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Homeothermic animals (birds and mammals) are prime model systems for investigating
the developmental plasticity and neural mechanisms of vocal duetting, a cooperative
acoustic signal that prevails in family-living and pair-bonded species including humans.
This review focuses on the nature of this trait and its nurturing during ontogeny and
extending into adulthood. I begin by outlining the underpinning concepts of duet codes
and pair-specific answering rules as used by birds to develop their learned coordinated
song, driven by a complex interaction between self-generated and socially mediated
auditory feedback. The more tractable avian model of duetting helps identify research
gaps in singing primates that also use duetting as a type of intraspecific vocal interaction.
Nevertheless, it has become clear that primate coordinated song—whether overlapping
or antiphonal—is subject to some degree of vocal flexibility. This is reflected in the ability
of lesser apes, titi monkeys, tarsiers, and lemurs to adjust the structure and timing of
their calls through (1) social influence, (2) coordinated duetting both before and after
mating, (3) the repair of vocal mistakes, (4) the production of heterosexual song early
in life, (5) vocal accommodation in call rhythm, (6) conditioning, and (7) innovation.
Furthermore, experimental work on the neural underpinnings of avian and mammalian
antiphonal duets point to a hierarchical (cortico-subcortical) control mechanism that
regulates, via inhibition, the temporal segregation of rapid vocal exchanges. I discuss
some weaknesses in this growing field of research and highlight prospective avenues
for future investigation.

Keywords: antiphonal, brain-to-brain coupling, development, duet code, singing primates, songbirds, vocal
flexibility

INTRODUCTION

“The development of communication is fundamentally embedded in social interactions across
individual brains (Hasson et al., 2012).” Duetting, the coordinated sequences of acoustic signals
exchanged between two individuals, has emerged as a remarkable phenotype of two brains wired to
either cooperate or mitigate conflict (Fortune et al., 2011; Hoffmann et al., 2019; Okobi et al., 2019;
Coleman et al., 2021). Whether this is a matter of hard or soft wiring remains an open question, but
the diversity of mammalian and avian song duets holds great research promise for exploring how
dyadic vocal interactions are shaped during ontogeny.
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Here, I review the evidence for developmental plasticity
in singing non-human primates1, highlighting parallels and
divergences with research on duetting songbirds. Collectively,
these two phyla encompass tropical species that share similar
socio-ecological characteristics, including putative sexual
monogamy, family-living, and year-round territoriality with
robust arboreal adaptations (Tobias et al., 2016; De Gregorio
et al., 2022). However, they also differ in one key aspect, namely
“vocal production learning,” which is the ability to produce novel
sounds from auditory experience (Janik and Slater, 2000; Vernes
et al., 2021). While oscine songbirds (passerines) stand out as fine
vocal learners, evidence of this is limited in non-human primates
[Snowdon, 2017a; Janik and Knörnschild, 2021; but see Lameira
(2017) who makes a strong case of vocal production learning in
the voiceless calls of great apes].

THE NUTS AND BOLTS OF SONGBIRD
DUETTING

The considerable progress in research on avian duetting is
marked by several influential reviews (Farabaugh, 1982; Hall,
2009; Dahlin and Benedict, 2014). Duetting patterns in songbirds
range from loosely coordinated song (Benedict and McEntee,
2009; Tobias and Seddon, 2009) to synchronized or antiphonal
song2 uttered with exquisite temporal precision (Wickler and
Seibt, 1980; Templeton et al., 2013; Kovach et al., 2014) and
combining alternation and synchrony (Mann et al., 2006).

Duet Codes and Answering Rules
Duetting behavior occurs at both the individual and pair levels
(Levin, 1996), while Logue (2006) studied duetting from an
operational perspective in which two individuals establish a
shared set of rules. This led to the notion of a “duet code”—a
set of answering rules one individual uses to answer its mate’s
song (Logue, 2006; Logue et al., 2008). While a duet is a pair-
level property, a duet code is an individual attribute, and answers
according to a duet code “adhere” to that code (Logue and Krupp,
2016). At its simplest, a single pairing rule, such as “answer F1
to M1,”3 generates the cyclical duet [i-n(M1-F1)]4 produced by
many songbirds (Levin, 1996; Rogers, 2005). A more complex
duet code, such as “answer F1 to M1, F2 to M2, and F3 to
M3,” generates a non-repeated duet [i-(M1-F1-M2-F2-M3-F3)],
as produced by an African weaver bird endowed with such a large
syllable repertoire that both partners constantly switch between
syllable types (Voigt et al., 2006; Lemazina et al., 2021). Logue’s
duet code concept opened up new avenues for measuring how
code complexity and adherence vary across species (Logue and
Krupp, 2016), whether duet codes are pair-specific (Mennill and
Vehrencamp, 2005; Templeton et al., 2013), whether one sex or

