
approach (Maestre et al., 2012b) and the threshold approach
(Zavaleta et al., 2010). Nevertheless, the effect of traditional
livestock abandonment on the EMF of productive grasslands
in mountainous regions remains unexplored, with only one
study carried out by Ren et al. (2018) that evaluated the
effects of grazing pressure on EMF in semi-arid grasslands.
Furthermore, several studies related to traditional pastoralism
on productive mountain grasslands focused on single functions
or services such as ecosystem productivity (Jarque-Bascuñana
et al., 2022), biodiversity (Ingty, 2021), carbon storage (Lu et al.,
2015) or soil fertility (Semmartin et al., 2004). Conversely, an
EMF approach will provide more integrated insights into the
sustainability of traditional livestock grazing in relation to the
conservation of biodiversity and global ecosystem function in
mountain grasslands, which is largely unresolved and it can be
particularly important to guide policies aimed at maintaining the
sustainability of these areas.

In this study, we evaluated the effect of short- and long-
term transhumant sheep grazing abandonment on EMF through
a grazing exclusion experiment in a mountainous grassland of
the Cantabrian Mountains range (NW Spain). We considered
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EMF by integrating four key ecosystem functions and their
standardized indicators: (A) biodiversity, (B) forage production,
(C) carbon sequestration and (D) soil fertility. First, we expected a
decrease in the biodiversity and forage production functions since
strong competitive effects exerted by encroaching shrub species
are anticipated in the absence of moderate grazing in productive
grasslands (Komac et al., 2013; Odriozola et al., 2017; Bi et al.,
2018). Second, we expected a positive to neutral effect of grazing
abandonment on carbon sequestration function as a consequence
of woody plant encroachment (Álvarez-Martínez et al., 2016),
and the lack of a clear relationship between grazing exclusion
and soil carbon response (McSherry and Ritchie, 2013). Third,
we expected that soil fertility function would be hindered under
grazing abandonment since livestock contributes to accelerate
nutrient cycling in productive grassland ecosystems through the
modulation of the soil physical characteristics (Odriozola et al.,
2014) and litter decomposition dynamics (Semmartin et al.,
2008), among other processes. In general, we hypothesized that
livestock abandonment from productive grasslands with long
evolutionary history of grazing at low to moderate stocking rates
would impact EMF, although the magnitude of the net effect on
the global ecosystem function must be resolved.

MATERIALS AND METHODS

Study Site and Experimental Design
The study site was located within the Cantabrian Mountains,
a mountain range which covers an area of about 31,500 km2

along the northern border of the Iberian Peninsula on the
boundary between the Atlantic-Eurosiberian and Mediterranean
biogeographic regions (Rivas-Martínez et al., 1987). The
vegetation of the Cantabrian Mountains is mainly comprised of
a mosaic of deciduous forests dominated by oak species [e.g.,
Quercus petraea (Matt.) Liebl., Q. robur L. and Q. pyrenaica
Willd.], beech (Fagus sylvatica L.) and birch (Betula spp. L.),
closed and open shrublands and semi-natural grasslands (García-
Llamas et al., 2019) managed in extensive grazing systems
of transhumant sheep flocks, as well as cattle and horses
(Morán-Ordóñez et al., 2011). Transhumance sheep activity
has played a key role in shaping a characteristic large-scale
mosaic of open shrublands and grasslands with high cultural
value (Morán-Ordóñez et al., 2013). However, the decline of
the transhumant activity since the last century (Velado-Alonso
and Gómez-Sal, 2016) has caused a large increase in the area
covered by later successional state woody vegetation encroaching
semi-natural grasslands (Morán-Ordóñez et al., 2013). In fact,
state-and-transition models (Jackson and Bartolome, 2002)
applied to these semi-natural grasslands predict that traditional
grazing abandonment triggers an alternate stable state of shrub-
encroached systems that cannot be reverted unless intensive
management practices are implemented (Targetti et al., 2010).

