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INTRODUCTION

At its core, life history reflects the outcome of energy allocation toward maintenance, growth, and
reproduction over an individual’s lifetime (van Noordwijk and de Jong, 1986; Stearns, 1992). This
allocation of energy can be estimated via life history traits, such as the age at weaning or first
reproduction and the rate of reproduction (Lande, 1982). In primates and other mammals, life
history traits are negatively allometrically related to adult female body mass (Harvey et al., 1987;
Martin et al., 2005). However, gorillas seem to defy this principle as previous estimates suggested
the mountain gorilla (Gorilla beringei) to be heavier and to have a faster life history (Table 1) than
the lighter western gorilla (Gorilla gorilla) (Stoinski et al., 2013). We will argue in the following
that some of the body mass data used in the past were flawed. Recent data (see below) confirm that
females in both species are of similar mass and consequently their life histories should be similar,
all else being equal.

Apart from the question of body mass, variation in gorilla life history has mainly been
interpreted in light of two ecological hypotheses, namely “ecological risk aversion” and the
importance of “folivory” (Janson and van Schaik, 1993; Leigh, 1994). Both hypotheses predict
slower life histories in more frugivorous primates. This is relevant because the diet of western
gorillas—with the slower life history (Stoinski et al., 2013)—contains much more fruits compared
to that of mountain gorillas (e.g., Lodwick and Salmi, 2019). On the one hand, more frugivorous
primates are assumed to face higher food uncertainty given the seasonally restricted availability
of fruits, in combination with extended periods of low fruit availability (Knott and Harwell, 2020).
Frugivores should thus have a generally slower life history (late weaning, late onset of reproduction,
and a slow reproductive rate) to avoid starvation (ecological risk aversion, Janson and van Schaik,
1993). On the other hand, the mainly folivorous diet of the faster mountain gorilla, is much less
seasonal (Wright et al., 2015). The year-round consumption of protein contained in high-quality
leaves is assumed to promote growth and thus to accelerate their life history (Janson and van Schaik,
1993; Leigh, 1994).

The above concept of ecological risk aversion implies that the life histories of gorillas living
in different environments are the consequence of adaptation to the respective food availability.
However, we will argue here that it is more likely that the variation in gorilla growth and
reproductive rates (i.e., life history) is simply a direct and flexible phenotypic response to the actual
nutrient availability (phenotypic plasticity below). In addition, we challenge, based on earlier and
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TABLE 1 | Examples of phenotypic plasticity in primate life history (mean values in months, except when noted).

Species Study site/ Gorilla

species

Condition Infant development Female age at first

parturition

Interbirth interval
†

Papio cynocephalus Amboseli Food enhanced 9‡ 44.6§ 15.4

Wild feeding

improved habitat‡‡
5‡ 51.7§ 19.4

Wild feeding

poor habitat‡‡
56.3§ 21.7

Macaca fuscata Mt. Ryozen Food enhanced‡‡ 62.5 20.2¶

Wild feeding‡‡ 80.9 35.7¶

Semnopithecus entellus Jodhpur Food enhanced 12.8†† 42.5 16.7

Semnopithecus schistaceus Ramnagar Wild feeding 24.9†† 80.4 32.4

Pan troglodytes§§ Ngogo Wild feeding

high fruit abundance

62.9

Kanyawara Wild feeding

low fruit abundance

81.8

Gorilla beringei Mountain gorilla Wild feeding 40.8†† 118.8 48.0

Gorilla gorilla Western gorilla Captive 46.8†† 98.4 50.4

Wild feeding 56.4†† 136.8 67.2

Values for gorillas at the bottom (for study sites, basic ecological data, and references for gorillas please see Supplementary Table S1). References are given in-text; food enhanced

identifies access to human-made food collected from a dumpster or provided by people; † interbirth interval after surviving infants; ‡body mass gain in grams/day; because of small

sample sizes only one value for wild feeding independent of habitat quality; §age at menarche; ¶converted from birth rates; ‡‡age at last nipple contact; ‡‡same group under different

nutritional conditions; §§data for chimpanzees inhabiting the same forest (Kibale) for which fruit abundance was determined with identical methods. Data for infant development and

female age at first reproduction have not yet been published for Ngogo.

recent data, the assumed importance of protein intake for growth
and reproduction (advantages of folivory below).