1Singing primates are distributed in Southeast Asia (e.g., gibbons, tarsiers, and the
Mentawai langur), Madagascar (e.g., indri and Milne Edwards’ sportive lemurs),
and South America (e.g., titi monkeys).
2A series of notes of different types, uttered following a hierarchical structure, and
characterized by a frequency variation.
3Where F1 and M1 stand for female and male syllable types, respectively.
4Where “i” stands for the introductory notes, with n > 1.

both adhere to these codes (Mann et al., 2003; Rivera-Cáceres,
2015), and whether duet codes emerge spontaneously in newly
formed adult pairs or require vocal practice (Levin, 1996; Rivera-
Cáceres et al., 2016). This begs the question: do young birds learn
duet codes from their elders?

Duet Code Learning
Evidence that duet codes are learned from adults comes
from observations of juveniles singing alongside their parents
(Farabaugh, 1982; Hall, 2009). Such collective singing presumably
allows juveniles to gain duetting experience, which not only
requires learning what to answer and when but also mastering
the duet rhythm in coordination with breathing given the rapid
alternation (2–5 Hz) of male and female syllables (Hoffmann
et al., 2019; Coleman et al., 2021). For example, song coordination
in juvenile canebrake wrens improves over time via parental
influence and independently of maturational effects, indicating
a learning process (Rivera-Cáceres et al., 2018). Whether
song acquisition results from copying a same-sex parent or
integrating auditory information from both parental “tutors”
remains unknown. There may also be alternative modes of code
development with age. For example, a code might be retained
throughout life (“close-ended”), whereby phrase-pairing rules
remain constant regardless of partner identity (Levin, 1996);
alternatively, mature individuals might re-learn a code each time
they acquire a new mate (“open-ended”; Wickler, 1980). In the
case of canebrake wrens, different pairs have distinct duetting
rules, suggesting that learning in adulthood is likely. Indeed,
removing and translocating individuals of well-established pairs
confirmed that adult wrens re-learn pair-specific duet codes after
re-mating, with males showing more flexibility in phrase-pairing
rules than females (Rivera-Cáceres et al., 2016). Consequently,
Rivera-Cáceres et al. (2018) proposed a three-step model for
duet learning: (1) memorizing song material from auditory
exposure, (2) rehearsing duet songs with both parents, and (3) re-
learning to coordinate songs with a breeding partner (Figure 1A).
Whether these two latter forms of sensorimotor learning share
the same neural connections is the subject of future research
(Nieder and Mooney, 2019).

Many songbirds co-sing in rapid turn on a syllable-to-syllable
basis with sub-second latencies (Mann et al., 2009; Fortune et al.,
2011; Rivera-Cáceres, 2015). To achieve such tight coordination,
individuals rely on sensory information originating from two
sources of auditory feedback—one generated by the bird’s own
voice (autogenous) and the other from its singing partner
(heterogeneous). Owing to the velocity of sound, the longer
the distance between the duetters the longer the delay for both
receivers. Duetting songbirds adapt to these delays by altering the
timing of their singing (Fortune et al., 2011) or by using visual
cues in open habitats (Rek and Magrath, 2016, 2020). How, then,
is auditory feedback encoded in the brain?