A mountain pass in the western area of the Cantabrian
Mountains known as Las Pintas (municipality of Crémenes, León
province; Figure 1) was chosen as the experimental site. Las
Pintas covers an area of 389 ha and is characterized by a rugged
topography with altitudes ranging between 1,060–1,989 m above

sea level (ASL), dominated by limestone and sandstone lithology
(GEODE, 2020). The average annual temperature is 6.5◦C and the
average annual rainfall is 1,350 mm (Ninyerola et al., 2005). The
predominant habitats in Las Pintas pass are rock outcrops, beech
forests, creeping juniper shrublands [Juniperus communis L.
subsp. alpina (Suter) Čelak.], gorse shrublands (Genista hispanica
subsp. occidentalis Rouy) and grasslands dominated by species
with high pastoral value such as Festuca rubra L., Agrostis
capillaris L., Sanguisorba minor Scop. and Trifolium repens L.
Las Pintas mountain pass resumed the transhumant livestock use
in the summer grasslands from July to September in 2015, with
moderate stocking rates (0.2–0.4 LSU/ha; LSU = livestock unit)
per season (Sebastià et al., 2008). Extensive sheep grazing in the
mountain pass was the dominant land use until the early 2000s,
whereas no anthropic use was registered at any location in the
pass between 2005 and 2015. Large wildlife herbivores present
in the experimental site include Pyrenean chamois (Rupicapra
pyrenaica) and European roe deer (Capreolus capreolus).

In June 2020, three sampling sites with different aspect were
established in the grasslands within the eastern area of Las Pintas
mountain pass, where transhumant sheep flocks concentrate: (i)
flat valley area (12.9 ha), (ii) north aspect (13.8 ha) and (iii)
south aspect (17.6 ha). The mean altitude of the three sites
showed little variability (1,564–1,612 m ASL). Within each site,
the experiment had a randomized complete block design, with
five blocks of 50 m × 50 m per site. This experimental design
was aimed at reducing the heterogeneity in abiotic environmental
conditions (e.g., incident solar radiation or humidity) of the
grasslands. The blocks were located within each sampling site
to encompass both grazed and abandoned areas. Each block
comprised three levels of grazing treatment (i.e., abandonment):
(i) control, corresponding to current sheep grazing, (ii) short-
term grazing exclusion −1 year-, and (iii) long-term grazing
exclusion -between 15–20 years-. Grazing treatment had five
replicates per sampling site, providing a total of 45 experimental
quadrats or square plots (three sampling sites × three grazing
treatment levels × five replicates), with a size of 1 m × 1 m.
Grassland community composition was similar at each sampling
site and grazing treatment areas (field observation). Short-term
grazing exclusion plots, randomly located within each block,
were fenced from June 2020 to June 2021 to prevent sheep
access. Together with the fenced plots, we established within
each block control grazed plots where sheep were allowed to
graze continuously during the season (July to September), and
long-term grazing exclusion plots in areas abandoned between
15–20 years based on interviews with local shepherds and city
council technicians, as proposed by previous grazing exclusion
research (De Bello et al., 2005; Sebastià et al., 2008; Aynekulu
et al., 2017).

Vegetation and Soil Sampling
The vegetation survey was conducted in June 2021, during
the peak aboveground biomass at the study site. The vascular
plants present in each field plot were identified at the species
level. Then, we measured species cover using a quadrat and a
visual estimation method in steps of 5% (Anderson et al., 2005;
Calvo et al., 2008). Plant species were classified into biotypes
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FIGURE 1 | Location of Las Pintas mountain pass in León province (northwest Spain) and spatial distribution of the sampling sites within the transhumant area.

(woody species, and annual and perennial herbaceous species) for
determining their relative cover and richness. We also calculated
total species richness (S), species diversity (Shannon diversity
index, H; Shannon and Weaver, 1949) and species evenness
(Pielou evenness index, J; Pielou, 1966).

