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Sexual dimorphism is regarded as the consequence of differential responses by males
and females to selection pressures. Limb muscle plays a very important role during
amplexus, which is likely to be under both natural and sexual selection in anurans.
Here, we studied the effects of natural and sexual selection on limb muscle mass
in males and females across 64 species of anurans. The results showed that there
were non-significant differences in relative limb muscle mass between the sexes among
species, exhibiting no sexual dimorphism in limb muscle. Absolute and relative limb
muscle mass positively displayed correlations with snout-vent length (SVL)for both
sexes. However, neither male-biased operational sex ratio (OSR) nor environmental
harshness [e.g., coefficient of variation (CV) in temperature and CV in rainfall] can explain
relative limb muscle mass (e.g., forelimb, hindlimb, and total limb muscle) within each
sex. The findings suggest that environmental harshness and sexual selection cannot
play important roles in promoting variations in limb muscle among anuran species.

Keywords: anurans, limb muscles, operational sex ratio, selection pressure, sexual dimorphism

INTRODUCTION

Sexual dimorphism is widespread in nature, and it results from differential responses by males
and females to selection pressures (Darwin, 1871; Andersson, 1994; Blanckenhorn, 2005). Most
studies have shown that sexual dimorphism evolution arises as a consequence of sexual selection
and natural selection (Shine, 1989; Andersson, 1994; Liao et al., 2013a,b; Olarte et al., 2020). On
the one hand, sexual selection promotes evolution of the morphology and behavior that enhance
opportunities of male mating success (Andersson, 1994; Liao and Lu, 2011). On the other hand,
natural selection favors sex-specific adaptations through reducing competition between the sexes
for habitats or preys (Shine, 1989; Liao and Chen, 2012; Liao, 2013; Clifton et al., 2020).Under the
two selections, females and males diverge in a variety of morphological traits (e.g., body size, head
dimensions, body shape, and hind muscles mass) over evolutionary time (Andersson, 1994; Lee and
Corrales, 2002; Liao et al., 2015; Zhang et al., 2020; Munoz-munoz et al., 2021).

In anurans, males and females often differ in limb muscle mass as well as body size
(Lee and Corrales, 2002; Liao et al., 2012a,b). Limb muscles are important organs associated
with amplexus during the male-male competition (Lee, 2001; Liao et al., 2012a,b; Mi,
2012). Stronger forelimb muscle in males can be assumed to produce a relatively larger
force where males have an advantageous to clasping the female or repel other rivals
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(Peters and Aulner, 2000; Liao and Lu, 2011; Mi, 2012; Gastón
and Vaira, 2020) while stronger hindlimb muscle are responded
to prevent being replaced by another male through kicking
other rivals (Lee and Corrales, 2002; Mi, 2013). As a result, a
conspicuous sexual dimorphism in fore- and hind-limb muscle
mass is expected in frogs where males have much stronger limb
muscle than females (Lee, 2001; Liao et al., 2012a; Mi, 2013).
However, some studies also reveal that females have stronger
hindlimb muscle than males (Liao et al., 2012b; Zhang et al.,
2020) while a previous study found a non-significant differences
in hindlimb musclemass (Zhang et al., 2013).

Environmental pressures (i.e., resource availability,
competition, or predator risk) are considered as a main
evolutionary force in shaping the differentiation of organs size,
such as brain size, livers, testes mass, digestive tract length
and muscles mass between the sexes and among populations
(Lüpold et al., 2011; Jiang et al., 2015; Mai et al., 2017, 2019;
Zhong et al., 2017; Tang et al., 2018; Zhao et al., 2019; Obregón
et al., 2021; Sowersby et al., 2021; Zamora-Camacho, 2021).
For instance, variations in food resources availability among
different habitats affect energy intake and energy allocation,
and thereby leading to differences in digestive tract length,
testes mass and limb muscle mass between the sexes among
populations (Jin et al., 2016; Yang et al., 2017; Adams et al., 2020;
Cai et al., 2020). Meanwhile, because the intensity of sexual
selection is positively associated with male-biased operational
sex ratio (OSR, calculated as the number of males to the number
of fertilizable females in a breeding aggregation at a given
time; Emlen and Oring, 1977) among different environmental
conditions, the stronger male-male competition is predicted
to be related to select for larger limb muscle mass in a toad
(Yang et al., 2017). Hence, both natural and sexual selection can
promote variations in limb muscle mass in males and females,
thus possibly predicting sexual dimorphism in limb muscle in
anurans (Yekta and Blackburn, 1992).

