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The use of metagenomic datasets to support ancient sedimentary DNA

(sedaDNA) for paleoecological reconstruction has been demonstrated to be

a powerful tool to understand multi-organism responses to climatic shifts and

events. Authentication remains integral to the ancient DNA discipline, and this

extends to sedaDNA analysis. Furthermore, distinguishing authentic sedaDNA

from contamination or modern material also allows for a better understanding

of broader questions in sedaDNA research, such as formation processes,

source and catchment, and post-depositional processes. Existing tools for the

detection of damage signals are designed for single-taxon input, require a priori

organism specification, and require a significant number of input sequences

to establish a signal. It is therefore often di�cult to identify an established

cytosine deamination rate consistent with ancient DNA across a sediment

sample. In this study, we present MetaDamage, a tool that examines cytosine

deamination on a metagenomic (all organisms) scale for multiple previously

undetermined taxa and can produce a damage profile based on a few hundred

reads. We outline the development and testing of the MetaDamage tool using

both authentic sedaDNA sequences and simulated data to demonstrate the

resolution in which MetaDamage can identify deamination levels consistent

with the presence of ancient DNA. The MetaDamage tool o�ers a method for

the initial assessment of the presence of sedaDNA and a better understanding

of key questions of preservation for paleoecological reconstruction.
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1. Introduction

In this study, we present the MetaDamage1 tool, which was developed to assess the
levels of postmortem cytosine deamination patterns on a metagenomic scale, in which
unknown multi-organism sequences can be assessed for ancient DNA damage in one
process. The tool offers a novel alternative to the tools described, with key advantages

1 https://github.com/MetaDamage/MetaDamage
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including single input of metagenomic datasets, a low threshold
of input sequences, and a single workflow process to produce an
output summary of observed DNA damage.

The development of next-generation sequencing of
ancient sedimentary DNA (sedaDNA) has allowed a wide
range of metagenomic studies for paleoecological and
paleoenvironmental reconstruction (Willerslev et al., 2014;
Smith et al., 2015; Birks and Birks, 2016; Szczuciński et al.,
2016; Slon et al., 2017; Ahmed et al., 2018; Lammers et al.,
2018; Wood et al., 2018; Zobel et al., 2018; Keck et al., 2020;
Seersholm et al., 2020; Murchie et al., 2021a). As a proxy
for examining past vegetation, sedaDNA has demonstrated
its potential as a complementary and additional tool to
conventional paleoecological proxies, such as pollen, plant
macrofossils, and diatoms (Parducci et al., 2015; Pedersen
et al., 2016; Niemeyer et al., 2017; Zimmermann et al., 2017;
Clarke et al., 2018; Epp et al., 2018; Alsos et al., 2020a; Gaffney
et al., 2020; Volstad et al., 2020). The value of sedaDNA as a
tool within multi-proxy research has also been supported by
the development of best laboratory practices for minimizing
contamination and improving data quality (Gilbert et al., 2005;
Armbrecht et al., 2019; Shapiro et al., 2019). Recent discussions
on the challenges of working with sedaDNA have also focused
on challenges associated with conventional paleoecological
research (Smith et al., 2015; Chen and Ficetola, 2020; Cribdon
et al., 2020; Edwards, 2020; Dussex et al., 2021). This has
included wider discussions of the issues of understanding the
source area and catchment of sedaDNA, the role of taphonomic
processes in the formation of the biomolecular archives, and
how preservation conditions impact its contribution as a tool
for paleoecological reconstruction (Alsos et al., 2018, 2020b;
Parducci et al., 2018; Giguet-Covex et al., 2019; Marianne et al.,
2020). This in turn has led to improvements in approaches to
bioinformatic processing, such as increasing confidence in the
phylogenetic assignation of taxa within ancient metagenomic
sequences (Smith et al., 2015; Cribdon et al., 2020).