In addition, composite soil samples consisting of four soil
samples (0–10 cm depth) were collected with a soil sampler
tool in the cardinal points of each field plot for obtaining
a representative sample (Fernández-García et al., 2021). Plant
species, litter, and woody debris were removed before sampling
collection. Soil samples were homogenized and sieved in the field
(2 mm mesh) and separated into two fractions. One fraction
was stored at 4◦C in polyethylene bags and delivered to the
laboratory, where it was frozen at −18◦C until ammonium
(NH4

+-N) and nitrate (NO3
−-N) content analyses. The second

fraction was delivered to the laboratory, air dried for 1 week
and stored in polyethylene bags until analysis of soil organic
carbon (C), available phosphorus (P) and potassium (K). We
determined organic C (%) by the Walkley-Black dichromate
oxidation method (Nelson and Sommers, 1996). Available P
(ppm) was determined through Olsen et al. (1954) method
using 0.5 M NaHCO3 (pH: 8.5) extraction and determination

at 882 nm on a UV Mini 1240 spectrophotometer (Shimadzu
Corporation, Japan). We analyzed available K [cmol(+)/kg] using
the 1 M NH4OAc (pH: 7) method (Warncke and Brown, 1998)
and subsequent determination by an Agilent 5110 ICP-atomic
emission spectrometer (Agilent Technologies, United States).
NH4

+-N (ppm) and NO3
−-N (ppm) were determined using 2 M

KCl extraction (Keeney and Nelson, 1982) and an automatic
Kjeldahl analyzer (Büchi Labortechnik, Switzerland).

Ecosystem Multifunctionality
Quantification
The vegetation and soil properties measured here were grouped
into four ecosystem functions: (i) biodiversity, (ii) forage
production, (iii) carbon sequestration and (iv) soil fertility
(Table 1), all of which are relevant drivers of EMF in grassland
ecosystems (Garland et al., 2021), and are consistent with
previous studies (e.g., Zavaleta et al., 2010; Bradford et al., 2014;
Jing et al., 2015; Valencia et al., 2015; Ren et al., 2018).

Total vascular plant species evenness, diversity and richness
were used as a proxy of biodiversity function, which plays an
important role in the promotion of ecosystem stability through
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TABLE 1 | Indicators of ecosystem functions considered in this study.

Ecosystem
function

Indicator Unit

Biodiversity Total species evenness (J) −

Total species diversity (H) (highly correlated to species
evenness already included in habitat provision and

biodiversity function)

−

Total species richness (S) −

Forage
production

Perennial herbaceous species cover (PHc) %

Perennial herbaceous species richness (PHr; highly
correlated to perennial herbs cover already included in

forage production function)

−

Annual herbaceous species cover (AHc) %

Annual herbaceous species richness (AHr) −

Carbon
sequestration

Woody species cover (Wc) %

Soil organic carbon (C) %

Soil fertility Ammonium (NH4
+-N) mg/kg

Nitrate (NO3−-N) mg/kg

Available phosphorous (P) mg/kg

Available potassium (K) cmol(+)/kg

multiple trophic levels (Haddad et al., 2011), pollination (Ebeling
et al., 2011), biomass production (Reich et al., 2012), habitat
complexity (Tews et al., 2004) and diversity of other functional
groups (e.g., arthropods or birds; Kissling et al., 2008; Ebeling
et al., 2014). Because of the importance of these processes,
biodiversity has recently been considered as an ecosystem
function on its own, and not only as a factor explaining EMF
(Garland et al., 2021). Forage production function was assessed
using the cover and richness of perennial and annual herbaceous
species as proxies of aboveground biomass that can be consumed
by livestock as a fraction of primary production in grasslands
(Oñatibia et al., 2015; Moghli et al., 2022). Woody species
cover and soil organic C, which are the main carbon pools
in grassland ecosystems (Oñatibia et al., 2015), were measured
as a proxy of carbon sequestration function, with substantial
implications in climate regulation since grasslands store 20–
25% of the global terrestrial C (Havstad et al., 2007). Finally,
soil fertility function was derived from NH4

+-N, NO3
−-N, P

and K content in the soil. NH4
+-N is considered the preferred

source of nitrogen (N) for soil microorganisms, and both NH4
+-

N and NO3
−-N are the main source of N for vascular plants

(Maestre et al., 2012b). Together with N, available P and K
commonly limit plant growth in grassland ecosystems worldwide
and are strongly associated with many metabolic processes in
plants (Sardans and Peñuelas, 2015; Dong et al., 2019; Gao et al.,
2019). Besides contributing to plant performance, the nutrients
measured ultimately control many biogeochemical processes in
terrestrial ecosystems (Maestre et al., 2012b).