In the present study, we investigate the effects of natural
and sexual selection on sexual dimorphism in limb muscle mass
across 64 species of anurans. We first investigate whether sexual
dimorphism in limb muscle mass occurs in anurans. We then
investigate whether the limb muscle mass is correlated with
body size within each sex. Finally, we investigate whether male-
biased OSR and environmental harshness (e.g., variations in
mean annual temperature and rainfall) affect the variations in
limb muscle mass for both sexes among species.

MATERIALS AND METHODS

Data Collection
We collected a total of 64 anuran species during the breeding
seasons between 2010 and 2020 in China. We sampled each
species at a single site using a sampling-lined method. All
individuals were captured within each sampling line at night
using a 12-V flashlight. We confirmed their sexes through
secondary sexual traits (e.g., nuptial pads in males and eggs in
females). Sample size per species ranged from 1 to 6 individuals

within each sex (Supplementary Table 1). Body size (snout-
vent length: SVL) of all individuals was measured to the nearest
0.01 mm with a caliper. All frogs were stored in 4% neutral
buffered formalin for dissections. After 2 months, we extracted
muscles involving in the clasping of the female by the male
during the axillary amplexus (Lee, 2001) and preventing being
replaced by another male through kicking other rivals (Lee
and Corrales, 2002), including four forelimb muscles (pectoralis
series: pectoralis epicoracoides, pectoralis sternalis, pectoralis
abdominalis; deltoideus triangularis, triceps branchii, and flexor
carpi radialis, Liao et al., 2012a; Diogo and Molnar, 2014)
and four hindlimb muscles (sartorius, plantaris longus, triceps
femoris, and gastrocnemius, Liao et al., 2012b; Diogo and
Ziermann, 2014) from all individuals (Supplementary Table 2).
We then dried these muscles using a thermostat drier of 60◦C
for 48 h before quantifying their dry weight to the nearest 0.1 mg
using an electronic balance (Liao et al., 2012a,b).We calculated
relative limb muscle mass as a model: RLM = log10(limb muscle
mass)/log10(SVL) (Liao et al., 2012a).

We calculated the species-specific male-biased OSR [expressed
as the proportion of males among all adult individuals (Liao
et al., 2018)] for every sampling line as the number of males
divided by the number of females for three nights using
marked recapture methods (Mai et al., 2020). Environmental
harshness (e.g., variations in average annual temperatureand
rainfall) has been hypothesized to affect energy intake and energy
allocation, and thus resulting in difference in limb muscle mass
in anurans (Yang et al., 2017). Hence, we used coefficient of
variation (CV = SD/mean) of temperature and rainfall to measure
environmental harshness (Van Woerden et al., 2012; Luo et al.,
2017). We calculated CV of temperature and rainfall based on
average temperature and rainfall collected at each site in everyday
from Chinese Meteorological Stations1 between 2013 and 2017
(Supplementary Table 1).

Phylogeny Reconstruction
To reconstruct the phylogeny for 64 anuran species,weused the
sequences of six mitochondrial ribosome genes (CYTB, 12S,
16S, COI, ND2, and ND4) and three nuclear genes (RAG1,
TYR, and RHOD) from GenBank [for accession numbers and
sequence coverage (see Supplementary Table 3)]. All sequences
for each taxon were obtained from the same specimen. For
each locus, we aligned the sequences using the multi-sequence
alignment (MUSCLE) in MEGA v.10.2.2, and saved the aligned
sequences in .fas format (Tamura et al., 2021). We then used
the modelTest() function in the phangorn package (Schliep,
2011)in the R 4.1.0 software (R Development Core Team, 2021)
based on the corrected Akaike Information Criterion (AICc) to
determine the best nucleotide substitution model for each gene.
The best nucleotide substitution model was GTR + 0 + I for
all genes except RHOD, for which HKY + 0 + I had stronger
support, and GTR + 0 + I was thus used as the best substitution
model for all genes.

Using BEAUTi and BEAST v.1.8.3 (Drummond et al., 2012;
also see details in Jiang et al., 2022), we constructed the phylogeny

1http://www.lishi.tianqi.com
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TABLE 1 | Relationship between limb muscle mass and body size (SVL) in both males and females among species of anurans.