The number of sedaDNA studies using the shotgun
sequencing approach is still limited (Smith et al., 2015; Pedersen
et al., 2016; Seersholm et al., 2016; Slon et al., 2017; Ahmed
et al., 2018; Parducci et al., 2019; Stahlschmidt et al., 2019;
Ardelean et al., 2020; Armbrecht et al., 2020; Gaffney et al.,
2020; Schulte et al., 2020; Murchie et al., 2021b; Thomas et al.,
2021). The alternative, a targeted amplicon sequencing approach
using organism range specific primers [e.g., chloroplast trnL
(UAA) gene specific for plants; Taberlet et al., 2007] known
as metabarcoding sequencing (Bell et al., 2016; Parducci et al.,
2018; Edwards, 2020) has proven far more popular, with not
just demonstrative capabilities of high resolution amplification
of plant taxa for palaeoenvironmental reconstruction (e.g.,
Sønstebø et al., 2010; Jørgensen et al., 2012; Parducci et al., 2012,
2013, 2015, 2019; Pedersen et al., 2013; Giguet-Covex et al.,
2014, 2019; Epp et al., 2015; Pansu et al., 2015; Alsos et al.,
2016, 2020b; Sjögren et al., 2017; Clarke et al., 2018; Zale et al.,

2018; Crump et al., 2019; Liu et al., 2020; Volstad et al., 2020),
but for addressing key barriers in molecular research, such as
financial cost (Parducci et al., 2018) and higher computational
processing requirements needed for the analysis of metagenomic
data. However, as outlined by Cribdon et al. (2020), one major
advantage of utilizing the shotgun sequencing approach in
sedaDNA research is that the sequencing approach allows for
an assessment of authentication that goes beyond reliance on
the absence of taxa from negative controls and replication (c.f.
Clarke et al., 2018; Ficetola et al., 2018; Giguet-Covex et al.,
2019; Edwards, 2020). The shotgun sequencing process amplifies
whole molecules of DNA rather than targeted amplicons and, as
such, captures fragment ends and allows for an assessment of any
cytosine deamination damage in sequences (Briggs et al., 2007).
This damage signature can then be used to discriminate between
datasets containing modern sequences vs. authentic sedaDNA
sequences (Sawyer et al., 2012; Key et al., 2017; Kistler et al.,
2017; Parducci et al., 2019; Renaud et al., 2019; Edwards, 2020).
The capacity to identify deamination has a direct impact on the
understanding of wider questions in paleoecological research,
such as taphonomic processes and the preservation of sedaDNA
sequences in the sedimentary record (Kistler et al., 2015; Smith
et al., 2015; Gaffney et al., 2020).

As a standard approach to authentication of DNA
sequence, tools designed for single reference species with
mathematical models describing a single coherent process of
DNA modification as a property of a single sample are relied
on for assessing deamination levels (mapDamage, Jónsson
et al., 2013; PMD tools, Skoglund et al., 2014). In the case
of sedaDNA shotgun datasets, there are rarely sufficient reads
for any one taxon to apply such methods, even though
the total read count may be large across all taxa. This has
recently been addressed by the development of programs such
as the metagenomic bacterial screening tool HOPS (Hübler
et al., 2019), DamageProfiler (Neukmann et al., 2020), and
PyDamage (Borry et al., 2021). Application of tools such as
mapDamage to a wide range of species by concatenating
reference genomes violates their mathematical framework but
also becomes computationally impractical when dealing with
the thousands of unknown species that may be present in a
metagenomic sample.

These tools have demonstrated their capabilities in the
assessment of the authenticity of sequences, in particular, the
isolation of 5′-end C to T base misincorporations within
bacterial metagenomic datasets. They use a sorting methodology
similar to the metagenomic approach inMetaDamage described
here, in which multi-organism sequences are binned either
using a phylogenetic sorting tool such as MEGAN (c.f. Herbig
et al., 2016; used in Hübler et al., 2019; Neukmann et al.,
2020) or de novo assembly. Borry et al. (2021) has been
specifically designed for ancient pathogen authentication and
is limited in the formatting of the output by the incorporation
of the metagenomic mapping software MALT during the
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mapping process (Neukmann et al., 2020). The DamageProfiler
tool (Neukmann et al., 2020) offers more flexibility in input
organisms with its process, but it runs in a similar way
to MapDamage (Jónsson et al., 2013) in its requirement of
a SAM/BAM input tool and is reliant on reference-based
mapping and is therefore limited in its input potential to a
computationally reasonable number of genomes. There is a
similar limitation in PyDamage (Borry et al., 2021), which
is reliant on the de novo assembly of bacterial genomes
as input.