We considered that the higher the values for the different
indicators, the higher the ecosystem function following the
recommendation of Maestre et al. (2012b). Highly correlated
indicators within each ecosystem function (rpearson > 0.7) were
removed to avoid redundant information (Moghli et al., 2022;
Table 1). Raw indicators were first normalized using a square
root transformation (Valencia et al., 2015), and then standardized

using a z-score transformation (Bradford et al., 2014), which
do not constrain the variability found in the raw ecosystem
function indicators (Maestre et al., 2012b). The standardized
indicators were grouped into the four ecosystem functions and
then we averaged the functions to obtain the EMF index (Maestre
et al., 2012b). This index is increasingly used in the literature
(e.g., Maestre et al., 2012b; Bradford et al., 2014; Valencia et al.,
2015; Mori et al., 2016; Huang et al., 2019; Lucas-Borja and
Delgado-Baquerizo, 2019) because it provides a straightforward
interpretation of ecosystem capacity to sustain multiple functions
simultaneously (Byrnes et al., 2014) and is statically robust
(Valencia et al., 2015).

Statistical Analyses
The multivariate associations between all ecosystem function
indicators (Table 1) and grazing treatment, as a proxy of grazing
abandonment, were explored through a principal component
analysis (PCA) and a permutational multivariate analysis of
variance (PERMANOVA; 1000 permutations). These analyses
were performed using R (R Core Team, 2021) and the “vegan”
package (Oksanen et al., 2020). Differences in ecosystem
function indicators among the levels of grazing treatment
were tested with generalized linear mixed models (GLMMs)
(Supplementary Material).

The effect of grazing treatment on both the four individual
ecosystem functions and EMF index was evaluated using
linear mixed models (LMMs). The response variables were: (i)
biodiversity function, (ii) forage production function, (iii) carbon
sequestration function, (iv) soil fertility function and (v) EMF,
which were modeled following a Gaussian error distribution,
using the identity link function. The predictor (fixed factor) in the
models was the grazing treatment (control, short-term grazing
exclusion and long-term grazing exclusion). The identity of the
blocks nested within each sampling site (flat valley area, north
aspect and south aspect) was included in the models as a nested
random factor. The normality of model residuals was inspected
through q-q plots. Predicted values of the response variable in the
models were computed for each level of the grazing treatment,
removing the uncertainty of the random effects (Taboada et al.,
2018). We obtained the significance levels of the difference
between short-term and long-term grazing exclusion, and the
control treatment (allowed grazing) from the model output. The
variance explained by fixed effects in the models was computed
from the conditional R2 (Nakagawa and Schielzeth, 2013).

Linear mixed models were fitted using R (R Core Team,
2021) and the “lme4” package (Bates et al., 2015). Since lmer
function does not provide p-values and R2, these parameters
were computed using “lmerTest” (Kuznetsova et al., 2017) and
“r2glmm” (Jaeger, 2017) packages, respectively.

RESULTS

Grazing abandonment induced significant shifts on the
ecosystem functional indicators considered (PERMANOVA
F = 9.53; p-value = 0.002). The samples of the three levels of
grazing treatment (control, short-term and long-term grazing
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FIGURE 2 | Principal component analysis (PCA) of the ecosystem function
indicators. Variable codes correspond to those to those shown in Table 1.
Convex hulls encompass all plots belonging to the same grazing treatment
level (control -C- in green, short-term exclusion -ST- in yellow and long-term
exclusion -LT- in red). Dot shape relates to the aspect (flat valley area - F-,
north -N- and south -S-) of the sampling sites.

exclusion) were segregated by the first PCA axis, the long-term
exclusion areas being more clearly separated and characterized
by a high cover of woody species (Wc) (Figure 2). The remaining
aboveground functional indicators (S, J, PHc, AHc, AHr),
and more intensely NH4

+-N and NO3
−-N in relation to

belowground indicators, tended to increase from the long-term
exclusion areas to the grazed areas (control) (Figure 2). C, P
and K soil content, highly correlated with the second PCA axis,
was not associated with grazing treatment (Figures 1, 2 and
Table 1 of the Supplementary Material). Control and short-term
exclusion plots located at the sampling site with south aspect
were clustered (Figure 2), which supports the inclusion of
sampling site as a random factor in the LMMs for eliminating
the associated variability.