NO DIFFERENCE IN ADULT FEMALE BODY
MASS BETWEEN GORILLA SPECIES

Although rarely emphasized in the literature, the negative
allometric relationship between adult female body mass and life
history did not seem to apply to species within the genus Gorilla,
as previous estimates suggested wild mountain gorillas to be
heavier [97.5 kg (Smith and Jungers, 1997)] and to have a faster
life history (e.g., Stoinski et al., 2013) than the lighter wild western
gorillas [71.5 kg, (Smith and Jungers, 1997)]. This may relate to

the fact that the mass value for mountain gorillas was based on
a single female specimen of undisclosed origin. Recently, new

body mass data for mountain gorillas reversed this relationship.
Rather than being much heavier, adult female mountain gorillas
at Karisoke turned out to be slightly lighter [66.3 kg (Burgess

et al., 2018)] than western gorillas. This much smaller difference
(−5.2 kg vs. formerly+26.0 kg) should only marginally affect life

history, if at all.
In addition, genetic data suggest a late split between western

and mountain gorillas with gene flow occurring up until about
80–500 kya (Thalmann et al., 2007; Scally et al., 2012). This
recent divergence is consistent with their similar body mass

and with craniometric data demonstrating a much higher
phenotypic variation within (80%) rather than between species

(20%) (Leigh et al., 2003). Similarly, gestation length, the only

life history trait that is tightly linked to phylogeny (Martin
and MacLarnon, 1985; Lee, 2012), is identical in the different
gorilla species (Smith et al., 1999; Doran-Sheehy et al., 2009;
Habumuremyi et al., 2016). This all adds to the notion of small
genetic distance such that strong similarities in life history are to
be expected for all gorillas although genetic differences in gorilla
life history cannot be ruled out.

ADVANTAGES OF FOLIVORY—HAS
PROTEIN INTAKE BEEN
MISINTERPRETED?

The different gorilla populations vary greatly in the proportion
of leaves and herbs in their diet (Rogers et al., 2004; Rothman
et al., 2007). Consequently, the higher protein intake in the more
folivorous mountain gorillas (Plumptre, 1995) was thought to
contribute to their faster growth and reproduction (Janson and
van Schaik, 1993).

However, the effect of protein on the body is dependent on
intake, as was for example shown in deprivation experiments
on capuchins (Cebus spp.), where signs of protein deficiency
emerged only in animals with <3% protein intake but not in
those with 6.7% intake (Fleagle et al., 1975; Elias and Samonds,
1977). An intake of 6.4–8.0% protein has been established as
sufficient for several primate species (National Research Council
US, 2003). In comparison, for the three gorilla populations
for which protein intake has been estimated, it averaged at
least 12% [i.e., mountain gorillas: 18% at Karisoke, 17% at
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Bwindi, (Rothman et al., 2007); western gorillas: 12% at Mondika
(Lodwick and Salmi, 2019, with 8.4% as the lowest monthly
protein intake)]. From a growth perspective, the protein intake
is, thus, always sufficient across sites. Furthermore, studies of
nutrient intake (Rothman et al., 2011) suggested that folivorous
primates usually did not select for protein [this generally only
happened in primates when protein availability is very low
(Ganzhorn et al., 2017)] but instead prioritized non-protein
energy (Rothman et al., 2011). Especially in tropical forests,
nitrogen, the building block of proteins, is not a limiting factor
for folivores, and thus differences in protein intake are unlikely
to explain the variation in gorilla life history. If more protein is
consumed than can be assimilated, it is metabolized and may
render the energy balance more positive (see also below), but it
cannot be stored as protein or nitrogen (Pesta and Samuel, 2014).
Thus, a protein heavy diet per se will not accelerate growth.

PHENOTYPIC PLASTICITY—A RESPONSE
TO THE PRESENT ECOLOGICAL
CONDITIONS

As has been demonstrated in several species, individuals respond
to local ecological conditions (Ricklefs and Wikelski, 2002; Lee
and Kappeler, 2003; Wells and Stock, 2011), a phenomenon
known as phenotypic plasticity (Scheiner, 1993). Within the
inherited limits, the same genotype can produce different
phenotypes in different environments or changing environments,
leading to changes in phenotype over time (Fusco and Minelli,
2010). While the range of possible reactions to environmental
influences is genetically determined, gene expression and cellular
processes are regulated by hormones, thus implementing flexible
responses to the current environmental conditions (Emery
Thompson, 2017).

One of the strongest phenotypic effects on life history
traits likely results from differences in energy balance. Energy
balance is the net amount of energy available to the body
for maintenance, growth, and reproduction (Emery Thompson,
2017). If food is superabundant and of high quality, energy
intake of the individuals can exceed their energy expenditure,
thus rendering energy balance positive (Ellison, 2017). This
surplus energy can be stored as fat, which is, however, rare in
wild primates (Altmann et al., 1993). Extra energy is mainly
allocated for growth and reproduction leading to faster growth,
younger maturation ages, and higher reproductive rates (Emery
Thompson, 2013).