TheMetaDamage tool follows a five-stage workflow that has
been designed in Perl script and combined to support users with
simple command-line use with either a FASTA or BLAST file
input. In summary,MetaDamage uses a local or remote database
to find a reference sequence using BLAST that corresponds
directly to each input query based on the same length and
direction. Each input query and its corresponding reference are
then globally aligned, and the proportion of sequences where
the reference and query have mismatching bases is calculated.
The output is a damage profile similar in a graphical format to
mapDamage (Jónsson et al., 2013), but with metagenomic data.

Initial application of the MetaDamage approach proved
successful in the analysis of low-level input queries (i.e., <100
sequences) and the identification of low-level deamination
frequencies, therefore providing additional support to
mapDamage analysis undertaken on an individual species level
(Gaffney et al., 2020, Supplementary Figure S4.4). In this study,
we demonstrate the efficacy and resolution with which a damage
assessment of metagenomic datasets can help users with an
early-stage analysis of the extent of ancient DNA damage on
a sample-to-sample basis. The output of the MetaDamage tool
can help contribute to questions in the application of sedaDNA
as a paleoecological tool, such as the taphonomic processes of
sedaDNA preservation and formation processes that may lead
to potential modern contamination.

2. MetaDamage algorithm

2.1. Scripts

All scripts described in the methodology can be found
at https://github.com/MetaDamage/MetaDamage.git.

2.2. Process

The MetaDamage tool estimates all base substitutions of
sequences for the first 25 5′-end and 3′-end base positions by
default, with a focus on C >T and G >A substitutions for
double-stranded libraries and C>T substitutions for 5′-end and
3′-end for single-stranded libraries. The tool runs as a single
pipeline and returns credible intervals on base modification

estimates, which allows for a more refined understanding of the
output of the substitution assessment. There are several stages to
theMetaDamage pipeline, which are outlined in Figure 1.

3. MetaDamage methodology

3.1. MetaDamage pipeline stages

As outlined in Figure 1, the MetaDamage tools work in a
5-stage approach, in which each stage is detailed as follows.

The MetaDamage tool requires a FASTA or BLAST file as
input and returns the subject sequence coordinates that match
the input query length, given that it is likely only a portion of the
query sequence will be aligned to the subject and base-modified
termini are likely to be excluded. Using the BLAST output, a
combined text file of the query and subject reference sequences
is generated using either blastdbcmd from a local database or
Efetch (Schuler et al., 1996) within the E-Utilities package, which
provides access to the suite of interconnected databases of NCBI
(NCBI, 2010; Harbert, 2018). The aim is to find a reference
sequence that corresponds directly to the query based on the
same length and same direction and is ready for alignment.

The Needleman-Wunsch algorithm is used for alignment
(adapted from Needleman and Wunsch, 1970). Realignment
of the query sequences to the reference sequences using a
global alignment is important as it allows for alignment of the
whole query sequence (end-to-end) with the reference sequence
alignment so that each mismatch can be assessed in a way that is
robust to the unexpected occurrence of indels.

3.1.1. Stage 1: Providing input BLAST analysis of
metagenomic FASTA files

TheMetaDamage tool can perform the initial BLAST search,
which requires an input of a FASTA file of all query sequences, or
can take a previous BLAST output with a corresponding FASTA
file as an input. All sequences are subjected to BLASTn analysis
(Altschul et al., 1990) with the following options, using the full
NCBI nt database:

blastn -db [nucleotide database] -num_threads [x] -query
[input FASTA] -out [output BLAST] -max_target_seqs 1 -
max_hsps 1 -outfmt “6 std qlen.”

The applied parameters are utilized in the BLAST process for
the following output:

- The “max_target_seqs” parameter is applied to limit the
number of hits returned per sequence. This is set to “1” to
return only the first hit (Shah et al., 2018).

- The “max_hsps” option refers to high-scoring segment
pairs and will give only 1 HSP per subject for all hits in
the database.