Individual ecosystem functions (i.e., biodiversity, forage
production, carbon sequestration and soil fertility) and
EMF varied with grazing treatment as a proxy of livestock
abandonment, especially in relation to the long-term livestock
exclusion. Biodiversity and forage production functions
decreased significantly (p-value < 0.001) under long-term
grazing exclusion relative to the control grazed areas (Table 2
and Figures 3A,B). Conversely, we found significantly higher
values of the carbon sequestration function (p-value < 0.001) in
long-term exclusion areas compared to the control (Table 2 and
Figure 3C). The soil fertility function responded significantly and
negatively to grazing exclusion in both the short (p-value = 0.018)
and long term (p-value = 0.005) exclusions relative to the control
situation (Table 2 and Figure 3D). Overall, grazing exclusion
significantly impacted EMF, especially in long-term livestock

exclusion areas (p-value < 0.001). The decline in EMF of
short-term exclusion with respect to grazed areas was marginally
significant (p-value = 0.059) (Table 2 and Figure 3E).

DISCUSSION

Livestock herding is among the most widespread human activities
and the dominant land use in grassland ecosystems (Alkemade
et al., 2013; Yang et al., 2013), particularly in less-favored areas
with harsh environmental conditions such as mountain regions
(Erb et al., 2016). These areas exhibit a high vulnerability
to marginalization and abandonment of traditional extensive
grazing, such as the transhumance system (MacDonald et al.,
2000). Accordingly, it is crucial to understand the effects of
transhumant sheep grazing abandonment on the conservation
of biodiversity and overall ecosystem function in mountain
grasslands (Cingolani et al., 2014; Aldezabal et al., 2015). This
study represents a first attempt to evaluate how short- and
long-term abandonment affected EMF on mountain systems
with long history of traditional grazing at moderate stocking
rates. Our results provide evidence that this land use change
induced negative impacts on most ecosystem functions, as well
as on overall ecosystem functionality as we hypothesized. If the
transhumant sheep grazing abandonment trend in mountainous
regions of southern Europe continues, as expected (Aldezabal
et al., 2015), the observed ecosystem function behavior would
critically impair the ability of mountain grasslands to ensure
ecosystem services delivery for the livelihoods of the inhabitants
of these regions (Ren et al., 2018; García-Ruiz et al., 2020).

First, we found that long-term grazing exclusion significantly
hampered biodiversity and forage production functions. In mesic
grassland ecosystems, the relationships among plant diversity,
productivity and herbivory are mostly modulated by light
availability at the ground-level (Harpole and Tilman, 2007;
Borer et al., 2014). Accordingly, the cessation of grazing in
productive grasslands may prompt the exclusion of small-size
plant species via a light competition mechanism (Odriozola
et al., 2017) involving tall and upright herbaceous and woody
species with strong competitive abilities (Bi et al., 2018), which
dominated in the absence of transhumant sheep grazing in
the long-term exclusions in this study. These competition
mechanisms occur at neighborhood scale among individuals
(∼1 m2 in grasslands; Borer et al., 2014), which is consistent
with the scale of this study. Previous research also evidenced
that woody species encroachment in semi-natural grasslands
worldwide was a driver of biodiversity function decline (e.g.,
Mcadam et al., 2007; Báez and Collins, 2008; Eldridge et al.,
2011; Komac et al., 2013; Koch et al., 2015). In addition,
the lower biodiversity function found in long-term exclusions
could be explained by the absence of transhumant sheep role
as non-discriminant seed dispersers (Plue et al., 2019), and
to the decrease in habitat spatial heterogeneity generated by
patchiness in soil properties driven by livestock activity (Liu
et al., 2016; Ingty, 2021). Along with biodiversity function
decline, shrub encroachment has also been found to hinder forage
availability as a consequence of competition (Zarovali et al., 2007;
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TABLE 2 | Linear mixed model (LMM) results for the effects of grazing treatment (control, short-term -ST- and long-term -LT- grazing exclusion) on biodiversity, forage
production, carbon sequestration and soil fertility ecosystem functions, as well as global ecosystem multifunctionality (EMF).

