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Biological rhythms are rhythmic fluctuations of biological functions that occur in almost
all organisms and on several time scales. These rhythms are generated endogenously
and entail the coordination of physiological and behavioural processes to predictable,
external environmental rhythms. The light-dark cycle is usually the most prominent
environmental cue to which animals synchronise their rhythms. Biological rhythms are
believed to provide an adaptive advantage to organisms. In the present review, we
will examine the occurrence of circadian and seasonal rhythms in African mole-rats
(family Bathyergidae). African mole-rats are strictly subterranean, they very rarely emerge
aboveground and therefore, do not have regular access to environmental light. A key
adaptation to their specialised habitat is a reduction in the visual system. Mole-rats
exhibit both daily and seasonal rhythmicity in a range of behaviours and physiological
variables, albeit to different degrees and with large variability. We review previous
research on the entire circadian system of African mole-rats and discuss output rhythms
in detail. Laboratory experiments imply that light remains the strongest zeitgeber for
entrainment but in the absence of light, animals can entrain to ambient temperature
rhythms. Field studies report that rhythmic daily and seasonal behaviour is displayed in
their natural habitat. We suggest that ambient temperature and rainfall play an important
role in the timing of rhythmic behaviour in mole-rats, and that they likely respond directly
to these zeitgebers in the field rather than exhibit robust endogenous rhythms. In the
light of climate change, these subterranean animals are buffered from the direct and
immediate effects of changes in temperature and rainfall, partly because they do not
have robust circadian rhythms, however, on a longer term they are vulnerable to changes
in their food sources and dispersal abilities.

Keywords: Bathyergidae, circadian rhythm, seasonal rhythm, rhythmicity, light, temperature, social, solitary

BIOLOGICAL RHYTHMS

Biological timing is measured in the form of cyclical variations in physiological processes and
behaviours of organisms. Biological rhythms are ubiquitous in nearly all organisms and range in
frequency from milliseconds to many years and at all levels of organisation (Aschoff, 1981; Paranjpe
and Sharma, 2005). Biological rhythms can be classified according to the lengths of their periods,
ultradian rhythms are shorter than 24 h, circadian rhythms are about 24 h long and rhythms longer
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than 24 h are called infradian (Wollnik, 1989). These rhythms
are frequently superimposed on one-another, and the integrated
multi-frequency timekeeping enables organisms to keep track
of their environment and promotes optimal performance and
survival (Golombek and Rosenstein, 2010; Kuhlman et al., 2018).

Periodicity under natural conditions does not necessarily
demonstrate the presence of a biological clock. Rhythms can be
purely exogenous, in which case the rhythm is dependent on
the external environment (Aschoff, 1960). However, by far the
most common rhythms are the endogenous rhythms which are
generated by biological clocks within an organism and continue
or free run in the absence of external entraining factors, at least
for some time. Endogenous biological rhythms frequently do not
run precisely over daily or annual periods and a large number of
internal and external factors can influence the rhythm lengths,
causing them to deviate from that of external environmental
rhythms. To be biologically relevant, endogenous rhythms are
synchronised or entrained by periodic environmental rhythms to
prevent them from drifting out of phase with the environment
(Aschoff and Pohl, 1978). Circadian rhythms are the most
widespread biological rhythms and have periods of about 24 h.
The daily light-dark cycle is the most predictable cyclical
environmental cue and is therefore the most prominent zeitgeber
used by organisms for entrainment (Amir and Stewart, 1998).
Non-photic cues such as temperature, exercise and social cues
can also influence biological rhythms, however their effect is
usually less potent than that of light (Golombek and Rosenstein,
2010; Refinetti, 2010). However, in nature zeitgebers do not act
independently, they have compounding effects to generate a more
robust entraining effect (Van Jaarsveld et al., 2019).

THE CIRCADIAN SYSTEM

The circadian system can be divided into three fundamental
components, (a) the input pathway that collects external timing
signals and relays it to the core clock, (b) the central clock
that is responsible for the generation of rhythms, and (c) the
output in the form or behavioural or physiological rhythms
(Agostino et al., 2011). In mammals, photosensitive pigments
are found only in the retina of the eye. The rods and cones
in the photoreceptor layer of the retina are primarily used for
vision, whereas the melanopsins that are present in intrinsically
photosensitive retinal ganglion cells (ipRGC) are involved in
the circadian system (Berson, 2003). The axons of the ipRGC’s
form the retinohypothalamic tract (RHT) which projects to
the suprachiasmatic nucleus (SCN) that is located in the basal
hypothalamus (Moore, 2007). The SCN is the site of the central
pacemaker in mammals (Moore, 1983). The neurons of the SCN
respond to photic input in a gated fashion, their activation is
blocked during the day but not the night. During the night,
SCN neurons are activated to different degrees depending on the
time at night when the light source is given, and this activation
corresponds to periods when the presence of light can also cause
behavioural phase shifts for entrainment (Kornhauser et al., 1992;
Oosthuizen et al., 2005). Apart from the timing of light, the
circadian system is also differentially affected by the quality of the

light in terms of its intensity, duration, and spectrum (Gorman
et al., 2003; Duffy and Wright, 2005; Aral et al., 2006; Zubidat
et al., 2009, 2010).

GENERAL MECHANISM OF THE
CIRCADIAN CLOCK

All circadian clocks have a genetic basis and are driven
by delayed transcription-translation feedback loops (TTFL)
and post translational modifications (Sharma, 2003). The
molecular genetics of circadian clocks have been described in
several organisms ranging from prokaryotic organisms such as
cyanobacteria (Kondo and Ishiura, 2000; Nakajima et al., 2005)
to many kinds of eukaryotic organisms including Neurospora
(Correa et al., 2003; Dunlap et al., 2007), plants (Gardner
et al., 2006), insects (Bargiello and Young, 1984; Williams and
Sehgal, 2001; Rosato et al., 2006), and mammals (King and
Takahashi, 2000; Reppert and Weaver, 2001; Sato et al., 2004;
Ko and Takahashi, 2006). Oscillations of roughly 24 h are
generated by the expression, accumulation and degradation of
positive and negative clock genes and their products to form
loops (Patke et al., 2019). Although the genes involved in
the clock mechanisms of different organisms differ, they have
a similar functionality in terms of the feedback loops under
which they operate. In mammals, two interlocked feedback
loops drive the circadian clock at the cellular level (Brown and
Doyle, 2020). The core feedback loop, positive element proteins
CLOCK and BMAL1 form a dimer and binds to an Ebox
region to initiate the transcription of negative element genes
Period (Per) and Cryptochrome (Cry). After translation, PERIOD
and CRYPTOCHROME form heterodimers and translocate
back to the nucleus to act on CLOCK:BMAL1 and suppress
their own transcription (Ko and Takahashi, 2006). The second
regulatory loop is also activated by CLOCK:BMAL1 acting on
a promotor region to activate transcription of the retinoic acid-
related orphan nuclear receptors, Rev-erbα and Rorα, which
are subsequently translated to their respective proteins. These
proteins aid in the regulation of Bmal1 by controlling the rate
of its transcription (Ko and Takahashi, 2006). This secondary,
or auxiliary loop is thought to stabilise oscillations (Brown and
Doyle, 2020). The stability and period of the circadian oscillations
are also affected by post translational modifications such as
phosphorylation and ubiquitination, which contribute to the
stability of the proteins and is involved in nuclear translocation
(Ko and Takahashi, 2006).

Nearly all mammalian cells and tissues contain circadian
clocks that can generate autonomous circadian rhythms that
persist in isolation and free run at their own innate period
(Yoo et al., 2004; Husse et al., 2015). Since the central
pacemaker in the SCN receives external photic input, it can
synchronise to the external environment, and in turn it maintains
temporal synchrony of the downstream peripheral clocks with
the environment. Circadian clocks are also involved in the
regulation of seasonal rhythms via the hormone melatonin. In
mammals, pineal melatonin synthesis is under the control of
the SCN (Maronde et al., 1999). Melatonin expression peaks at
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night and is suppressed during the day, and can thus provide
photoperiodic information as the daylength varies across seasons
(Hardeland et al., 2006). Seasonality is frequently effected by
seasonal changes in hormones from the anterior pituitary. The
photoperiodic effects of melatonin on endocrine function is
mediated by the pars tuberalis of the pituitary gland, a region rich
in melatonin receptors (Morgan and Williams, 1996).