Neural Mechanisms
Neuroanatomical studies of duetting songbirds reveal
the presence of well-developed brain nuclei dedicated to
song production learning in both sexes, which contrasts
with the females of species in which only males sing
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FIGURE 1 | Diagram illustrating the timing of song acquisition and the nature of social interactions that characterize the development of antiphonal duets in a
songbird (canebrake wren) and a lesser ape (southern yellow-cheeked gibbon). (A) The songbird model of duet acquisition in which young birds first memorize
sounds heard from both parents acting as tutors, then “learn” duet codes during mutual singing sessions with a same-sex parent; following post-natal dispersion,
mature individuals “re-learn” to combine song elements with a new mate, performing a duet which is used to advertise territory ownership and/or pair bond strength.
(B) The lesser ape model of duet acquisition in which a young male first develops a female-like great call while co-singing with his mother until reaching sexual
maturity (3–5 years). Sexually mature daughters – not shown in the diagram – have acquired the basic pattern of the maternal song (Merker and Cox, 1999), which is
then perfected during co-singing sessions with the mother until leaving the parental group (Koda et al., 2013). Mother-son vocal interactions continue at a decreasing
rate (gray gradient) until adolescence. From 5 to 7 years, sons utter both male and female song elements and subsequently discard the female-like great call from
their repertoire, retaining only male song (coda). The male coda consists of a multi-modulation note and a staccato note that develop in that sequence until at least
8 years of age (Hradec et al., 2021). In the absence of experimental evidence, gibbons are not considered vocal learners, but the memorization phase remains
questionable. Arrows denote vocal interactions. Note the difference in the timeline between the two model systems. Green circles refer to observations made in the
wild; gray circles depict events observed in zoo animals [adapted from Rivera-Cáceres and Templeton (2019), Hradec et al. (2021)].

(Nottebohm and Arnold, 1976; Brenowitz and Arnold, 1986;
Deng et al., 2001; but see Lobato et al., 2015). Research into the
neural underpinnings of antiphonal duetting targets the HVC
(used as a proper name), a high-order forebrain song nucleus
involved in sensorimotor learning (Nieder and Mooney, 2019).
Contrary to neurophysiological data obtained for songbirds
in which only males sing, extracellular recordings in the HVC
of anesthetized wrens show strong responses to auditory
presentations of both male and female song when played in
isolation (Fortune et al., 2011). Furthermore, experimental
manipulation of song stimuli shows a sensitivity of HVC neurons
to inter-syllable intervals. Importantly, the response strength
of HVC neurons to duet stimuli exceeds the sum of neuronal
responses to each individual’s song. This suggests that each
participant not only knows what to sing but also develops an
internal representation of the pair-specific duet (Fortune et al.,
2011). Groundbreaking work in free-ranging African weavers
further demonstrates the alternation of neuronal activity in each
partner’s HVC, with bursts temporally locked to syllable onsets
(Hoffmann et al., 2019). This “on-off” pattern appears to be

regulated by heterogeneous auditory feedback that reciprocally
inhibits HVC premotor activity (Coleman et al., 2021). Such
brain-to-brain coupling mechanisms ensure precise timing
of dyadic vocal interactions, most likely through gamma-
aminobutyric acid-ergic inhibition (Benichov and Vallentin,
2020). For comprehensive reviews on this topic, see Elie et al.
(2019) and Rivera-Cáceres and Templeton (2019).

DUETTING STYLES IN SINGING
PRIMATES

Worldwide, singing primates comprise 72 species, some of which
are nocturnal and others diurnal; most share a family-living
and territorial social system mediated by loud, coordinated calls
emitted at predictable times, usually around dawn and/or dusk
(De Gregorio et al., 2022). The gibbons’ “great-call sequence”
combines the female great call and male coda, often repeated
alternately [i-n(F1-M1)], with a pronounced sexual divocalism
(Marshall and Marshall, 1976; Geissmann, 2002). Sexually
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dimorphic species duet antiphonally, whereas in monomorphic
taxa, singers tend to overlap (Deputte, 1982). The duet songs
of lemurs, tarsiers, and the Mentawai langur overlap, except
in Lepilemur edwardsi (Méndez-Cárdenas and Zimmermann,
2009) and Tarsius niemitzi (Shekelle et al., 2019). Sexually
monomorphic indris advertise with duets and choruses5 in
which the paired males and females overlap more than any
other dyad while dominant and non-dominant individuals avoid
overlapping (Gamba et al., 2016). In each of these lineages, sex-
differentiated calls often occupy a different frequency register,
making them readily distinguishable on spectrograms (Tilson
and Tenaza, 1976; Nietsch, 1999; Torti et al., 2013). In
contrast, Neotropical titi monkey duets overlap extensively,
both in the time and frequency domains, with male and
female contributions exhibiting an anti-phase-locked pattern
of phrase coordination devoid of discrete turns (Robinson,
1979; Müller and Anzenberger, 2002; Caselli et al., 2014; Adret
et al., 2018a; Clink et al., 2019, 2022). In each of these
primate lineages, there is increasing evidence of vocal malleability
for this trait, long thought to be subject to strong genetic
constraints (Brockelman and Schilling, 1984; Tenaza, 1985;
Hammerschmidt and Fischer, 2008).