Fixed effects Random effects

Response variable Parameter Estimate Standard error p-value Variable Standard deviation

Biodiversity (Intercept) 0.617 0.118 < 0.001 Aspect 0.000

ST exclusion −0.105 0.167 0.534 Sampling plot 0.000

LT exclusion −1.746 0.167 < 0.001 Residual 0.458

Forage (Intercept) 0.588 0.134 < 0.001 Aspect 0.045

ST exclusion −0.225 0.185 0.233 Sampling plot 0.051

LT exclusion −1.540 0.185 < 0.001 Residual 0.506

Carbon sequestration (Intercept) −0.202 0.156 0.235 Aspect 0.183

ST exclusion −0.058 0.162 0.720 Sampling plot 0.000

LT exclusion 0.664 0.162 < 0.001 Residual 0.443

Soil fertility (Intercept) 0.365 0.282 0.261 Aspect 0.421

ST exclusion −0.499 0.203 0.018 Sampling plot 0.000

LT exclusion −0.596 0.203 0.005 Residual 0.556

EMF (Intercept) 0.342 0.101 0.009 Aspect 0.010

ST exclusion −0.222 0.113 0.059 Sampling plot 0.008

LT exclusion −0.804 0.113 < 0.001 Residual 0.096

The intercept represents the grazing treatment reference level (control).
Significant p-values are highlighted in bold.

FIGURE 3 | Linear mixed model (LMM) predicted effects (mean ± 95% confidence intervals) of grazing treatment (control - C-, short-term -ST- and long-term -LT-
grazing exclusion) on individual ecosystem functions (A–D) and EMF (E). The significance of grazing treatment levels relative to the control is represented by
***(p-value < 0.001), **(p-value < 0.01), *(p-value < 0.05),·(p-value ≈ 0.05) and ns (p > 0.05). R2 indicates the standardized generalized variance explained by the
fixed effects in the model.

Rivest et al., 2011; Dahl et al., 2020), which is consistent with
the lower forage production function found in plots under
long-term transhumant sheep exclusion in this study. Also,

grazing at moderate stocking rates can induce a production
optimization process of herbaceous plants (Austrheim et al.,
2014), that can be understood as a compensatory growth
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response induced by herbivory despite the herbaceous biomass
consumption by domestic livestock (Oñatibia et al., 2015). This
process can trigger herbaceous species cover increases (Angassa,
2014) and, therefore, forage production compared to areas where
grazing is excluded.

Second, we found that carbon sequestration function
(i.e., net balance of above and belowground carbon stocks)
increased markedly in response to long-term transhumant
sheep grazing exclusion, exhibiting a trade-off with biodiversity
and forage production functions. It should be emphasized that
woody species abundance was solely considered as the main
aboveground carbon pool in terrestrial ecosystems (Moghli et al.,
2022), since herbaceous species abundance was already used in
this study as a proxy of forage production function. Nonetheless,
woody species encroachment in traditionally managed grasslands
leads to much greater gains in net aboveground carbon stocks
than those associated with the absence of herbaceous biomass
consumption by domestic livestock (Montané et al., 2007;
Tanentzap and Coomes, 2012). Increased carbon sequestration
function as a result of shrub species encroachment was not
accompanied in this study with a significant response of soil
organic carbon (Figure 1 and Table 1 of the Supplementary
Material). Contradictory results regarding grazing exclusion
effect in mountain grasslands were evidenced in previous
research all over the world (e.g., Medina-Roldán et al., 2012;
Shi et al., 2013; Speed et al., 2014; Lu et al., 2015; Bi et al.,
2018). Here, the evidenced lack of soil carbon response could be
related to the low pressure of transhumant sheep stocking rates
(Shrestha and Stahl, 2008), and to the long-term nature of soil
carbon accumulation mechanisms after grazing exclusion (more
than 30 years; Medina-Roldán et al., 2012) regarding the time
scale of this study.