- The “6 std qlen” option determines the output format.
“6” specifies a tabular format, which reduces the output
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FIGURE 1

Stages of the MetaDamage tool, including the Credible Interval assessment.

footprint. “std” adds the standard output information,
and “qlen” adds an additional field for the length of the
query sequence.

Output: [FASTA].blast.txt.
The BLAST output in Figure 1 has been reformatted to

show each header of the BLAST parameters and configured
for clarity.

3.1.2. Stage 2: Retrieving reference sequence
coordinates and count bases

3.1.2.1. Retrieve reference sequence

Using the input BLAST, for each query sequence:

1. Use the start and end coordinates of the reference sequence
to establish whether it is reversed relative to the query.

2. Calculate new start and end coordinates that map the subject
reference sequence to the whole query (matching query
region, not the whole reference sequence).

3. Discard the query if the new start coordinate is before the
beginning of the reference sequence because this means the

5′-end of the query is not present in the reference and
therefore cannot be compared and terminal deamination
signal determined.

4. Use these coordinates to extract that region of the reference
sequence using either blastdbcmd on a local database
or Efetch on a remote (NCBI) database and correct its
orientation to the reverse complement if necessary to match
the query sequence.

5. Export the reference title line, the reference sequence, and
the query sequence for each query sequence into output
text files.

3.1.2.2. Count bases

For every reference sequence, the number of A, T, C, and G
bases is counted. This output is used later in the credible interval
calculations (Stage 5).

Output: [FASTA].paired.txt.
The resulting output file contains each query sequence

in the original FASTA, separated by “@” symbols
(see Figure 1).
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3.1.3. Stage 3: Globally align query sequence
and reference sequence

Each query with the corresponding reference sequence is
realigned using the Needleman-Wunsch algorithm (adapted
from Needleman and Wunsch, 1970).

Output: [FASTA].aln.txt.

3.1.4. Stage 4: Summarize mismatches and
calculate base proportions

3.1.4.1. Summarize mismatches

Once aligned, the first and last 25 bases of every alignment
are assessed for mismatches. This approach calculates the
proportion of sequences where the reference and query have
mismatching bases. This process calculates proportions for all
12 possible mismatch types.

The output also includes the total number of
aligned sequences.

3.1.4.2. Calculate base proportions

Using the total number of bases (for all sequences) and the
total number of each base (C, T, G, and A), the Perl script
calculates the empirical proportions of each base in the dataset.

Output: [FASTA].mismatches.txt.

3.1.5. Stage 5: Calculation of credible intervals
and visualization of mismatches

All steps in Stage 5 are processed in R (version 4.0.3).

3.1.5.1. Calculation of credible intervals

Confidence testing is incorporated into the MetaDamage

tool to allow the user to assess the estimated deamination rate
given the number of input query sequences. A posterior credible
interval for the observed proportion of mismatches is calculated
using a beta distribution to provide a 95% range of proportions
that could have given rise to the observed results at base position
0, the position most likely to demonstrate cytosine deamination.
This allows the user to gauge the confidence of the deamination
estimate, in particular when the number of input sequences is
very low.

The parameters of the beta distribution are calculated from
the output of Stage 4 ([fasta].mismatches.txt). The underlying
binomial distribution is defined by a total number of trials equal
to the number of instances at which a DNA fragment terminates
(base position 0) in a C (defined by reference sequences), and
a probability of a C > T modification equal to the proportion
of C(reference) > T(query) mismatches at base position 0. The
related posterior beta distribution parameters, alpha and beta,
are therefore based on these and are defined as follows.

1) Generate alpha and beta values.

Alpha value: (number of trials ∗ proportion C>T mismatch
at base position 0)+1.

Beta value: [number of trials ∗ (1 – proportion C>T
mismatch at base position 0)]+1.

2) Calculate 95% credible interval boundaries.

The 95% credible interval is the upper and lower boundaries
of estimated probabilities between 0.025 and 0.975. This is
calculated using a cumulative beta distribution function within
R using the alpha and beta values.

CI_lower_bound < qbeta (0.025, shape1 = alpha, shape2
= beta).

CI_upper_bound < qbeta (0.0975, shape1 = alpha, shape2
= beta).

Output:MetaDamage_CIs.txt.