Dependent variable Predictor Sex λ B ± SE t R2 P

Forelimb SVL Male 0.5841.000,<0.001 3.738 ± 0.204 18.343 0.844 <0.001

Female 0.0001.000,<0.001 3.585 ± 0.172 20.854 0.875 <0.001

Hindlimb SVL Male 0.7921.000,<0.001 3.399 ± 0.172 19.815 0.864 <0.001

Female 0.4821.000,<0.001 3.155 ± 0.192 16.390 0.813 <0.001

Total limb SVL Male 0.8391.000,<0.001 3.434 ± 0.163 21.005 0.877 <0.001

Female 0.3411.000,<0.001 3.205 ± 0.181 17.674 0.834 <0.001

FIGURE 1 | Limb muscle mass [forelimb (A), hindlimb (B), and total limb (C)] regressed on body size (SVL) among species of anurans. Each dot is a species.

with unlinked substitution models, a relaxed uncorrelated log-
normal clock, a Yule speciation process, and the best-supported
nucleotide substitution models. We omitted time calibration due
to a lack of fossil dates. We ran the Markov Chain Monte Carlo
(MCMC) simulation for 100 million generations where every
10,000th tree was sampled using the BEAST implementation
in the CIPRES Science Gateway.2 For all tree statistics, the
effective sample size values exceeding 200 showed satisfying
convergence of the Bayesian chain and adequate model mixing
in the program Tracer v.1.6.0 (Rambaut and Drummond,
2014; Chen et al., 2021a,b). We used TreeAnnotator v.1.8.3
(Drummond et al., 2012) to generate maximum clade credibility
trees with mean node heights and a10% burn-in for all species
(Supplementary Figure 1).

Statistical Analysis
All analyses were conducted using phylogeny-controlled general
least squares (PGLS) models in R statistical version 4.1.0 (R
Development Core Team, 2021). In each model, we used
the maximum-likelihood estimate of phylogenetic dependence
(Pagel’s λ). The scale of λ-values ranges from 0 (i.e.,

2http://www.phylo.org

phylogenetic independence) to 1 (i.e., complete phylogenetic
non-independence) (Freckleton et al., 2002). First, we applied
PGLS models to analyze relationships between limb muscle
mass and SVL within each sex using 64 species. Then we ran
phylogenetic paired t-test to test differences in mean mass of
limb muscle between males and females when controlling for
effects of body size of the respective species. Finally, we ran
multi-predictor models to test the associations between relative
limb muscle mass and either male-biased OSR or environmental
harshness controlling for SVL effect. All numeric variables were
log10-transformed before analyze to make parameter estimates
comparable,and model assumptions were also met.

RESULTS

Body size of females was significantly larger than males
(phylogenetic paired t-test: t61 = −3.450, P = 0.001; phylogenetic
scaling parameter, λ = 0.074). Total limb mass and forelimb
muscle mass of females was significantly heavier than those of
males (total limb: t61 = 2.022, P = 0.048, λ = 0.064; forelimb:
t61 = 2.357, P = 0.022, λ < 0.001). Hindlimb muscle mass of
females tended to be larger than those of males (t61 = 1.978,
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TABLE 2 | Relationship between relative limb muscle mass and body size (SVL) in males and females among species of anurans.

Dependent variable Predictor Sex λ B ± SE t R2 P

Relative forelimb SVL Male 0.6811.000,<0.001 1.440 ± 0.128 11.223 0.670 <0.001

Female 0.0001.000,<0.001 1.358 ± 0.114 11.880 0.695 <0.001

Relative hindlimb SVL Male 0.8731.000,<0.001 0.952 ± 0.104 9.181 0.576 <0.001

Female 0.7281.000,<0.001 0.753 ± 0.120 6.255 0.387 <0.001

Relative total limb SVL Male 0.9051.000,<0.001 0.941 ± 0.099 9.544 0.595 <0.001

Female 0.3461.000,<0.001 0.775 ± 0.117 6.942 0.437 <0.001

Relative limb muscle mass = log10(limb muscle mass)/log10(body size).

FIGURE 2 | Relative limb muscle mass [forelimb (A), hindlimb (B), and total limb (C)] regressed on body size (SVL) among species of anurans. Relative limb muscle
mass = log10(limb muscle mass)/log10(SVL). Each dot is a species.

P = 0.052, λ = 0.071). Forelimb, hindlimb and total limb muscle
mass significantly regressed on SVL within each sex (Table 1 and
Figure 1). When the influence of SVL was controlled, relative
limb muscle mass did not differ between the sexes (total limb:
t61 = −1.030, P = 0.307; forelimb: t61 = −0.503, P = 0.617;
hindlimb: t61 = −1.257, P = 0.214). However, relative forelimb,
hindlimb and total limb muscle mass increased with SVL for both
sexes (Table 2 and Figure 2).