Third, we found that both short and long-term grazing
exclusion of transhumant sheep flocks undermined the soil
fertility function. This behavior could be attributed to a slowing-
down of ecosystem nutrient cycling caused either by (i) the
promotion of plant functional traits related to high C/N ratios
that hamper nutrient release in the short-term into the soil in
the absence of grazing in productive grasslands (Semmartin et al.,
2004; Odriozola et al., 2014; Aldezabal et al., 2015); and (ii) the
lack of soil inputs of animal urine and feces, which are known
to improve microbial activity (Medina-Roldán et al., 2012; Yang
et al., 2013) and are an important pathway in nutrient cycling of
grassland ecosystems (Lu et al., 2015).

The different patterns evidenced in the trends of the ecosystem
functions considered (i.e., biodiversity, forage production, carbon
sequestration and soil fertility) concerning grazing exclusion
as a proxy of livestock abandonment conditions, suggest that
grassland management policies may be biased when monitoring
single ecosystem properties or functions exclusively (e.g., Schultz
et al., 2011; Lu et al., 2015; Dlamini et al., 2016), instead of
EMF (Ren et al., 2018). Overall, this study revealed a significant
and gradual loss of ecosystem multifunctionality as time elapsed
since livestock grazing exclusion. Therefore, transhumant sheep
grazing with moderate stocking rates and short seasonal use
is an activity that allows the conservation of the ecosystem
multifunctionality in productive mountain grasslands with a long

history of traditional livestock management. A straightforward
implication of this result is that extensive livestock grazing is
a key factor for conserving semi-natural mountain grassland
ecosystems (Espunyes et al., 2019), since this land use is the only
component that can be easily managed in mountain grasslands
(Jarque-Bascuñana et al., 2022). Moreover, according to our
findings, the marginally significant EMF loss over the short-
term may imply that the overall function of these ecosystems
could be feasibly recovered if transhumant sheep grazing use
is reintroduced in case of recent loss (Pardo et al., 2015), as
opposed to livestock abandonment over a long time period.
Since the direct quantification of EMF could be challenging for
the need of stakeholders (Luo et al., 2018), the identification
of indirect EMF predictors such as those derived from remote
sensing techniques (e.g., Arenas-Castro et al., 2019; LaRue
et al., 2019) may be useful in future research for supporting
sustainable management policies in grassland ecosystems with
different environmental characteristics. Despite the impact of
traditional livestock abandonment on EMF and the current
European Union policies that promote the preservation of
cultural landscapes (Corlett, 2016), we must emphasize that the
cessation of human intervention for restoring original ecosystem
processes by natural succession (i.e., rewilding; Perino et al.,
2019) may be preferred when the goal is to promote specific
ecosystem functions and services. For instance, woody species
encroachment in semi-natural mountain grasslands can lay the
foundations for carbon sequestration service, as evidenced in
this study. In addition, indirect and non-use services, which
are often disregarded in policy-making processes (Häyhä et al.,
2015), can be substantially favored by rewilding (Pereira and
Navarro, 2015). Finally, rewilding processes involving woody
plant encroachment elicit complex changes in the trophic
structure of micro and macrofauna (Thakur et al., 2020; Sepp
et al., 2021), which are themselves strongly related to ecosystem
functioning (Biederman and Boutton, 2009).

CONCLUSION

Our findings suggest that livestock grazing exclusion, as a
proxy of traditional livestock use abandonment on mountain
grasslands with long evolutionary history of grazing at
moderate stocking rates, significantly hindered ecosystem
multifunctionality, especially in areas subject to long-term
grazing exclusion. Therefore, the transhumance system is crucial
for the conservation of grassland ecosystems in mountainous
regions. Since short- and long-term grazing exclusion had effects
of varying direction and magnitude on the individual ecosystem
functions considered (i.e., biodiversity, forage production,
carbon sequestration and soil fertility), management policies
should consider the overall ecosystem function for avoiding
perception biases.
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