EVOLUTION OF RHYTHMICITY AND ITS
FUNCTIONAL IMPORTANCE

Due to the ubiquitous nature of rhythmicity in prokaryotic
and eukaryotic organisms, the evolution of a temporal order
is thought to have originated with early life forms (Hastings
et al., 1991; Paranjpe and Sharma, 2005). In primitive organisms,
rhythmicity serves to segregate photophilic and photophobic
processes essential for survival (Stal and Krumbein, 1985;
Nikaido and Johnson, 2000). The evolution of homeothermy in
early eutherian mammals enabled them to exploit the nocturnal
niche (Crompton et al., 1978) and thereby avoid predation
and interspecific competition with dinosaurs (Walls, 1942;
Gerkema et al., 2013). Other physiological and biochemical
rhythms such as body temperature and metabolism usually show
corresponding peaks compared to locomotor activity, indicating
that internal rhythms are synchronised (Refinetti, 1999; Riccio
and Goldman, 2000a). Similar to daily rhythmicity, animals
may also show seasonal rhythmicity. Many animals are exposed
to annual fluctuations in their environment, and organisms
tend to restrict their energetically expensive processes, such
as reproduction, to times of the year when food is abundant
and other environmental factors are most favourable. Other
seasonally timed behaviours include migration, hibernation
and colour changes of pelages to blend in with seasonal
environmental colouring.

Rhythmicity provides organisms with both intrinsic and
extrinsic fitness benefits. The intrinsic adaptive value of circadian
rhythms refers to the temporal coordination of internal processes,
for example to segregate incompatible processes or synchronise
others. Rhythms also allows organisms to keep track of
external time, providing an extrinsic adaptive value (Sharma,
2003). Both of these processes are crucial for survival in
natural environments (Paranjpe and Sharma, 2005). Rhythmicity
enables animals to keep track of proximate factors such as
light and temperature in order to predict and prepare for
ultimate factors such as predation risks, food availability and
mating opportunities, thereby providing an adaptive advantage
(Helm et al., 2013).

The importance of the circadian timing system and its
entrainment by light-dark cycles is best demonstrated
by the prevalence of increased health risks and in some
cases disturbances within ecological systems, which emerge
from disruptions of the circadian clock network and
desynchronization in timing of the different biological rhythms
(Bird et al., 2004; Navara and Nelson, 2007; Rotics et al., 2011;
Haim and Portnov, 2013). In modern society there are many
artificially induced disruptions of the circadian system that

have implications for both humans and animals that have
received much attention both in the laboratory and more
recently also in field studies. Animals are most severely affected
by light pollution and human interference with ecosystems
(Longcore and Rich, 2004).

When the internal clock mechanisms of organisms are
not appropriately aligned with the external environment,
many physiological processes are compromised. Effects of this
misalignment include reduced longevity and accelerated aging,
increased risk of cancer, metabolic, cardiovascular as well as
reproductive disorders and immune dysfunction (Evans and
Davidson, 2013). Laboratory studies indicate that alterations to
the LD cycle increase mortality of animals (Halberg and Cadotte,
1975; Penev et al., 1998; Davidson et al., 2006; Vinogradova
et al., 2009). In a natural habitat, animals with ablated SCNs
have a higher mortality as a result of increased predation
(DeCoursey et al., 1997; DeCoursey and Krulas, 1998). Artificial
light at night (ALAN) contributes to a higher prevalence
of several forms of cancer, accelerates tumour growth and
increases oxidative stress (Dauchy et al., 1999; Vinogradova
et al., 2009), with the disruption of the melatonin rhythm
thought to play a crucial role (Shah et al., 1984; Blask and Hill,
1986; Reiter et al., 2000; Baydas et al., 2001; Schernhammer
and Schulmeister, 2004). Circadian disruption can lead to a
host of adverse metabolic effects such as increased weight
gain, obesity and glucose intolerance which may result from
altered feeding behaviours (Oishi, 2009; Karatsoreos et al., 2011;
Varcoe et al., 2011), and an increased risk of cardiovascular
disorders (Knutsson and Boggild, 2000; Ruger and Scheer,
2009). The immune system may also be adversely affected by
circadian disruptions, with infections and inflammations arising
that can act synergistically with other health consequences that
are associated with disturbances in rhythmicity (Scheiermann
et al., 2013; Philips et al., 2015; Comas et al., 2017). External
disturbances of the circadian system appear to have overall
negative effects on organisms.

The changing climates also cause shifts in seasons, which can
have serious implications for organisms as their phenological
environments are altered (Visser et al., 2010). Animals are
adapted to certain environmental factors in their habitats, and
they time processes such as reproduction, hibernation and
migration accordingly. When seasonal changes occur at times
that are different from those animals anticipate and prepare for,
mismatches and mistiming occur between the animal and its
environment. This effect often spans several trophic levels, for
example when shifts in food sources occur there is a disruption
in the food chain (Visser et al., 2006). This in turn can have
direct implications on the reproduction of animals (Visser et al.,
2009). Phenological mismatches in migrating animals can also
have severe fitness consequences (Saino et al., 2010), and similarly
a recent publication described a phenological mismatch between
sexes in a hibernating rodent following a heatwave (Kucheravy
et al., 2021). In species that undergo seasonal pelage colour
changes, temperature shifts can cause snow to arrive earlier or
melt sooner, causing a mismatch between the animal and its
environment (Mills et al., 2013). Proper timing of biological
events is crucial for the continued survival and fitness of species.
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RHYTHMICITY IN CONSTANT HABITATS

Most organisms inhabit highly rhythmic environments where
daylight and temperature fluctuate daily or seasonally. There
are, however, certain habitats that experience minimal daily
and seasonal fluctuations in ambient conditions. While the
significance of rhythmicity may be clear-cut for animals
that are frequently exposed to environmental fluctuations, it
is less obvious for animals that inhabit relatively constant
environments. In the absence of rhythmic external cues some
organisms may not benefit from entraining their internal clocks
to regulate rhythmic behaviour that might be deemed to be less
advantageous. In such conditions, rhythmicity may be actively
selected against, in particular to preclude the maintenance
of energetically expensive input pathways (eyes) and clock
mechanisms (Niven and Laughlin, 2008; Porter and Sumner-
Rooney, 2018). There is indeed evidence of regression in species
that utilise constant habitats, with a gradient of morphological
adaptations dependent on the extent of habitat utilisation. Some
organisms return to a rhythmic environment periodically and
could therefore show lower degrees of adaptation to constant
environments. Specifically with regards to vision, adaptations
range from animals with slightly reduced eyes to others that
are completely eyeless, with all degrees of variation in between
(Menna-Barreto and Trajano, 2015). Since photic information
reaches the SCN via the eyes in mammals, a regressed visual
system has implications for the circadian system. Species that
utilise constant habitats but are morphologically more similar to
species that do not, i.e., possessing acute vision and functional
eyes, should display distinct rhythms, whereas eyeless species
with absent visual structures should not express circadian
rhythmicity, and intermediate species probably exhibit a mosaic
of characteristics.

Polar regions are by no means subject to stable environmental
conditions since they are subject to large seasonal fluctuations
in both temperature and photoperiod. However, changes in
photoperiod are so extreme that during the middle of the
summer the sun does not set and in winter it does not rise
(Bloch et al., 2013). Animals are thus exposed to periods
of constant light or dark during mid-summer and winter,
during which mammals inhabiting these regions cannot use
light to entrain their biological rhythms, resulting in significant
variation in rhythmicity amongst animals. Some animals lose
rhythmicity completely during this time and may become almost
constantly active (Swade and Pittendrigh, 1967; Reierth et al.,
1999; Van Oort et al., 2005; Lu et al., 2010), some animals
lose rhythmicity intermittently (Arnold et al., 2018), while
others retain rhythmicity, but at a lower amplitude (Swade and
Pittendrigh, 1967; Hau et al., 2002; Ashley et al., 2014; Ware et al.,
2020). Polar animals are still exposed to rhythmic environmental
conditions for the remainder of the year, during which they
exhibit rhythmicity in behaviour and physiological functions.

More than 60% of the Earth’s surface is covered by deep
oceans, and deep seas of more than 200 m have long been
considered as arrhythmic environments (Mat et al., 2020).
Although water temperatures do not show daily variations within
a few meters from the surface (Kawai and Wada, 2007), seasonal

differences are still noticeable for depths of up to 1 km (Talley,
2011). Light can also penetrate water for up to 1 km (Warrant
and Locket, 2004). Internal tides as a result of hydrothermal
vents occur at all depths (Mat et al., 2020). Although this
biome is poorly studied due to its inaccessibility and technical
constraints, rhythmic behaviour has been observed in deep sea
organisms. In deep sea organisms that have been brought to the
surface, circadian feeding rhythms (Maynou and Cartes, 1988;
Modica et al., 2014) and lunar rhythms in melatonin secretion
(Wagner et al., 2007) have been detected. Video recordings of
deep-sea invertebrates and mussels in their natural environment
also reveal circadian rhythmicity in their activity and behaviour
(Cuvelier et al., 2014; Mat et al., 2020). Functional melanopsin
receptors have been identified in some deep-sea fish, suggesting
the potential for photic stimulation of the circadian clock (Davies
et al., 2012). Candidate clock genes have also been discovered
(Mat et al., 2020), indicating that the circadian clocks of these
animals are still functional.