FLEXIBILITY IN THE COORDINATED
SONG OF SINGING PRIMATES

Vocal flexibility, the capacity for modifying vocalizations
according to context, can affect call structure, amplitude, timing,
duration, and rhythm. For duetting animals, this includes
individuals adjusting their singing to either their partner’s or
neighbors’ vocal outputs.

Interactive Group Singing
Neighboring groups of singing primates often call antiphonally
(Kinzey et al., 1977; Marler and Tenaza, 1977; Raemaekers and
Raemaekers, 1985) and counter-sung solos and duets are longer
than solos and duets sung alone (Tenaza, 1976; Mitani, 1985).
In support of the flexible timing of vocal output, active counter-
singing and singing motivation have been experimentally
corroborated (Chivers and MacKinnon, 1977; Mitani, 1988;
Dooley and Judge, 2007). Studies of communication networks
showing that siamangs are sensitive to their neighbors’ group
disruption (Morino et al., 2021) are likely to unveil further
instances of vocal flexibility in the future.

Within-Pair Vocal Coordination and
Repair
Individual gibbons flexibly time their contributions relative to
their mates’ during the great-call sequence. Guided by subtle
changes in female introductory notes that signal an impending
great call, the male suspends phonation; cued by her post-
climax descending notes, he resumes singing with a coda phrase
according to a precise turn-taking pattern (Terleph et al.,
2018a). Flexibility is needed given individual variability in the

5Coordinated song uttered by more than two individuals within a family group.

female great call (Terleph et al., 2015, 2016). Adjustment made
by hylobatids in response to a mate’s vocal “mistakes” are
termed “repairs,” a universal principle of human conversation
(Schegloff et al., 1977; Dingemanse et al., 2015). Repairs have
been scrutinized for self-corrected, stalled, and aborted great
calls (Haimoff, 1988; Haraway and Maples, 1998; Terleph et al.,
2018a). Such studies confirm the existence of duet codes and
answering rules in lesser apes. Non-adherence to the duet code
(e.g., production of atypical notes or unexpected call timing) may
result in duet interruption and song reset by the mate.

Vocal Accommodation in Call Rhythm
Coordinated singing and rhythm dynamics are not necessarily
tied (Ravignani et al., 2014). For example, inter-onset call
intervals extracted at each level of the indri’s song organization
(i.e., units and phrases), reveal music-like categorical rhythmicity
(De Gregorio et al., 2021a). Both in adults and young individuals,
females exhibit more flexibility than males, with a sensitivity to
chorus size (Gamba et al., 2016; De Gregorio et al., 2019, 2021b).
Sex-related “divergence” in indri song rhythm contrasts with titis
and tarsiers. In a cross-sectional study of duetting pairs of titi
monkeys, partners were found to adjust pulse rate and phrase
duration to one another, showing call “convergence” (Clink et al.,
2019). A longitudinal study with newly formed pairs of titis might
establish whether vocal learning is involved through convergence
in the spectral features of calls, as reported in marmosets
(Elowson and Snowdon, 1994; Snowdon and Elowson, 1999;
Zürcher et al., 2021). Likewise, male and female tarsiers flexibly
adjust call rhythm relative to their partner through simultaneous
accelerations and decelerations (Clink et al., 2020). Within-pair
convergence in duet tempo might be achieved by entrainment,
i.e., spontaneous responsiveness to a perceived rhythmic signal
(de Reus et al., 2021).

Parental Influence
Immature individuals singing jointly with their elders have
long sparked research attention (Deputte, 1982; Raemaekers
et al., 1984; Pollock, 1986; Reichard, 2003). A longitudinal study
of mother-daughter vocal interactions in gibbons revealed the
acquisition of correct note sequencing over time (5–30 months;
Merker and Cox, 1999). In a cross-sectional study of free-
ranging family groups, an inverse relationship was found between
mother-daughter co-singing rates and call synchronization;
less proficient daughters co-sang at higher rates. Interestingly,
mothers adjusted their song to a more stereotyped pattern when
co-singing than when singing alone, suggesting a “teaching role”
of mothers (Koda et al., 2013). While sexually mature females
sing an adult-like maternal song (Brockelman and Schilling, 1984;
Merker and Cox, 1999; Koda et al., 2013), males master the multi-
part coda phrase years later (Hradec et al., 2021) via an intriguing
developmental trajectory (Figure 1B).