Phylogeny-controlled general least squares models revealed
that relative forelimb, hindlimb and total limb muscle masswere
not positively correlated with male-biased OSRin males and
females, respectively,when controlling for the effects of SVL
and phylogeny (Table 3). Meanwhile, relative limb muscle mass
(e.g., forelimb, hindlimb, and total limb) cannot be explained by
environmental harshness (e.g., CV in temperature and rainfall)
for both sexes when the effects of SVL and phylogeny were
controlled (Table 3).

DISCUSSION

Our results demonstrate that absolute and relative forelimb,
hindlimb and total limb muscle mass increase with increasing
SVL within each sex among 64 species of anurans. There is

a lack of sexual dimorphism in relative limb muscle mass
although females have larger SVL than males. Moreover, neither
male-biased OSR nor environmental harshness can explain
variations in relative forelimb, hindlimb and total limb muscle
mass for both sexes.

Consistent with the previous studies on limb muscle-SVL
relationship in anurans (Lee, 2001; Lee and Corrales, 2002;
Liao et al., 2012a,b; Mi, 2012, 2013; Zhang et al., 2013; Mao
et al., 2014; Petrović et al., 2017), we found that absolute and
relative mass of forelimb, hindlimb and total limb muscle was
positively correlated with SVL for both sexes when considering
the effects of SVL and phylogeny. This pattern suggested that
large-bodied species had heavier limb muscle than small-bodied
species because larger-bodied species need more heavier limb
muscle to sustain weigher bodies.

For anurans, adult females significantly exceeded adult males
in body size in most species (Shine, 1979; Monnet and Cherry,
2002). In this study, we found that females were larger body
sizes than males in 53 species, exhibiting a female-biased sexual
size dimorphism, which can be result of fecundity selection on
female body size (Liao et al., 2013b, 2015). Previous studies
have shown that sexual dimorphism in limb muscle is probably
correlated with their use by the males during amplexus and male-
male competition because limb muscle involved in amplexus in
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larger individuals can produce greater forces (Lee, 2001; Clark
and Peters, 2006; Mi, 2012, 2013; Zamora-Camacho, 2018).Our
exploratory study revealed that relative limb muscles mass did
not differ between males and females, when removing SVL
effect. This finding is different from previous studies that sexual
dimorphism in limb muscle mass in frogs may be attributable
to the importance which those limb muscle help males to act
on clasping females and develop to resist attempted take-overs
by competing males (Lee, 2001; Liao et al., 2012a; Mi, 2012).
Furthermore, a lacking sexual dimorphism in limb muscle mass
across 64 species may be attributed to the fact that the main
weakness in this study is that all these speciesare considered
equally in their mating system and type of amplexus. Indeed,
sexual selection favors more robust forearms in a scramble-
type mating system and other characteristics are more important

in inter and intersexual selection in leks or territorial systems
(Andersson, 1994). Hence, it is possible that we cannot detect the
importance of the muscle mass of the forearms in those species
where it does matter at the time of acquiring a mate. Meanwhile,
these species displaying the type of amplexus also affect variations
in limb muscle mass because the robust forearms are related to
axillary amplexus where the male surrounds the female and holds
her firmly (Lee, 2001). In this study, the only forearm muscle used
was the flexor carpi radialis. However, other muscles, especially
from the forearm, have already been associated to the clasping
behavior of males by Gaupp (1896), with clear differences in
flexor carpi radialis, abductor indicis longus, and extensor carpi
radialis caput superius between sexesfor Pelophylax cf. esculenta.
Oka et al. (1984) found that sexual differences in forearm
muscles (e.g., flexor antibrachii medialis caput superius, abductor

TABLE 3 | Effects of male-biased operational sex ratio (OSR) and environmental harshness[coefficient of variation (CV) in precipitation and coefficient of variation in
temperature] on limb muscle mass among species of anurans.