Caves probably have the most stable microclimates of all
arrhythmic habitats, as they are completely isolated from light
and temperature fluctuations (Beale et al., 2016). Cave dwelling
organisms show large variation in their use of the caves as well
as in the expression of their biological rhythms. Many species,
such as bats, use caves to sleep in, but forage outside, and have
robust circadian rhythms (Marimuthu and Chandrashekaran,
1985). Some other organisms are facultative cave dwellers and
are strongly specialised to their habitat, with some species even
regressing their eyes completely. Despite this, many of these
organisms have retained the ability to display circadian rhythms,
albeit dampened and with evidence for clock gene mutations, and
they do not persist long in constant conditions (Cavallari et al.,
2011; Beale et al., 2013, 2016).

The subterranean niche is characterised by constant darkness
and otherwise dampened short term climatic fluctuations
(Bennett and Faulkes, 2000). A large number of vertebrates,
including some 300 mammalian species from different taxa, have
evolved fossorial or subterranean lifestyles (Nevo, 1979; Bennett
and Faulkes, 2000; Lacey et al., 2001; Peichl et al., 2004). As
with cave dwelling species, fossorial species range from species
using burrows purely for shelter to others that permanently
live underground and surface very infrequently, if at all (Nevo,
1979; Mason and Narins, 2001). Technically, animals that use
underground tunnels to sleep in, but forage aboveground are
classified as fossorial (Camin and Madoery, 1994; Tomotani
et al., 2012). However, since they are frequently exposed to daily
environmental light and temperature fluctuations, they do not
permanently live in a constant environment and usually display
robust rhythmicity.

Many species have evolved to show specific adaptations to a
life underground. These adaptations include both morphological
and physiological features, including adaptations to the visual
system. Eye sizes vary considerably in subterranean animals,
with this variation reflecting differences in selection pressures of
the various lifestyles (Borghi et al., 2002). Strictly subterranean
mammals that very rarely emerge aboveground frequently have
reduced or no visual capabilities. These animals can have
microphthalmic external eyes, subcutaneous eyes or a complete
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loss of eyes (Nevo, 1979; Burda et al., 1990; Cooper et al., 1993a).
Animals with small external or subcutaneous eyes usually have
regressed or malformed retinal structures, and brain areas that
are associated with vision are reduced or absent, however, their
circadian systems appear to be intact (Cooper et al., 1993a; Peichl,
2005; Němec et al., 2008a,b; Vega-Zuniga et al., 2017).

MOLE-RATS

African mole-rats from the family Bathyergidae are endemic to
sub-Saharan Africa, and all species are subterranean. There are
six genera within this family, and a total of around 30 described
species, three of the genera contain solitary species and three
social species (Figure 1; Van Daele et al., 2007; Faulkes and
Bennett, 2013). Solitary species are confined to mesic habitats,
whereas social species occur throughout much of the continent
south of the Sahel.

Mole-rats are believed to have evolved from surface-dwelling
to a subterranean existence about 20 million years ago, in
the early Miocene (Nevo, 1995; Lavocat, 2013). They have
since adapted very successfully to their habitat and show
several morphological and physiological adaptations to their
environment. These include a regressed visual system which
can pose obvious challenges for the circadian system and
rhythmicity. Despite their reduced visual system, all mole-rat
species investigated to date show some form of rhythmicity, albeit
to varying degrees. This suggests that their circadian systems are
intact and functional.

Naked mole-rats (Heterocephalus glaber) are of particular
interest for a variety of medical applications including aging,
cancer and pain research and have therefore been the focus
of many diverse studies over the past decades (Buffenstein,
2005; Park et al., 2008; Shepard and Kilssil, 2020). Hence,
much of the research on mole-rats, specifically the molecular
aspects of the circadian clock and its output, were conducted
on this species. More recently, there was a spike in interest
also in the other mole-rat species in the family Bathyergidae for
comparative research in an evolutionary and ecological sense.
This family occurs in a wide range of habitats, and exhibits a
continuum of sociality, ranging from strictly solitary (Bathyergus,
Georychus, and Heliophobius) to social (Cryptomys) and highly
social (Fukomys and Heterocephalus). In addition, the species in
this family show interesting thermoregulatory properties, some
species are homeothermic, some more heterothermic and the
naked mole-rat has been described as poikilothermic (Buffenstein
and Yahav, 1991; Bennett et al., 1993, 1994b; Boyles et al., 2012;
Oosthuizen et al., 2021). Finally, the circadian biology of African
mole-rats has received much attention over the past two decades.

MOLE-RAT CIRCADIAN SYSTEM

Input Pathways
As with other mammals, photic information can only enter
the circadian system the via eyes in mole-rats (Němec et al.,
2004; Crish et al., 2006). African mole-rats have small superficial

eyes, and initially it was suggested that mole-rats were not
completely blind (Sclater, 1900). Most researchers, however, were
in agreement that mole-rats cannot see Eloff (1958); Jarvis (1973).
Eloff (1958) reported that the eyes of mole-rats (Cryptomys and
Bathyergus species) are insensitive to light and supported this by
the apparent lack of response to bright light being applied to the
eye, the lack of pupillary reflex and certain anatomical deviations
of the visual system, such as a thin optic tract and the apparent
absence of circular muscle fibres around the lens. A thickened
cornea was also noted by Eloff (1958). The general consensus
amongst researchers studying bathyergids was that they are
blind (Peichl et al., 2004), and several, more recent publications
referred to ‘blind’ African mole-rats (Lovegrove et al., 1993; Kössl
et al., 1996; Brückmann and Burda, 1997; Oelschlager et al.,
2000; Heth et al., 2002). The eyes and visual system of mole-
rats have subsequently been investigated in more detail. Although
microphthalmic, the architecture of mole-rat eyes is similar to
that of surface-dwelling rodents (Peichl et al., 2004; Němec et al.,
2008a). Although considerable species variation is obvious, the
structural organization seems to be less regular (Nikitina et al.,
2004; Peichl et al., 2004). The eye lens is small in most species,
except the naked mole-rat, where it is very large, uneven in
shape and free floating (Nikitina et al., 2004). The retina is well
developed, although in the naked mole-rat, it appears to be folded
(Nikitina et al., 2004; Němec et al., 2008a). Structurally, it has
all the layers expected in a sighted animal, with rod and cone
photoreceptor cells, and multiple types of horizontal, bipolar,
amacrine and ganglion cells (Mills and Catania, 2004; Peichl
et al., 2004). As a result of the small eye size, mole-rats have low
overall numbers of photoreceptors, but like most other mammals,
the retina is rod dominated. Nevertheless, a surprisingly high
proportion of cones are present, most of which are S-opsin
immunoreactive (Peichl et al., 2004). The structural organisation
of the eye negates the ability for image formation, but that
of the retina suggests that these animals retained the ability
to discriminate between light and dark (Nikitina et al., 2004).
Indeed, behavioural studies in several mole-rat species revealed
severe visual deficits in terms of image formation, visuomotor
integration and depth perception (Kott et al., 2016).

In addition to structural constraints, certain genes in the
naked mole-rat eye display substitutions that constitute retinal
degeneration (Zhou et al., 2020). These genes include CRX, a
photoreceptor specific transcription factor, and mutations that
are associated with dominant rod-cone dystrophy and Leber’s
congenital amaurosis (Sohocki et al., 1998), and RPE65 whose
encoded protein is part of the vitamin A cycle of the retina,
mutations cause retinal degeneration and is also associated with
Leber’s congenital amaurosis (Wang et al., 2020). Both of these
genes have been implicated with the maintenance of circadian
function (Gamse et al., 2001; Doyle et al., 2008). This is consistent
with the poor vision displayed by the naked mole-rat, and likely
other mole-rats as well.

Retinal ganglion cells are fewer in number, the optic tract
is thin and contains more unmyelinated fibres compared to
surface dwelling rodents such as mice and rats (Supplementary
Figure 1; Omlin, 1997; Negroni et al., 2003; Němec et al.,
2004, 2008a). The optic tract projects to all the usual visual
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FIGURE 1 | Images of a representative animal of each of the six genera of the family Bathyergidae. (A) Georychus capensis; (B) Cryptomys hottentotus pretoriae;
(C) Heliophobius emeni; (D) Fukomys damarensis; (E) Bathyergus suillus; (F) Heterocephalus glaber. Panels (A,C,E) are solitary species, while panels (B,D,F)
represent social species.

structures in the brain, but compared to surface dwelling
rodents, both the brain structure sizes, and proportions of the
innervations differ. The SCN is well developed and receives
dense bilateral projections, proportionally larger compared to
surface dwelling rodents, whereas all other visual structures are
reduced and receives proportionally smaller projections (Negroni
et al., 2003). Light reaches retinorecipient regions of the brain, as
indicated by immunohistochemical labelling (Oelschlager et al.,
2000). Structures involved in brightness discrimination are better
developed than those that regulate coordination of visuomotor
reflexes, as is also indicated by the structure of the eye (Peichl
et al., 2004; Němec et al., 2008a). Correspondingly mole-rats have
low visual acuity, reflecting their reliance on other sensory senses
in their habitat.