3.1.5.2. Visualization of mismatches

The positional mismatches and credible intervals are
visualized using R for the MetaDamage tool output. The
mismatches are plotted as a P substitution for both the 5′ C>T
(PC>T) and 3′ G>A (PG>A)-end against the ith base position
for double-stranded libraries, and 5′ and 3′ C>T (PC>T) for
single-stranded libraries. The total number of sequences used in
the analysis is also printed in the top right of the plot.

Output:MetaDamage_plots.pdf.
An example of this output is demonstrated in Figure 2A

(a reasonable number of input sequences consistent with an
ancient DNA signal, n = 427 sequence reads) and Figure 2B
(low number of input sequences with an ancient DNA signal,
n = 26 sequence reads). This output is an example of a shotgun
sedaDNA dataset taken from Everett (2021).

Figures 2A, B also demonstrate the difference in output
based on the observed deamination rate and the number of
input sequences for a confident ancient DNA signal. Figure 2A
has an observed deamination rate of 0.33333 based on 427
sequences and has produced a clearly defined ancient DNA-
associated signal. Figure 2B has a higher observed deamination
rate of 0.5 but is based on 26 sequences and has produced
output with a signal that one cannot confidently interpret as
consistent with ancient DNA. This relationship between the
observed deamination rate, the number of input sequences,
and the success rate of MetaDamage are discussed further in
Section 4.

3.1.6. Overview of resolution testing

We tested the sensitivity and resolution of MetaDamage on
simulated ancient DNA data, real sedaDNA data with authentic
DNA signals, and unknown metagenomic sequences from early
Holocene sediment samples to demonstrate the resolution
capability ofMetaDamage.

This process aimed to:
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FIGURE 2

Example MetaDamage output—(A) High number of input sequences (427) and an observed deamination rate of 0.33333 with ancient DNA

signal. (B) Low number of input sequences (26) and an observed deamination rate of 0.5 with ancient DNA signal. Shotgun datasets provided by

Everett (2021).

1) assess the confidence level and accuracy of the estimated
deamination rates;

2) establish a baseline for the minimum number of reads
from which the MetaDamage tool could identify a
deamination signal;

3) compare MetaDamage outputs on known authentic
sedaDNA data with simulated DNA data;

4) test MetaDamage on unpublished data with unknown
damage parameters to demonstrate the capability of the tool
to undertake damage assessment.

3.1.7. Testing MetaDamage on simulated
datasets

The aim of using a simulated dataset was to take a
known profile of double-stranded libraries, in this case,
reads simulated using Gargammel (Renaud et al., 2017) from
chloroplast sequences using parameters of known damage
statistics from previous ancient DNA studies (Gamba et al.,
2014; Schubert et al., 2014; Allentoft et al., 2015), and run
through the MetaDamage tool. Chloroplast DNA was used
for analytical simplicity, ease of simulation generation, and
good database representation. The MetaDamage output of the
observed PiC>T from the simulations would then be compared

with that of the observed PiC>T value from selected ancient
DNA studies.

The simulated datasets used for testing the MetaDamage

tool were generated from a process that utilized
the following:

1) All available chloroplast genomes (n = 4,823;
Supplementary Data 1) were downloaded in the FASTA
format from NCBI (https://www.ncbi.nlm.nih.gov/
genome/browse#!/organelles/).

2) Damage statistics from ancient DNA studies (Gamba
et al., 2014; Schubert et al., 2014; Allentoft et al., 2015)
were previously inferred using mapDamage as part of a
paleogenomics meta-analysis (Kistler et al., 2017).

3) The chloroplast genomes and damage statistics from each
DNA study were piped into the Gargammel tool (Renaud
et al., 2017) to create simulated read FASTA output with the
assigned damage parameters.

4) FASTAs of 100, 300, 500, and 1,000 sequences
were generated by dividing the whole
simulated FASTA output as subsets to test
throughMetaDamage.

A total of 1,600 FASTA files were generated and subjected to
MetaDamage analysis (Supplementary Table S1).
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3.1.8. Testing confidence in the simulated
dataset

Each set of MetaDamage analysis conditions was repeated
100 times on different simulated datasets for which credible
intervals were produced to test the consistency and accuracy of
the deamination estimates (Figure 3), and the generated data can
be found in Supplementary Data 2.