Dependent variable Sex Predictor λ B ± SE t R2 P

Forelimb Male OSR 0.5631.000,<0.001 0.075 ± 0.116 0.644 0.006 0.522

SVL 3.742 ± 0.204 18.332 0.846 <0.001

CV in precipitation 0.5831.000,<0.001 0.002 ± 0.172 0.010 <0.001 0.992

SVL 3.738 ± 0.205 18.196 0.844 <0.001

CV in temperature 0.5411.000,<0.001 0.055 ± 0.067 0.823 0.011 0.414

SVL 3.753 ± 0.203 18.500 0.849 <0.001

Female OSR 0.0001.000,<0.001 0.035 ± 0.148 0.236 0.001 0.814

SVL 3.567 ± 0.191 18.714 0.852 <0.001

CV in precipitation 0.0001.000,<0.001
−0.174 ± 0.184 −0.944 0.014 0.349

SVL 3.570 ± 0.173 20.655 0.875 <0.001

CV in temperature 0.0001.000,<0.001 0.034 ± 0.077 0.441 0.003 0.661

SVL 3.579 ± 0.174 20.604 0.874 <0.001

Hindlimb Male OSR 0.8221.000,<0.001 0.123 ± 0.087 1.401 0.031 0.166

SVL 3.404 ± 0.171 19.882 0.866 <0.001

CV in precipitation 0.8051.000,<0.001 0.181 ± 0.135 1.337 0.028 0.186

SVL 3.396 ± 0.171 19.870 0.866 <0.001

CV in temperature 0.8141.000,<0.001
−0.060 ± 0.047 −1.263 0.026 0.211

SVL 3.389 ± 0.172 19.702 0.864 <0.001

Female OSR 0.4911.000,<0.001 0.022 ± 0.136 0.164 0.0004 0.871

SVL 3.140 ± 0.214 14.706 0.780 <0.001

CV in precipitation 0.4771.000,<0.001
−0.014 ± 0.181 −0.077 <0.001 0.939

SVL 3.155 ± 0.194 16.270 0.813 <0.001

CV in temperature 0.5781.000,<0.001
−0.078 ± 0.069 −1.126 0.020 0.265

SVL 3.139 ± 0.195 16.062 0.809 <0.001

Limb Male OSR 0.8561.000,<0.001 0.108 ± 0.082 1.320 0.028 0.192

SVL 3.433 ± 0.163 21.060 0.879 <0.001

CV in precipitation 0.8471.000,<0.001 0.149 ± 0.127 1.170 0.022 0.247

SVL 3.429 ± 0.163 20.993 0.878 <0.001

CV in temperature 0.8421.000,<0.001
−0.038 ± 0.044 −0.864 0.012 0.391

SVL 3.421 ± 0.165 20.774 0.876 <0.001

Female OSR 0.3461.000,<0.001 0.012 ± 0.133 0.089 0.0001 0.93

SVL 3.198 ± 0.200 15.951 0.807 <0.001

CV in precipitation 0.3251.000,<0.001
−0.041 ± 0.175 −0.232 0.001 0.817

SVL 3.206 ± 0.182 17.591 0.835 <0.001

CV in temperature 0.4311.000,<0.001
−0.069 ± 0.069 −0.998 0.016 0.322

SVL 3.195 ± 0.184 17.326 0.831 <0.001
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indicis longus, extensor carpi radialis caput superius, and flexor
antibrachii lateralis superficialis caput superius) that might also
participate in the amplexus in Bufo japonicus. Therefore, forearm
muscles in more frogs species should also be tested for sexual
dimorphism in similar future studies.

Robust limb muscle benefit males to grasp females
firmly and resist take-over attempts from competitors
during the male-male competition process, thus promoting
male mating success in anurans (Wells, 1977; Howard
and Kluge, 1985). Male-biased OSR is positively related
to the intensity of male-male competition (Wells, 2007).
Consequently, relative limb muscle mass is predicted to be
positively correlated with male-biased OSR in frogs and
toads. Inconsistent with the prediction that the relative
mass of limb muscle should increase with increasing male-
biased OSR among different environments (Yang et al.,
2017), we found male-biased OSR variation did not display
a correlation with relative mass of limb muscle in males
among species, suggesting that stronger male-male competition
cannot promote relative larger limb muscle mass to avoid
competitors from replacing.

Environmental harshness such as CV in temperature and
rainfall affects directly active seasons length and food availability
in anurans (Wells, 2007; Mai et al., 2019). As a result, species
living longer active season and accessing more food resources
can grow stronger limb muscle than species living shorter
active season and accessing fewer food resources in frogs (Yang
et al., 2017). In this study, we found that the mass of forelimb
muscle, hindlimb muscle and total combinedlimb muscle was
not affected by CV in temperature and rainfall, suggesting
that when available food resources is reduced in increased
environmental harshness, the rate of survival success mainly
depends on decreased active season and increased hibernation
to decline energetic reserves of limb muscle in frogs (our
unpublished data).

In conclusion, we illustrate the positive association between
absolute and relative limb muscle mass and SVL across anuran
species. Anuran limb muscle mass does not differ between males
and females, thus displaying a lack of sexual dimorphism in limb
muscles. Also, variations in limb muscle mass cannot be shaped
by neither male-biased OSR nor CV in temperature and rainfall,
suggesting that environmental harshness and sexual selection
cannot shape variations in limb muscle mass in anurans.
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