The circadian system of the blind mole-rat, Spalax ehrenbergi,
a subterranean rodent from another family, has been much more
extensively studied. It shows a more severe regression of the
visual system, with subcutaneous eyes, a complete loss of vision
and corresponding small or absent retinal projections to visual
structures, as in African mole-rats (Bronchti et al., 1991; Cooper
et al., 1993b). The blind mole-rat have less than a thousand retinal
ganglion cells, almost all of which contain melanopsin, suggesting

a functional circadian system (Hannibal et al., 2002; Esquiva et al.,
2016). The mole-rat visual system suggests selective progressive
and regressive evolution of the structural attributes, driven by
selection forces of their subterranean habitat.

The Clock and Its Mechanism
In mole-rats, as with other mammals, the central pacemaker
is located in the SCN and receives bilateral innervation from
a subset of retinal ganglion cells (Němec et al., 2008a). Light
sensitivity of the SCN has been tested in several mole-rat species
by measuring the expression of the immediate early gene c-
fos, which is a marker of light activated neuronal activity in
the SCN (Oosthuizen et al., 2005). The SCN neurons appear
to react to light in most of the species tested, however, the
response is variable (Oosthuizen et al., 2005, 2010a). In rodents,
Fos expression is dependent on the phase of the circadian clock,
with low Fos induction during the day and higher during the
night (Rose et al., 1999). This is also the case in the Cape
mole-rat (Georychus capensis), a solitary species, whereas gating
according to the phase of the day is not apparent in the
highveld mole-rat (Cryptomys hottentotus pretoriae), a social
species (Oosthuizen et al., 2005). Fos expression in the SCN
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of rodents is directly proportional to the number of photons
in the light stimulus. Increasing light intensities or longer light
pulse durations evokes higher Fos expression in the SCN (Nelson
and Takahashi, 1991; Dkhissi-Benyahya et al., 2000). The solitary
Cape mole-rat exhibits responses similar to other aboveground
rodents, light induces a significant Fos response in the SCN
that increases with increasing light intensities (Oosthuizen et al.,
2010a). In social species, this response is rather different, large
variability is obvious in the common mole-rat (Cryptomys
hottentotus hottentotus) and the Damaraland mole-rat (Fukomys
damarensis), both within and between the groups exposed to
specific light intensities. The naked mole-rat does not appear
to display any Fos expression in response to light illumination
(Oosthuizen et al., 2010a). The lack of responsiveness of the
naked mole-rat may be in part as a consequence of the size
of their eyes. Naked mole-rats are one of the smallest mole-
rats, as are their eye sizes. The small size of the eyes limits
the number of photoreceptors and the amount of light that can
enter. There appears to be a gradient of light sensitivity in the
African mole-rats in parallel with their social structures, with
solitary species more sensitive to light compared to the more
social species (Figure 2).

FIGURE 2 | An illustration of the light responsiveness of the SCN comparing
aboveground rodents to mole-rats with different degrees of sociality.
Aboveground dwelling rodents have a short integration time of light to the
SCN and show gating of the circadian clock. Solitary mole-rats show similar
gating of light compared to aboveground dwelling rodents but have a longer
integration time/higher threshold to light. Social mole-rats do not show gating
of the circadian clock and have higher and more variable thresholds to light.
Naked mole-rats do not exhibit any Fos expression in the SCN in response to
light.

Of the African mole-rats, only the naked mole-rat circadian
clock mechanism has been investigated. In addition, it was
studied in liver tissue, not the SCN, and patterns observed in
the liver could therefore be different from that in the SCN.
Ghosh et al. (2021) compared several aspects of the circadian
clock between naked mole-rats and mice. All the core circadian

clock genes (Bmal1, Clock, Per1/2, Cry1/2) as well as the nuclear
receptor genes, Rev-Erbα and β, and three Ror-s, were identified
in the naked mole-rat. In addition, some cytoplasmic Casein
kinases were also detected in the naked mole-rat genome (Ghosh
et al., 2021). The circadian clock proteins appear to be highly
conserved among mammalian species. The presence of the
appropriate clock genes does not necessarily guarantee robust
rhythmicity. To produce and coordinate overt rhythms, different
clock gene expression peak at different times of the day. Positive
clock genes (Bmal1) normally peak in the morning whereas
the negative clock genes (Per and Cry) peak in the evening
according to when certain genes are suppressed or not. In the
naked mole-rat, the positive and negative clock genes all peak
at the same time in the early morning. These differences may
potentially stem from variations in the promotors of clock genes.
While the regulatory elements of the promotor regions are highly
conserved between species, the number of promotors for specific
genes differ between mice and mole-rats and could affect the
secondary feedback loops (Ghosh et al., 2021). These results
could suggest that the naked mole-rat circadian oscillator is
organised differently to that of surface-dwelling rodents, or that
evolutionary pressures are driving a loss of circadian function
in this species.

The clock genes of the blind mole-rat are much better
characterised than those of the bathyergid mole-rats. The two
positive element genes Clock and Mop3 (Bmal1) have been cloned
and sequenced, MOP3 expression shows circadian variation
but not Clock. The CLOCK/MOP3 dimer appears relatively
conserved but less effective at driving transcription than other
mammalian species (Avivi et al., 2001). Three period genes
have also been cloned and sequenced, and oscillate with 24 h
periodicity in the SCN, retina and peripheral clocks (Avivi et al.,
2002). Given the similarity in habitat and selection pressures on
blind mole-rats and African mole-rats, it is likely that the other
bathyergid mole-rats would also show conserved, functional
clock components, although this remains to be discovered.

Output
The output of the circadian clock is manifested in the countless
biochemical, physiological and behavioural rhythms displayed
by animals. Output rhythms are frequently the only way to
determine the phase of the circadian clock. In African mole-rats,
several circadian rhythms, including locomotor activity, body
temperature, melatonin and metabolism, have been investigated.
Locomotor activity received the most attention while other
rhythms are rather poorly studied in only a few species.

DAILY RHYTHMICITY IN MOLE-RATS

Melatonin
In mammals, melatonin is primarily produced in the pineal
gland and is involved in the regulation of the sleep-wake rhythm
and body temperature (Cagnacci et al., 1992). The naked mole-
rat melatonin signal appears to be disrupted at several steps
along its pathway. The pineal gland is atrophied (Quay, 1981)
and although the genes involved in the synthesis of melatonin

Frontiers in Ecology and Evolution | www.frontiersin.org 7 April 2022 | Volume 10 | Article 878533

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-878533 April 15, 2022 Time: 9:39 # 8

Oosthuizen and Bennett Biological Rhythms in African Mole-Rats

are intact, the expression of some of the genes are very low
or undetectable (Kim et al., 2011). In addition, the melatonin
receptors have mutations that introduce premature stop signals
(Fang et al., 2014). In rodents, melatonin has two high-affinity
receptors, MTNR1a and MTNR1b. In naked mole-rats, both
of these receptors are non-functional, whereas the Damaraland
mole-rat has an intact MTNR1a receptor while the MTNR1b is
inactive (Fang et al., 2014). The MTNR1a receptor alone has been
shown to be sufficient to maintain photoperiodic responses in the
hamster (Prendergast, 2010), suggesting a functional melatonin
pathway for at least some of the mole-rat species. Indeed, several
species from the genus Fukomys, the Damaraland (F. damarensis)
and Mashona mole-rats (Fukomys darlingi), as well as the genus
Cryptomys, the highveld (C.h. pretoriae) and Natal mole-rats
(C.h. natalensis), display daily rhythms of plasma melatonin
concentrations (Richter et al., 2003; Gutjahr et al., 2004; Hart
et al., 2004; Vasicek et al., 2005a). Plasma melatonin rhythms have
apparently not been investigated in the naked mole-rat, probably
because of the evidence of interruption in the pathway.

Metabolism
It appears that rhythms of metabolism have only been examined
in the naked mole-rat. Genes involved in the metabolism of
glucose and fructose were investigated in mice and naked mole-
rats. For both pathways, the mole-rat genes show circadian
rhythmicity and appear to be more synchronised than mouse
genes (Ghosh et al., 2021). Similarly, the mTOR signalling
pathway, that senses the cellular environments and a major
regulator of mammalian metabolism and physiology, displays
highly synchronised expression in the naked mole-rat, but not in
mice (Ghosh et al., 2021). Consistent with this, circadian rhythms
of metabolic rate were measured in the naked mole-rat, which
increases corresponding to increased body temperature and
wheel running activity (Riccio and Goldman, 2000a). Stringent
control over metabolic pathways may be essential for the survival
in challenging subterranean environments where food may be
limited and/or energetically expensive to retrieve. Since the naked
mole-rats and other African mole-rats share similar habitat
constraints, this is likely also the case in the other genera.