Production of Heterosexual Song
Spontaneous production of a female-like great call by immature
males has been reported in several gibbon species (Koda et al.,
2014; Hradec et al., 2016, 2017, 2021). A triggering role of
the maternal call in young males, possibly associated with low
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androgen levels, has also been invoked (Koda et al., 2014).
Immature individuals producing male calls potentially face
aggression from the father (Hradec et al., 2021) and there is
evidence that the stress hormone cortisol may negatively interact
with testosterone in influencing the expression of secondary
sexual traits (Puts et al., 2016). Close monitoring of hormone
levels would be worthwhile in order to determine the impact
of parent–offspring relationships on gibbon song development
(Burns and Judge, 2016).

Acquisition of a Pair-Specific Duet Code
To reproduce outside their natal groups, mature individuals
must coordinate their song with a prospective mate “having
both different genetic parentage and a different history of
developmental experience than their own” (Haraway and Maples,
1998). In indris, spectral-temporal features of descending phrases
correlate with genetic distance in males, whereas females are less
constrained (Torti et al., 2017). Thus, indri choruses may inform
conspecifics about individuals’ genetic relatedness. Such an effect
is less apparent in titi duets (Clink et al., 2022). Consistent
with vocal flexibility and duet code learning, the duets of long-
term mates are better coordinated than those of newly formed
pairs (Geissmann, 1986, 1999; Maples et al., 1989; Müller and
Anzenberger, 2002).

Conditioning
Robust conditioned responses are obtained in lesser apes
via reinforcement and extinction procedures in which song
presentation is contingent upon an individual’s own vocalization
(Haraway et al., 1981; Maples and Haraway, 1982; Maples et al.,
1988). Moreover, both in lemurs and gibbons, phonation can be
brought under volitional control in response to an arbitrary visual
signal (Wilson, 1975; Koda et al., 2007), thus demonstrating
voluntary control over call timing.

Innovation
Captive siamangs can alter their calls using various “tricks,”
including the production of hand- modulated and echoing calls
(Badraun et al., 1998). Geissmann (2009) observed one female
gibbon who amplified her duet contribution by slamming the
sliding door of her sleeping quarters at the climax of her great call.

Causal Mechanisms
As renowned “soprano singers” (Koda et al., 2012), gibbons
produce pure-tonal melodious song that requires appropriate
hormonal and neural machinery for pitch control. Contrasting
with humans, however, higher androgen levels result in calls
with a higher pitch (Barelli et al., 2013; Puts et al., 2016).
Experiments in a helium-oxygen atmosphere revealed that the
unshifted call fundamental frequency is strongly attenuated and
the first harmonic is emphasized, suggesting that the sound
source (larynx) operates independently of the supralaryngeal
vocal tract (Koda et al., 2012). Thus, call flexibility can be achieved
by controlling laryngeal function and/or the resonance filter
configuration (Gamba et al., 2011, 2017; Fitch et al., 2016), but the
challenge is to account for the larynx development (Zhang et al.,

2020). Importantly, bipolar excitation in the inferior portion of
the precentral gyrus in the left hemisphere yields adduction of the
vocal folds (Mott et al., 1911). This suggests that, in the gibbon
brain, a direct pathway exists from the laryngeal representation
in the primary motor cortex to the laryngeal motoneurons of
the nucleus ambiguus, which controls the muscles of the larynx
for vocal production (Simonyan, 2014). This might explain why
gibbons can be trained to call on command (Koda et al., 2007; but
see Hage and Nieder, 2013).

DISCUSSION AND FUTURE DIRECTIONS

From strepsirrhines to lesser apes, the duetting patterns of
singing primates provide compelling evidence of developmental
plasticity extending into adulthood. This is consistent with
the view that non-human primates exhibit more flexibility
in their vocal behavior than is generally acknowledged

TABLE 1 | Parallels and divergences in vocal plasticity between duetting
songbirds and singing primates.

Acronym Duetting
songbirds

Singing
primates

Parallels COS yes yes

CTS yes yes

CTXL yes yes

HET yes yes

NFP vs. WEP yes yes

REP yes yes

Divergences CONV ? yes

CDT ? yes

INN ? yes

VPL yes ?

MEM yes ?