The output of the credible interval testing of the simulated
data demonstrated the following observations on the efficacy
of MetaDamage as a tool (see Supplementary Table S2) for
examining deamination on a metagenomic scale:

1) The 95% credible interval varied as predicted with the input
number of sequences, from narrowest in the 5,000-sequence
trails (for example, in RISE145, the average estimated range
of 95% credible interval was 0.0602) to widest in the 100-
sequence trials (average estimated range of 95% credible
interval was 0.3932).

2) The 95% credible interval captured the empirical
deamination value in 97.25% of trials using 5,000 sequences,
96% of trials using 1,000 sequences, 95.75% of trials using
300 sequences, and 95.5% of trials using 100 sequences.

False negatives occurred in a range of 3.5% (100 sequences)
to 2.75% (5,000 sequences) of the tested simulated datasets
(credible intervals underestimating the empirical deamination
value), in which the most common errors were driven by
situations by a combination of low deamination rate and few
sequences. Given the 95% range of credible intervals, these
results are within expectations.

This testing has highlighted both the strength of the
MetaDamage tool in its capability to assess the damage on a
low number of input sequences (e.g., <100 sequences), and
under the conditions examined here, that it requires a minimum
observed deamination rate (Psubstitution > 0.1) for success
in identifying damage patterns where the number of input
sequences is low. This is discussed further in Section 3.1.10.

3.1.9. Testing MetaDamage on published data
with an authentic ancient DNA signal

The application of the MetaDamage tool to data from
early Holocene sediment sequences (Gaffney et al., 2020)
demonstrates sequence authenticity where the observed PiC>T

was 0.1697 (Figure 4A). This input FASTA consisted of 173,727
known authentic sequences representing short reads (<75
bp) associated with the Viridiplantae clade (processed using
MEGAN; Huson et al., 2007). This clade was chosen as it had
a more complex profile than the cpDNA solely tested in the
simulation data and was thus used to test the capability of
MetaDamage on more complex metagenomic datasets.

Once the MetaDamage tool demonstrated capability in
identifying an authentic aDNA signal from the early Holocene
sediment sequences, the input FASTA was subjected to testing

in the simulation conditions, to test confidence in this
initial output.

The input FASTA file was first subjected to the
following processing:

- Removal of first 5 bases off 5′-end and 3′-end to remove any
existing damage signal.

- Concatenation into a single FASTA format sequence and
interspersal of 75 N’s within FASTA to avoid the generation
of chimeric simulated fragments.

Using the same damage statistics as in the initial testing (see
Section 3.1.7), the modified Viridiplantae sequences (Gaffney
et al., 2020) were piped into the Gargammel tool (Renaud
et al., 2017) to create simulated reads with the assigned damage
parameters. The simulated FASTA file was then processed with
the MetaDamage tool, and credible intervals for deamination
rate estimates were generated. The output of the tests is
detailed (Figure 4B; see Supplementary Table S3), leading to the
following observations:

1) The output of confidence testing using an authentic
sedimentary DNA dataset with simulated damage
characteristics supports the small range of the 95%
credible interval with input sequences of over 5,000 observed
in the simulated data.

2) The output demonstrates that the MetaDamage tool can
process complex metagenomic datasets of mixed DNA
input or unknown origin, based on the comparison of the
MetaDamage PiC>T output of the authentic ancient DNA
data and the damage parameters set by the simulation data.

This testing, therefore, demonstrated the capacity of the
MetaDamage tool to identify damage patterns on complex
metagenomic datasets. The next phase tested the resolution
of the tool through the analysis of 10 datasets that had a
low number of input sequences and a range of estimated
deamination rates.

3.1.10. Testing MetaDamage on data where
ancient DNA signal is unknown

The MetaDamage tool was tested on sedaDNA data from
early Holocene sediment sequences from submerged fluvial
deposits (Everett, 2021) and focused on sequences from the
Viridiplantae group. The input sequences were short reads
(<150 bases) generated from double-stranded libraries. The
purpose was to test the capabilities of the MetaDamage tool
in dealing with a range of lower input sequences, and the
relationship with observed deamination rates.