Body Temperature
Most mammals show daily variations in body temperature (Tb),
which is usually closely related to locomotor activity, Tb is
higher when animals are active (Refinetti, 1999). This is also
the case in mole-rats (Figure 3). The Tb rhythms of several
species have been investigated in the laboratory and in the
field, and all of those species show rhythmic Tb fluctuations
(Table 1; Lovegrove and Muir, 1996; Riccio and Goldman, 2000a;
Streicher et al., 2011; Haupt et al., 2017; Van Jaarsveld et al., 2019;
Okrouhlík et al., 2021; Oosthuizen et al., 2021). Mole-rats, like
many other fossorial rodents, overall have lower Tb compared
to aboveground dwelling rodents (Fioretti et al., 1974; Wollnik
and Schmidt, 1995; Castillo et al., 2005; Gordon, 2017). Solitary
species have mean Tb of around 35.5–36◦C (Lovegrove and Muir,
1996; Okrouhlík et al., 2021) whereas the social species have even
lower Tb’s of between 34◦C and 35◦C (Riccio and Goldman,
2000a; Streicher et al., 2011; Haupt et al., 2017; Oosthuizen

et al., 2021). The amplitude of Tb rhythms in mole-rats is also
smaller compared to other rodents (Castillo et al., 2005; Haupt
et al., 2017; Okrouhlík et al., 2021; Oosthuizen et al., 2021).
Both the lower body temperatures and rhythm amplitudes are
likely thermoregulatory adaptations to the subterranean ecotope
(Lovegrove, 1986). Nevertheless, Tb patterns conformed to that
of the activity rhythms in mole-rats that have been investigated in
the laboratory (Lovegrove and Muir, 1996; Riccio and Goldman,
2000a; Haupt et al., 2017; Van Jaarsveld et al., 2019). Hence, Tb
can be used as a proxy for activity when the measurement thereof
is challenging, for example in underground dwelling animals.

Locomotor Activity
Much of the early literature claims that there is no locomotor
rhythmicity in mole-rats, with initial behavioural studies
reporting dispersed activity patterns for both solitary and social
species (Table 1; Genelly, 1965; Jarvis, 1973; Hickman, 1980;
Lovegrove, 1988; Bennett, 1992). Interest in the circadian biology
of African mole-rats started to gain traction in the 1990s
and Lovegrove was the first to show evidence of locomotor
activity rhythms in both a solitary (Lovegrove and Papenfus,
1995) and a social mole-rat species (Lovegrove et al., 1993).
Subsequently, locomotor activity rhythms have been investigated
in several species in the laboratory, and all species exhibited
rhythmicity, albeit to different degrees and with a great deal
of variability both within and between species (Figure 3 and
Table 1; Riccio and Goldman, 2000b; Oosthuizen et al., 2003;
Hart et al., 2004; Vasicek et al., 2005b; Schöttner et al., 2006;
de Vries et al., 2008). Intraspecific variability is evident from
the proportion of rhythmic and arrhythmic chronotypes in
mole-rat species. Overall, there are many animals that are
arrhythmic. Differences in sleep has been identified between
rhythmic and arrhythmic animals, arrhythmic animals spend a
larger proportion of their time awake compared to rhythmic
individuals (Bhagwandin et al., 2011b). These differences are
also reflected in the numbers of orexinergic cells present in
the animals. Orexin promotes wakefulness, and indeed, the
arrhythmic animals of several mole-rat species display more
orexinergic cell bodies compared to rhythmic chronotypes
(Bhagwandin et al., 2011a).

Potential sources of variation in locomotor activity studies
in the laboratory include the method of recording, the
housing conditions of the animals and the ambient conditions.
Locomotor activity can be measured in several different
ways, for single animals, passive infrared captors are quite
popular, they work reasonably well, but inter- and intra-
experimental variation can occur if the sensitivity of the
sensors is different. Running wheels can also be used for
singly housed animals, and usually render the ’cleanest’ results,
but have the disadvantage that general activities when the
animal is not on the wheel, are not recorded. In addition,
not all animals run on wheels. Another option is the use of
implanted e-mitters, although these devices are quite expensive
and record every movement of the animal, it can render rather
noisy results. The recording activity of multiple animals while
maintained in a colony is tricky, video recordings can be
used if the animals are individually identifiable from above,
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FIGURE 3 | An example of actograms for (A) locomotor activity and (B) body temperature of a Mahali mole-rat (Cryptomys hottentotus mahali) that was subjected
to six consecutive light and temperature regimes. The light cycle order was a square wave cycle (12L:12D), simulated dawn and dusk natural cycle (1 h each, 12 h
complete darkness) and DD, repeated twice (cycles 1–3, and 4–6). The first three cycles (1–3) had a constant ambient temperature of 25◦C, and the last three (4–6)
were subjected to a temperature cycle varying between 18 and 28◦C over 24 h. The actograms show the close relationship between locomotor activity and body
temperature. Cycles 4–6 show more robust rhythmicity, implying the supportive role of ambient temperature to entrainment. A comparison between the DD cycles
shows free-running under constant ambient temperature (cycle 3) while activity remains entrained but slightly shifted with a temperature cycle (cycle 6). Actograms
are double plotted with the time on the X-axis. The number of days is on the Y-axis and the experimental conditions are illustrated between the two actograms. LDs,
square wave; LDn, natural wave; Tc, constant ambient temperature; Tn, natural ambient temperature cycle. (Modified from Van Jaarsveld et al., 2019, with
permission from Elsevier).
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TABLE 1 | A summary of the literature on daily rhythms of African mole-rats.

Species Literature S/C Rhythm details # L/F

Georychus Lovegrove and Papenfus, 1995 S Nocturnal activity, free-running in DD and LL, splitting in LL 7 L

Cycles: 12L:12D, LL, DD

Lovegrove and Muir, 1996 S Activity and Tb rhythms present, Tb may not be endogenous 6 L

Cycles: LD, DD

Oosthuizen et al., 2003 S Mostly nocturnal activity, some diurnal, re-entrain and show free-running,
variable

11 L

Cycles: 12L:12D, forward and backward shifts, DD, short and long days

Okrouhlík et al., 2021 S Tb rhythms in summer and winter, distinct peaks in activity 2 F

Field: Winter/summer

Hart et al., 2021a S Activity entrainment to Ta cycles 12 L

Cycles: DD with Ta variations

Bathyergus Herbst and Bennett, 2006 S B. janetta – Mound production at night or early morning 9 F

Field: winter/summer

Okrouhlík et al., 2021 S B. suillus – Tb rhythms in summer and winter, peaks during the day 6 F

Field: Winter/summer

Heliophobius Jarvis, 1973 S Dispersed activity 1 F

Šklíba et al., 2007 S Activity at any time of the day, timing related to Ta, amount related to rainfall 11 F

Ackermann et al., 2017 S Diurnal activity, very slow entrainment 13 L

Cycles: 12L:12D, 12 h shift, DD, Ta changes, long and short day

Cryptomys Hickman, 1980 S, C Intermittent activity of single and groups of animals, slightly more at night 6 L

Cycles: Natural light in combination with 9L:15D

Bennett, 1992 C Activity at all times of the day, no distinct nocturnal/diurnal pattern 8 L

Cycles: LL

Oosthuizen et al., 2003 S Mostly nocturnal activity, some diurnal 7 L

Cycles: 12L:12D, 12 h shift, DD, LL, long and short day

Hart et al., 2004 S Nocturnal, good entrainment, free running under DD and LL 12 L

Cycles: 12L:12D, 12 h shift, DD, LL

Gutjahr et al., 2004 C.h. pretoriae – Melatonin rhythms in LD, suppressed in LL 138 L

Cycles: 12L:12D, DD, LL

Schöttner et al., 2006 S Nocturnal activity, slow entrainment, free running, variable 12 L

Cycles: 12L:12D, 12 h shift, DD

Oosthuizen and Bennett, 2015 S Nocturnal, level of activity dependent on Ta, breeding status differences 16 L

Cycles: 12L:12D Ta variations

Haupt et al., 2017 S Nocturnal, activity and Tb rhythms, Tb inversely related to Ta 16 L

Cycles: 12L:12D, DD, Ta variations

Van Jaarsveld et al., 2019 S Nocturnal, square wave better entrainment, free run, more robust rhythms
under cyclic Ta

16 L

Cycles: Light square wave, dawn/dusk, constant Ta, cyclic Ta

Oosthuizen et al., 2021 C Summer – Bimodal rhythms, winter – unimodal rhythms, Ta related 39 F

Field: summer/winter (23/16)

Hart et al., 2021a S Activity entrainment to Ta cycles 12 L

Cycles: DD with Ta variations

Fukomys Genelly, 1965 C C. hottentotus (F. darlingi) Active at all hours of the day and night 7, ? L/F

Cycles: Not specified, probably 12L:12D?