Strengths and weaknesses TDA months years

ONT weak strong

RIP strong absent

NEULAB strong weak

NEUTEL strong absent

VOCTEL strong absent

Strengths and weaknesses identify several methodological approaches for which
songbirds have proved to be more tractable experimentally. Note that, despite
a protracted developmental period for duet acquisition, intensive studies have
been carried out on the ontogeny of coordinated song in singing primates.
CDT, conditioning; CONV, vocal convergence; COS, parent-offspring co-singing;
CTS, inter-group counter-singing; CTXL, contextual learning; HET, production of
heterosexual song in sexually dimorphic species; INN, vocal innovation; MEM, song
memorization; NEULAB, neural investigations in captive animals; NEUTEL, neural
telemetry in freely ranging animals, which is achieved, for instance, by trapping
songbirds and implanting electrodes in a target brain nucleus to obtain chronic
recordings of the neural activity via telemetry once the bird is released into the
wild; NFP vs. WEP, newly formed pairs vs. well-established pairs; ONT, ontogeny of
vocal duetting; REP, vocal repair; RIP, removal experiment and interactive playback
in which one pair member is first captured; subsequently, the experimenter tries
to elicit a duet with the lone, territorial individual by playing back his/her mate’s
song contribution (unaltered or manipulated); TDA, timeline for duet acquisition;
VPL, vocal production learning; VOCTEL, vocal telemetry in freely ranging animals
equipped with a lightweight, backpacked miniature microphone (songbirds) or
with the sensor fitted to the subject’s throat, in close apposition with the larynx
(primates).
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(Snowdon, 2009, 2017a,b, 2018). Promising areas of ongoing
research include (1) vocal convergence as a learning process,
linked to pair-bond strength (Clink et al., 2019, 2020), (2) sex-
dependent mechanisms regulating “acquisition” of categorical
duet rhythms (De Gregorio et al., 2021a), and (3) the
potential for parental tutoring and vocal production learning in
gibbons (Koda et al., 2013; Koda, 2016; Terleph et al., 2018b;
Hradec et al., 2021).

Striking similarities have emerged in duet acquisition between
songbirds and singing primates (Table 1). In both phyla,
young individuals co-sing extensively with their elders, although
timescales can widely differ (Figure 1). Furthermore, in
species with sex-specific repertoires, males and females can
produce heterosexual song (Geissmann, 1983; Chen et al., 2008;
Rivera-Cáceres and Templeton, 2019; Hradec et al., 2021).
The production of heterosexual song early in life suggests
a pre-existing or learned auditory template (Adret, 2004;
Cheyne et al., 2007), possibly engaging a mirror-neuron system
(Newman, 2014).

Research currently tends to focus on antiphonal duets, given
their potential as precursors of turn-taking conversations in
humans (Levinson, 2016). At the same time, bio-acoustics
research in titi monkey duets has been hampered by extensive call
overlap (Caselli et al., 2014; Adret et al., 2018a; Clink et al., 2019);
cracking the code will require radio-tracking calls with miniature
voice detectors (Adret et al., 2018b), as has been elegantly
demonstrated in songbirds (Hoffmann et al., 2019; Lemazina
et al., 2021). Another solution is conducting studies in captive
(or wild) populations for which high speed video of vocalizing
animals can be paired with high quality audio to ensure caller
identity (Haimoff, 1981). Performant computational methods
also allow effective clustering of acoustic signatures at multiple
levels within animal vocal repertoires (Sainburg et al., 2020).
A machine-learning approach to acoustic stream segregation

might further help resolve the “cocktail party problem” (Elhilali,
2017). Developmental studies of duet acquisition in singing
primates are also needed to investigate vocal flexibility in
response to anthropogenic noise (Duarte et al., 2017).

While the neuroscience of pair-bonding in socially
monogamous mammals is well documented (Bales et al.,
2017; Potretzke and Ryabinin, 2019), a significant gap in
knowledge concerns the neural mechanisms of duetting in
singing primates. Integrating respiratory functions associated
with coordinated song is also necessary to account for the
generation of rhythmic patterns (Laje and Mindlin, 2003;
Amador et al., 2005). Neuroimaging studies provide a powerful,
non-invasive approach to mapping brain areas activated by
antiphonal calling (Takahashi et al., 2021). Singing rodents, which
offer a genetically tractable model system, produce antiphonal
duets, which, much like duetting songbirds, reveals a hierarchical
(cortico-subcortical) control mechanism that regulates the
temporal segregation of rapid vocal exchanges via inhibition
(Okobi et al., 2019). Emergence, deep in the evolutionary past,
of an interlocking mechanism derived from sender-listener brain
coupling (Hasson et al., 2012) may have been a key step in the
evolution of human conversation.
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