Phenotypic plasticity is a well-established phenomenon that
has been documented in various animal orders (Sadleir, 1969;
Gilmore and Cook, 1981; Stearns and Koella, 1986), including
primates (Table 1). At Amboseli, Kenya, one of the yellow
baboon groups (Papio cynocephalus) frequently fed at a dumpster,
which led to high energy intake and a particularly low energy
expenditure. The individuals in this group grew, matured, and
reproduced significantly faster than those in groups lacking
access to energy-dense foods (Altmann and Alberts, 2003, 2005).
We documented similar, significant effects in an intrageneric
comparison of gray langurs (Semnopithecus spp.) from a

provisioned (India) and an unprovisioned (Nepal) population
(Borries and Koenig, 2000; Borries et al., 2001). In these two
comparisons, the surplus energy was provided by humans, but
natural habitats can also differ markedly in quality, as in the
Kibale forest, Uganda (Potts et al., 2015). Here, the chimpanzees
(Pan troglodytes) inhabiting the area with high fruit availability at
Ngogo, had amean interbirth interval that was 19months shorter
compared to the neighboring community at Kanyawara (Emery
Thompson et al., 2007; Watts, 2012).

Phenotypic plasticity becomes even more apparent when
changes in energy balance occur within the course of an
individuals’ lifetime (Table 1). For example, one group of the
Amboseli baboons eventually relocated to a more productive
habitat, which shortened interbirth intervals (Altmann and
Alberts, 2003). Similar changes, although in the opposite
direction, occurred in free-ranging Japanese macaques (Macaca
fuscata) from Mt. Ryozen, Japan, after regular provisioning
was discontinued (Sugiyama and Ohsawa, 1982). The same
individuals, with identical genetic makeup, exhibited different
speeds of life history, contingent on energy availability. More
broadly, all of the above examples illustrate that excess energy
can lead to predictable and non-trivial accelerations of primate
life history.

Currently, it remains difficult to apply this concept to
gorillas because very few comparative data on energy intake and
expenditure, and thus on energy balance, are available. However,
mountain gorillas at the long-term site, Karisoke, have a very
short daily path length and a high energy intake from mainly
terrestrial herbaceous vegetation (Supplementary Table S1). A
recent analysis of C-peptide concentrations in feces, a proxy for
energy intake, suggests that there were no seasonal, energetic
bottlenecks (Grueter et al., 2014). It seems therefore reasonable
to assume that gorillas at Karisoke live year-round under
nearly ideal energetic conditions similar to those experienced
in captivity (Wright et al., 2015). This could be the reason why
previous comparisons found gorilla life history to be unaffected
by the improved nutritional conditions in captivity (Harcourt
et al., 1980; Tutin, 1994). The conclusion was based on data
for wild mountain gorillas from Karisoke and captive western
gorillas. Only more recently has it become clear that wild western
gorillas have a much slower life history compared to their captive
counterparts (Breuer et al., 2009; Stoinski et al., 2013; Manguette
et al., 2019; cf. Table 1). The latter do not experience seasonal,
nutritional restrictions and have a low energy expenditure.

DISCUSSION

We hope to have shown that variation in gorilla life history
is unlikely to be an adaptive strategy with a generally reduced
speed of life history in habitats where negative energy balances
are likely to occur regularly (ecological risk aversion, Janson and
van Schaik, 1993). Rather, growth and reproduction could simply
fluctuate locally in relation to how positive the current energy
balance is and remains over time. Furthermore, we now know
that the gorilla species are very similar in adult female body
mass and that excess protein intake per se does not accelerate
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life history. It seems therefore most parsimonious to predict that
the overall availability of nutrients and seasonal fluctuations in
energy balance should directly and flexibly affect the speed of
gorilla life history.

Moving forward, quantifying individual female energy
balance (intake and expenditure) over time in a standardized
manner at different gorilla study sites is required to determine
whether phenotypic plasticity is indeed the main explanation
for variation in gorilla life history. Such a study will need to
also account for differences e.g., in the digestibility of leaves
and in the amount of energy invested in thermoregulation
(Wright et al., 2015), as well as in arboreal locomotion. Non-
energetic factors, such as the density of large food competitors
(impacting food availability) and genetic differences between
gorilla populations, resulting in different metabolic or other
physiological adaptations should also be examined.
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