De Graaf, 1972 C F. damarensis – Unknown, indications of increased activity around dawn
and dusk

? F

Field: Time not specified

Lovegrove, 1988 C F. damarensis – Equally active during day and night 5 F

Field:

Lovegrove et al., 1993 C F damarensis – LD: diurnal activity, long day – distinct activity spike, fast
entrainment, free-running

2 col L

Cycles: 12L:12D, 16L:8D, DD (5/4)

Oosthuizen et al., 2003 S F. damarensis – Mostly diurnal, some nocturnal, entrainment, free-running 8 L

Cycles: 12L:12D, 12 h shift, DD, LL, long and short day

(Continued)
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TABLE 1 | (Continued)

Species Literature S/C Rhythm details # L/F

Richter et al., 2003 L F. damarensis – Clear melatonin rhythms in LD, modified by photoperiod 24 L

Cycles: 12L:12D, 14L:10D, 10L:14D

Vasicek et al., 2005b S F. darlingi – Most nocturnal, some diurnal, variable, entrainment,
free-running, 2 entrained to masking cycle

12 L

Cycles: 12L:12D, 12 h shift, DD, LL, masking (3 h cycles)

Vasicek et al., 2005a S F. darlingi – Melatonin rhythms under LD cycles, DD and LL 12 L

Cycles: 12L:12D, DD, LL

de Vries et al., 2008 S F. anselli – Mostly nocturnal 11 L

Cycles: 12L:12D, 12 h shift, DD

Streicher et al., 2011 C F. damarensis – Variable, 24 h and 12 h rhythms, multiple, arrhythmic 23 F

Field: Summer/winter (8/15)

Schielke et al., 2012 C F. anselli – Tendency towards rhythmicity 47 L

Cycles: Natural light conditions

Lövy et al., 2013 C F. mechowii – Nocturnal, variable depending on social status 6 F

Šklíba et al., 2014 C F. anselli – 1 diurnal daily peak, Ta related, social cues may disrupt Ta
related activity rhythms

17 F

Oosthuizen and Bennett, 2015 S F. damarensis – Nocturnal, activity level depends on Ta 16 L

Cycles: 12L:12D with Ta variations

Heterocephalus Davis-Walton and Sherman,
1994

C No colony level circadian rhythmicity 2 col L

Cycle: Dim red light (DD) 19/28

Riccio and Goldman, 2000a S Mostly nocturnal, variable, LD: entrain/freerun/arrhythmic 15* L

Cycles: 12L:12D varying intensities, 6 h shift, T cycles

Riccio and Goldman, 2000b S Rhythms of Tb and metabolism, increases coincided with increased activity 4 L

Cycles: 12L:12D

*Twenty-seven animals were introduced in this experiment but only 15 used the running wheels.
The S/C column indicates whether the animals were housed singly or in colonies. The sample size is in the # column, numbers in brackets indicate summer and winter
samples, or the number of animals in colonies. Studies conducted in the Lab or Field are indicated in the L/F column. Tb, body temperature; Ta, ambient temperature.

but it takes very long to analyse subsequently. Alternatively,
RFID tags can be implanted in the animals and tag readers
can be placed strategically over a laboratory tunnel system.
These tags and readers are also costly and do not provide a
continuous activity feed.

Housing conditions can also potentially affect activity
of animals, firstly the actual housing containers mole-rats
are frequently maintained in are square box containers
while they live in tunnels in their natural habitat. In
addition, social animals are frequently housed in isolation
to record locomotor activity of a single animal as a result of
recording constraints mentioned above. Social entrainment
of rhythms has been implicated for social mole-rat species
(Šklíba et al., 2014), therefore rhythmicity of animals
may differ according to whether they are isolated or in
their natal colonies.

The ambient conditions in the laboratories can also influence
activity rhythms of animals. Light is the primary cue for
circadian rhythmicity in most animals, and mole-rats are
fully capable of perceiving it. In the Highveld mole-rat,
C.h. pretoriae, it has been shown that these animals are
sensitive to the intensity of light, activity is masked by
light at higher intensities (above 10 lux), and animals show
higher levels of activity at lower light intensities (below
10 lux), although the temporal profile remains relatively

similar. Ambient temperature also affects the level of activity,
with mole-rats being less active at higher temperatures that
approaches the thermoneutral zone (around 30◦C), and more
active at cooler temperatures (Oosthuizen and Bennett, 2015;
Haupt et al., 2017).

LABORATORY VS. FIELD

The results of several field studies indicate that many mole-rat
species have distinct peaks in their daily activity (Šklíba et al.,
2007; Streicher et al., 2011; Okrouhlík et al., 2021; Oosthuizen
et al., 2021; Finn et al., 2022). These peaks appear to be
related to the burrow temperatures, which is not surprising
as temperatures in the burrows fluctuate daily and seasonally
(Bennett et al., 1988; Šklíba et al., 2007; Lövy et al., 2013).
Whether these rhythms are in fact circadian or merely in
response to thermoregulatory challenges would require further
investigation. Most laboratory studies include light in the testing
regimes, and although mole-rats can perceive light this is not
a natural situation for them. In their natural habitat, mole-
rats are not exposed to light on a regular basis, but they are
subjected to slight temperature fluctuations in their burrows. It is
therefore to be expected that mole-rats would be more sensitive
to temperature changes and also be able to entrain to rhythmic
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temperature cycles. Entrainment to temperature cycles has in fact
been tested in the laboratory, it seems that light still overrides
temperature as a zeitgeber. When both light and temperature
cycles are presented, temperature cues play a supportive role
but if light is not present, animals entrain their activity to
temperature cues (Figure 3; Van Jaarsveld et al., 2019; Hart et al.,
2021b).

Interestingly, early studies found no difference between
laboratory and field activity in mole-rats (Jarvis, 1973;
Hickman, 1980) but noted that the type of activity in
the two environments may differ. More recent studies
under more controlled and stringent laboratory conditions,
and thus more unnatural set-ups, may result in the
larger differences observed between laboratory and
field rhythmicity.

DIURNALITY VS. NOCTURNALITY

Most animals are adapted to a specific temporal niche and
arrange their physiology and behaviour accordingly to display
diurnal, nocturnal or crepuscular rhythms of activity. From
an evolutionary perspective, rodents are thought to share a
nocturnal ancestor, and indeed the majority of modern rodents
are nocturnal, while diurnality has evolved secondarily in the
order Rodentia (Roll et al., 2006). Mole-rats are no exception
and many display distinct activity rhythms that correspond
with day or night. However, the activity patterns displayed
by mole-rats show large inter and intraspecies variation, and
a significant proportion of animals show arrhythmic activity
(Oosthuizen et al., 2003; Hart et al., 2004; de Vries et al.,
2008; Oosthuizen and Bennett, 2015; Ackermann et al., 2017;
Haupt et al., 2017).

In aboveground dwelling animals, the visual environments
and light levels of nocturnal and diurnal animals differ
markedly, and over time, the eyes of animals have adapted
to the amount and quality of light they are exposed to in
their particular environments (Hall and Ross, 2006). The
anatomy of the eye is therefore usually a good indicator
of the temporal niche that animals occupy (Gerkema
et al., 2013). The general morphology of the eye (size and
shape) and types of photoreceptors present differ between
nocturnal and diurnal animals (Schmitz and Motani, 2010).
Nocturnal animals frequently have large eyes, large pupils
to allow more light to enter the eye, and large corneas and
lenses relative to eye size as an adaptation for increased
visual sensitivity, whereas the opposite is true for diurnal
animals (Hall et al., 2012). The retinas of nocturnal animals
typically contain greater numbers of rod photoreceptors
for higher light sensitivity, while diurnal animals have
more cone photoreceptors for colour vision and have a
higher threshold for bright light (Kelber, 2018). Commonly,
nocturnal rodents have cone populations in the order of 0.5–
3% of the total photoreceptor complement whereas diurnal
species have much higher proportions of cones in their
retina (Feldman and Phillips, 1984; Szél and Röhlich, 1992;
Calderone and Jacobs, 1995; Peichl and Moutairou, 1998;

Bobu et al., 2008; Gaillard et al., 2008; Kryger et al., 2018;
Van der Merwe et al., 2018).

Surprisingly, the eye morphology of mole-rats resembles that
of diurnal rather than nocturnal animals in several aspects. While
the eye size of all mole-rats is microphthalmic (1.3–3.5 mm
range), most species (except the naked mole-rat) have small
lenses compared to their eye sizes (Nikitina et al., 2004; Němec
et al., 2008a). In addition, the photoreceptor proportions are
more similar to diurnal rodents than nocturnal rodents. Although
the retina is rod dominated, mole-rats possess in the vicinity of
10% cones, which is very high in comparison to nocturnal rodents
[mouse: 3% (Jeon et al., 1998); rat: <1% (Szél and Röhlich, 1992;
Peichl et al., 2004; Němec et al., 2008a)]. In reality, some mole-rat
species show diurnal activity [Damaraland mole-rat (Lovegrove
et al., 1993; Oosthuizen et al., 2003), Silvery mole-rat (Ackermann
et al., 2017)], and some others display nocturnal activity (Cape
mole-rat (Lovegrove and Papenfus, 1995; Oosthuizen et al.,
2003), all Cryptomys species investigated (Hart et al., 2004;
Schöttner et al., 2006; Haupt et al., 2017), Ansell’s mole-rat
(de Vries et al., 2008) and the naked mole-rat (Riccio and
Goldman, 2000b). In some cases, animals from a species display
different temporal activity in different experiments, for example
Damaraland mole-rats displayed diurnal activity in the study
by Lovegrove and Papenfus (1995), whereas Oosthuizen and
colleagues found most animals to be diurnal, but also some
nocturnal animals in 2003, and in 2015, all 16 animals displayed
nocturnal activity (Oosthuizen et al., 2003; Oosthuizen and
Bennett, 2015).