The samples analyzed included a range of input sequences
from 28 to 1,103 and observed PiC>T from 0 to 0.33
(Figures 5A–J; see Supplementary Table S4). These results
demonstrate the applicability of theMetaDamage tool for highly
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FIGURE 3

Observed credible intervals observed in each FASTA input of simulation data (N = 100 for each plot): (A) RISE145, (B) RISE00, (C) SRR1187907,

and (D) ERR657747.
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FIGURE 4

MetaDamage outputs—(A) Authentic Holocene Viridiplantae dataset. (B) Credible intervals observed in simulation data using authentic sequence

dataset with damage parameter mapped for.

fragmented and low-read input sequences often associated with
sedaDNA. The following conclusions can be drawn:

1) TheMetaDamage tool can identify damage in inputs with low
numbers of sequences, with the lowest success seen with 70
reads (Figure 5D).

2) Although a small dataset, the examples used demonstrate
the success of the MetaDamage tool where the observed
deamination rate was above Psubstitution > 0.1, except in the
case of input example “D” of 70 reads where the observed
PiC>T was 0.09. Although there is only one example, it
demonstrates the potential for the MetaDamage tool to
identify low-level damage in small input queries.

4. Discussion

The role of authentication in ancient metagenomics
and sedaDNA analysis is paramount to distinguish between

authentic ancient DNA and potential contamination and for
providing an understanding of wider issues relating to the
accuracy of the paleoecological reconstruction, such as post-
depositional preservation and the potential taxonomic bias.

The testing of MetaDamage on simulated datasets
demonstrated that fewer sequences in the test sample result in
less precision but similar accuracy for capturing the empirical
underlying values within credible intervals that we expect to get
wider with fewer input sequences. For the tested 5,000 and 1,000
input sequences, ancient DNA signals on a metagenomic scale
were confidently recovered with high precision. With 300 input
sequences, the credible interval range becomes wider, and with
100 input sequences, theMetaDamage tool can still establish the
presence of a damage signal. However, with a varied confidence
range of these observed mismatches, the results are sufficient
to validate a small dataset for the initial assessment of ancient
DNA signals on a metagenomic scale.

This outcome of the tests demonstrated a trade-off
between the number of reads and the strength of the
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FIGURE 5

(Continued)
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FIGURE 5

(A–J) Observed credible intervals in each FASTA input of empirical data from unpublished Holocene dataset (Everett, 2021).

damage signal, with stronger damage signals (e.g., PiC>T>

0.1) being detectable with read counts of <100, but weaker
signals are not. Although more testing is required on
empirical data to examine the nature of the relationship
between the number of input queries and the required
damage level, these tests have demonstrated the capability
of MetaDamage to provide damage assessment on low-
read inputs.

However, it must be noted that the MetaDamage tool
has the primary aim of being used as an initial assessment
of metagenomic damage analysis of multi-species input
from sedaDNA samples. The low-read input that the
MetaDamage testing has demonstrated the capability to
assess is far below the suggested minimum input number
for obtaining an accurate DNA damage profile (>1,000
mapped reads) on an individual species level (Warinner et al.,
2017).

In the context of paleoecological reconstruction, the
MetaDamage tool can rapidly assess the presence of
authentic aDNA on a metagenomic scale without the
need for reference genomes. This can contribute to the

understanding of the formation and post-depositional
processes associated with deposits of paleoecological value
in the context of sedaDNA analyses. As a complementary
tool to existing methods for ancient DNA authentication,
the MetaDamage tool has demonstrated its capabilities for
the initial process of authentication of metagenomic data.
This initial overview allows for a more targeted approach
to single-taxa authentication tools such as mapDamage
(Jónsson et al., 2013) and PMDtools (Skoglund et al.,
2014).

The process of authentication of sedaDNA for
paleoecological reconstruction requires further research,
in particular key aspects of taphonomic processes,
such as determining the relationship between sediment
type and preservation. Confidence in sedaDNA
interpretation is not only a powerful approach for the
development of the technique but overall allows users to
readdress questions in key aspects, such as taphonomic
processes and contextualizing the output of sedaDNA
analysis with a better understanding of the potentially
authentic sedaDNA.
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