Laboratory conditions, however, are very unnatural for mole-
rats. In their natural habitat, their burrow systems are sealed
and devoid of light, therefore the animals are not routinely
exposed to light for entrainment (Bennett and Faulkes, 2000).
Even if a burrow is opened, very little light penetrates to
the burrow, and it dissipates very rapidly (Kott et al., 2014).
Hence, temporal activity patterns of mole-rats are likely more
strongly influenced by their social environment and conditions
in their microenvironment. Social entrainment is generally not
regarded as a strong zeitgeber, but in the absence of light, it
may play a larger role in synchronising activity of animals
(Mistlberger and Skene, 2004). Some studies indicate that free-
living mole-rats in colonies are active at the same time (Šklíba
et al., 2014; Oosthuizen et al., 2021), whereas another suggests
that individual activity patterns are not synchronised (Lövy
et al., 2013). Social synchronisation of activity is probably
also to some degree dependent on the body size of the
animals and ambient temperature in the burrow systems.
Species with smaller body sizes may be more synchronised
than larger-bodied species for thermoregulatory purposes, as
animals would huddle together the nest when it is colder
(Šumbera, 2019). There are daily and seasonal temperature
fluctuations in the burrows, albeit dampened compared to
aboveground (Bennett et al., 1988; Lovegrove and Knight-
Eloff, 1988; Lövy, 2011; Šklíba et al., 2014). Mole-rats seem
to be very sensitive to these changes and have been shown to
entrain their locomotor activity to temperature rhythms in the
laboratory (Van Jaarsveld et al., 2019; Hart et al., 2021b). Under
field conditions, in the absence of light, ambient temperature
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could substitute as the primary cue for daily entrainment
(Oosthuizen et al., 2021).

SEASONAL RHYTHMICITY IN
MOLE-RATS

Many animals exhibit seasonal changes in their behaviour
and physiology, especially ones that inhabit temperate regions
with large annual environmental changes (Prendergast et al.,
2002). The pineal hormone, melatonin, plays a crucial role
the mediation of seasonality. The pineal gland activity is
under circadian control, such that melatonin is secreted
exclusively during the night and is suppressed by light
(Wehr, 1997; Richter et al., 2003). The duration of the
nocturnal melatonin peak is used for photoperiodic information.
The melatonin rhythm is closely associated with the Tb
rhythm and can also be modulated by non-photic cues such
as exercise (Wyatt et al., 1999; Yamanaka et al., 2014).
Animals use proximate factors such as day length and
temperature to time ultimate processes such as reproduction,
hibernation and migration, all of which require prior anticipation
and preparation.

Locomotor Activity and Body
Temperature
Mole-rats do not hibernate, although some species are
more heterothermic (Lovegrove, 1986; Bennett et al., 1993;
Marhold and Nagel, 1995; Boyles et al., 2012; Oosthuizen
et al., 2021), and a recent study shows evidence of
occasional torpor events in one of the social Cryptomys
species. These torpor bouts were not frequent, did not
show any rhythmic pattern and were not related to Ta
(Oosthuizen et al., 2021).

Several laboratory studies have investigated photoperiodic
changes in locomotor activity, however these studies invariably
subjected animals to long and short-day light conditions without
taking ambient temperature into account. All laboratory studies
indicate that both solitary and social mole-rats can adjust their
activity periods according to different day lengths, thus effectively
synchronising to long and short-day light cycles (Lovegrove
et al., 1993; Oosthuizen et al., 2003; Ackermann et al., 2017).
Since it is difficult to recreate authentic seasonal changes in
the laboratory, seasonal variations in locomotor activity and
Tb can best be observed in the field. The measurement of
locomotor activity of free-living mole-rats can be challenging
and labour intensive, but radiotelemetry and implanted data
loggers have been used successfully in the field (Šklíba et al.,
2007; Streicher et al., 2011; Lövy et al., 2013; Okrouhlík et al.,
2021; Oosthuizen et al., 2021). Data loggers measure body
temperature variations, and locomotor activity can be inferred
from increases and decreases in body temperature (Refinetti,
1999; Oosthuizen et al., 2021). Mound production has also been
used to assess activity of animals (Genelly, 1965; Herbst and
Bennett, 2006), however, this is not a very accurate measure of
circadian or seasonal activity. Although mole-rats may create
more mounds during certain times of the day, they may be

active during other times as well (Hickman, 1980). Seasonally,
mound production is highly dependent on rainfall, several
species have been reported to be more active after rainfalls
(Genelly, 1965; De Graaf, 1972; Lovegrove, 1988; Buffenstein
et al., 2012). Mole-rats can still extend burrows during the
dry season, but instead of digging through the hard top
layers of soil, old tunnels are filled up while no aboveground
activity is visible (Jarvis et al., 1998; Šumbera et al., 2003b).
Some of the solitary species change their burrow architecture
seasonally by changing burrowing strategy, but in most species,
burrow systems are not significantly modified according to
season (Šumbera et al., 2003b; Thomas et al., 2012a,b, 2013,
2016).

Field data shows that there are seasonal shifts in locomotor
activity and Tb in several species of mole-rats (Table 2;
Šklíba et al., 2007; Streicher et al., 2011; Okrouhlík et al.,
2021; Oosthuizen et al., 2021; Finn et al., 2022). Locomotor
activity and Tb of the smaller bodied social species,
and solitary animals seem to be correlated with burrow
temperature, whereas the large bodied social species appear
to be arrhythmic in the field and activity has no relation
to burrow temperatures (Lövy et al., 2013). These shifts
in activity could again be related to thermoregulatory
constraints of smaller animals, and it is not known whether
the rhythms exhibited are endogenous or in response to
environmental conditions.

Seasonal Breeding
Solitary subterranean mammals frequently breed seasonally
(Nevo, 1961; Bennett and Faulkes, 2000; Sol Fanjul et al., 2006;
Katandukila et al., 2013), with the breeding season typically
associated with rainfall and food availability to ensure that
young are born at the optimal time of the year (Katandukila
et al., 2013). This is also true for African mole-rats, all
solitary mole-rat species are seasonal breeders (Jarvis, 1969b;
Van der Horst, 1972; Bennett and Jarvis, 1988a; Bennett et al.,
1991; Šumbera et al., 2003a; Herbst et al., 2004; Hart et al.,
2006a,b). Solitary mole-rats are notoriously difficult to breed
in the laboratory, thus all information on the seasonality of
breeding originates from field studies. However, laboratory
studies have confirmed that all of the solitary species do have
the potential for opportunistic breeding should environmental
conditions allow it (Herbst et al., 2004; Hart et al., 2006a,b, 2008;
Oosthuizen and Bennett, 2007, 2009; Oosthuizen et al., 2008a;
Ngalameno et al., 2017).

Solitary mole-rats are usually aggressive and territorial, in
particular outside the breeding season (Nevo, 1979; Šumbera,
2001; Bennett et al., 2006). They also typically have long
gestation times (Bathyergus ∼50 days, Georychus ∼46 days and
Heliophobius ∼90 days) (Bennett and Faulkes, 2000), which
suggests that they would have to anticipate the breeding season
well in advance and require a proximal environmental cue
other than light. Most of the solitary bathyergids inhabit mesic
areas with relatively predictable rainfall seasons (Bennett and
Faulkes, 2000), and indeed, the breeding of solitary mole-
rats appear to be strongly linked with the rainy seasons
(Šumbera et al., 2003a; Herbst et al., 2004; Hart et al., 2006a).
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TABLE 2 | A summary of the literature on the presence or absence of seasonal rhythms in African mole-rats.

Genus Literature Rhythm details L/F

Georychus Activity/Tb

Oosthuizen et al., 2003 G. capensis entrains to long and short days L

Thomas et al., 2012a Seasonal differences in burrow structure F

Okrouhlík et al., 2021 T rhythms – Small seasonal shifts in Tb rhythms F

Reproduction

Bennett and Jarvis, 1988a Breeds seasonally L/F

Oosthuizen and Bennett, 2007 Potential for opportunistic breeding (GnRH challenges) L

Němec et al., 2008a No seasonal differences in GnRH containing neurons L

Oosthuizen and Bennett, 2009 No seasonal differences in sex hormones L

Bathyergus Activity/Tb

Herbst and Bennett, 2006 B. janetta – Seasonal difference in mound production, more in wet season F

Thomas et al., 2012b B. suillus – No seasonal changes in burrow geometry and digging activity F

Okrouhlík et al., 2021 B. suillus – T rhythms – small seasonal shifts in Tb rhythms F

Reproduction

Jarvis, 1969a B. suillus – Seasonal breeder, histology L

Van der Horst, 1972 B. suillus – Seasonal breeder, histology L

Bennett et al., 1991 B. suillus and B. janetta – Seasonal breeders L

Herbst et al., 2004 B. janetta – Breed seasonally, elevated sex hormones in breeding season F

Hart et al., 2006a B. suillus – Seasonal differences in gonadal morphometrics and sex hormone concentrations L

Hart et al., 2006b B. suillus – No seasonal difference in pituitary potential L

Hart et al., 2008 B. suillus – No seasonal difference in GnRH-ir cells, smaller in females in non-breeding season L

Heliophobius Activity/Tb

Šumbera et al., 2003b Seasonal burrow changes F

Šklíba et al., 2007 Mostly unimodal activity, seasonal phase shifts in activity F

Ackermann et al., 2017 Entrains activity to long and short days L

Reproduction

Jarvis, 1969a Seasonal breeder L/F

Šumbera et al., 2003a Seasonal breeding L/F

Ngalameno et al., 2017 Seasonal breeding, increase in gonadal geometrics and hormones during breeding season F

Cryptomys Activity/Tb

Thomas et al., 2013 C.h. hottentotus – No seasonal difference in burrow geometry F

Oosthuizen et al., 2021 C.h. natalensis – Seasonal shifts in temporal Tb F

Finn et al., 2022 C.h. natalensis – Seasonal shifts in temporal activity F

Reproduction

Bennett, 1989 C.h. hottentotus – Breed seasonally L

Spinks et al., 1997 C.h. hottentotus – Breed seasonally, ♂ – no seasonality in testicular morphology L

Spinks et al., 1999 C.h. hottentotus – Breed seasonally, ♀ – continued reproductive function in non-breeding season L

Spinks et al., 2000 C.h. hottentotus – No seasonal difference in LH response to GnRH challenge L

Van der Walt et al., 2001 C.h. pretoriae – No seasonal difference in gonadal histology or LH response to GnRH challenge L

Janse van Rensburg et al., 2002 C.h. pretoriae – Seasonal breeder, retain reproductive potential in non-breeding season L

Du Toit et al., 2006 C.h. pretoriae – GnRH system is not affected by season L

Oosthuizen et al., 2008b C.h. natalensis – Aseasonal breeders, no seasonal difference in LH response to GnRH challenge L

Oosthuizen et al., 2010b C.h. natalensis – Gonadal histology and hormones do not differ seasonally L

Hart et al., 2021b C.h. mahali – Aseasonal breeder L

Fukomys Activity/Tb

Genelly, 1965 F. anselli – Mounds produced during the rainy season F

De Graaf, 1972 F. damarensis – More active after rain, indications of increased activity around dawn and dusk F

Lovegrove, 1988 F. damarensis – Increased mound production after rains F

Lovegrove et al., 1993 F. damarensis – Activity phase shifts according to different photoperiods L

Oosthuizen et al., 2003 F. damarensis – Entrain activity to long and short days L

Streicher et al., 2011 F. damarensis – Large variation, winter 1 activity peak, summer frequently 2 peaks F

Reproduction

Shortridge, 1934 F. damarensis – Fixed breeding season suspected

Bennett and Jarvis, 1988b F. damarensis – Breed aseasonally L

(Continued)
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TABLE 2 | (Continued)

Genus Literature Rhythm details L/F

Burda, 1989 C. hottentotus (F. amatus) – Breed aseasonally L

Bennett et al., 1994a F. darlingi – Breeds aseasonally L

Bennett and Aguillar, 1995 F. mechowii – Aseasonal breeder L

Sichilima et al., 2008 F. mechowii – Breeds aseasonally L

Sichilima et al., 2011 F. anselli – Breed aseasonally L

Heterocephalus Activity/Tb

Buffenstein et al., 2012 Digging to extend burrows during the breeding season F

Reproduction

Jarvis, 1969b Seasonal breeder F/L

Jarvis, 1991 Aseasonal breeder

Brett, 1991 Aseasonal breeder

Laboratory or field studies are indicated in the L/F column. Tb, body temperature.

Mole-rats have also been shown to be very sensitive to small
fluctuations in burrow temperatures (Bennett et al., 1988;
Šklíba et al., 2007; Lövy et al., 2013). It is likely that solitary
mole-rats use burrow temperature as a proximate factor to
anticipate the rainy season with its more abundant food and
dispersal opportunities.

Some social mole-rat species have also been described as
seasonal breeders (Shortridge, 1934; Jarvis, 1969a; Bennett, 1989;
Janse van Rensburg et al., 2002), with more recent studies
contradicting some of the older ones (Bennett and Jarvis,
1988b; Brett, 1991). Nevertheless, the majority of the social
species breed aseasonally, with pregnant females captured at
all times of the year (Bennett and Jarvis, 1988b; Burda, 1989;
Brett, 1991; Bennett et al., 1994a; Bennett and Aguillar, 1995;
Oosthuizen et al., 2008b; Sichilima et al., 2008, 2011; Hart et al.,
2021a). In both seasonally and aseasonally breeding species,
there are no seasonal differences in gonadal histology, gonadal
hormones, LH responses to GnRH challenges, or the GnRH
system in the brain (Spinks et al., 1997, 1999, 2000; Van der
Walt et al., 2001; Du Toit et al., 2006; Oosthuizen et al., 2008b,
2010b).

Once in an established colony, social mole-rat species have
the advantage that they do not have to search for breeding
partners. The seasonally breeding C.h. hottentotus lives in a
mesic habitat with a predictable rainfall pattern, occurring
sympatrically with two of the solitary species. This species
has a long gestation period of about 2 months (Bennett,
1989), suggesting the need for an external cue for the onset
of the breeding season. This species probably also responds
to burrow temperature changes to trigger breeding activity.
Although aseasonally breeding social species also have long
gestation periods, ranging from around 60–110 days (Bennett
and Jarvis, 1988b; Burda, 1989; Jarvis, 1991; Bennett et al.,
1994a; Bennett and Aguillar, 1995; Bennett and Faulkes,
2000; Hart et al., 2021a), they breed throughout the year,
independent of external factors. For most of the social mole-
rat species, the only seasonal consideration would be dispersal.
Depending on their habitat, many of the species are confined
to their natal colonies during drier periods and can only
disperse after rainfall when the soil is soft enough to dig.

Timing of dispersal does not require an endogenous rhythm;
it is most likely a direct response to rainfall and triggered
by softer soils.

DO MOLE-RATS REALLY NEED
RHYTHMS?

The ubiquitous nature of the circadian clock suggests an adaptive
significance, and whilst this may be true for many species, it
may be less obvious for animals that inhabit stable habitats. All
mole-rats show a regression of the visual system with small eyes
and reduced structures that are related to vision. Their circadian
systems are functional, but also appear to show some degree
of regression, although not as severe as for the visual system.
Mole-rat circadian systems are less sensitive to light compared
to aboveground dwelling rodents, nevertheless light still seems
to override other environmental zeitgebers when it is present.
In the absence of light, mole-rats are responsive to non-photic
cues such as ambient temperature and to some extent, also
social entrainment. The extent of regression of the visual system
and circadian system in the various mole-rat appears to reflect
the need or dependence on daily and seasonal rhythms. Daily
variations in the activity and physiology of mole-rats do not
require an endogenous rhythm per se, it can purely be a response
to environmental conditions that can vary from day to day. In
terms of seasonalbreeding, mole-rats have long gestation times
and hence would require advance warning for the onset of the
breeding season. The breeding season of all the solitary mole-rat
species occurs at the end of the rainy seasons, both in South Africa
and in East Africa (Bennett and Faulkes, 2000; Ngalameno
et al., 2017; Okrouhlík et al., 2021), they can therefore respond
to rainfall and moister soil to initiate reproductive behaviour.
Anticipation of the breeding season may be most pertinent for
the Namaqua dune mole-rat (B. janetta), which occurs in more
arid habitats where rainfall may be less regular, unless they simply
refrain from breeding when it is too dry. Overall, it appears
that the survival and fitness of African mole-rats do not depend
heavily on endogenous circadian or seasonal rhythmicity. It is
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likely that their circadian systems are in the process of regression
and disappearance, although at a different speed compared to the
rest of the visual system.

ECOLOGICAL AND EVOLUTIONARY
IMPLICATIONS

Climate change is one of the biggest threats to biodiversity
currently (Williams et al., 2008). It brings about unpredictable
and extreme changes in environmental conditions such
as temperature and rainfall (Huber and Gulledge, 2011).
Aboveground dwelling species are perhaps more directly and
immediately affected by these threats, while the subterranean
environment largely buffers its inhabitants against environmental
extremes. Nevertheless, both temperature and rainfall are
important zeitgebers for mole-rats to time their daily and seasonal
activities. Responding directly to environmental conditions
instead of having very robust endogenous rhythms may be viewed
as an advantage in these conditions since rapid shifts in daily
activity would not affect the animals adversely. Nevertheless,

changes in temperatures and rainfall can influence the food
sources and the availability thereof, as well as the hardness of soil
for extending burrows and dispersal. A considerable disadvantage
of being strictly subterranean is that animals cannot escape their
habitat easily should it become uninhabitable. Climate change is
therefore a very real threat for African mole-rats, although their
particular vulnerabilities are associated with their habitat and
differ from those of aboveground dwelling rodents.
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