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A Corrigendum on

Sex Pheromone Receptors of Lepidopteran Insects

by Yang, C., Cheng, J., Lin, J., Zheng, Y., Yu, X., and Sun, J. (2022). Front. Ecol. Evol. 10:797287.
doi: 10.3389/fevo.2022.797287

In the original article, the sentence “The identified SPRs and their specific sex pheromone ligands
were summarized (Table 1).” should have been removed.

A correction has been made to Introduction, paragraph 3:
“In this review, we summarized SPR and Orco information from 10 families (i.e.,

Bombycidae, Plutellidae, Sphingidae, Saturniidae, Geometridae, Nymphalidae, Noctuidae,
Tortricidae, Pyralidae, and Crambidae) of Lepidopteran insects (Krieger et al., 2004, 2005; Sakurai
et al., 2004; Miura et al., 2005; Nakagawa et al., 2005; Grosse-Wilde et al., 2007, 2010, 2011; Mitsuno
et al., 2008; Jordan et al., 2009; Patch et al., 2009; Zhang et al., 2009, 2010, 2013, 2014, 2015; Wanner
et al., 2010; Legeai et al., 2011; Wang et al., 2011; Yasukochi et al., 2011; Zhan et al., 2011; Bengtsson
et al., 2012; Carraher et al., 2012; Leary et al., 2012; Liu et al., 2012, 2014; Montagne et al., 2012;
Xu et al., 2012, 2015; Liu C. et al., 2013; Liu Y. et al., 2013; Sun et al., 2013; Wu et al., 2013; Zhang
and Lofstedt, 2013; Jiang et al., 2014; Corcoran et al., 2015; De Fouchier et al., 2015; Feng et al.,
2015; Garczynski and Leal, 2015; Lin et al., 2015; Steinwender et al., 2015; Chang et al., 2016; Ge
et al., 2016; Jia et al., 2016; Walker et al., 2016; Zhang D.D. et al., 2016; Zhang Y.N. et al., 2016;
Gonzalez et al., 2017; Li et al., 2017; Wicher et al., 2017; Yang et al., 2017; Du et al., 2018; Grapputo
et al., 2018; Rojas et al., 2018; Table 1). Among all the Lepidopteran SPRs, several of them have been
characterized to be sex pheromone sensing receptors. First of all, we reviewed the phylogenetic
analyses of Lepidopteran SPRs, and the evolution of the summarized Lepidopteran SPRs was
analyzed throughMEGA X (Whelan and Goldman, 2001; Kumar et al., 2018). Second, we reviewed
the transmembrane predictions of Lepidopteran SPRs, and the protein structure of Lepidopteran
SPRs was predicted by online software Consensus Constrained TOPology Prediction (CCTOP)
(Dobson et al., 2015) and SwissModel (Bertoni et al., 2017; Bienert et al., 2017; Waterhouse et al.,
2018; Guex et al., 2019; Studer et al., 2020). Third, the interaction of Lepidopteran SPM and SPR
was reviewed. Finally, the research status of downstream signaling responses and ligand-gated ion
channels by the coupling of SPR and Orco was depicted.”

In the original article, Figures 3 and 4 did not match their captions because the figures were
erroneously interchanged. The corrected Figures 3 and 4 with their captions appear below.

In the original article, the citation “[18]” should have been replaced with “Wicher et al.,
2017”. The citation has now been inserted in “Downstream Signaling Pathways of Sex Pheromone
Receptors”, paragraph 1 and should read:
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“Early research revealed the presence of G-protein, belonging
to the Gαq family, in antennal preparations (especially the
pheromone-sensitive sensilla trichodea) of B.mori andAntheraea
pernyi, implied a participation of G-protein of the Gαq family
in the signal transduction of OR cells in moths (Laue et al.,
1997; Nakagawa et al., 2005). The bombykol stimulation of
Xenopus laevis oocytes expressing BmOR-1 and BmGαq elicited
robust dose-dependent inward Ca2+-dependent Cl− currents
on two-electrode voltage-clamp recordings, demonstrating that
the binding of bombykol to BmOR-1 leads to the activation
of a BmGαq-mediated signaling cascade (Sakurai et al., 2004).
MsexOR1 and MsexOrco coexpressed in HEK293 and CHO
cells caused bombykal-dependent increases in the intracellular
free Ca2+ concentration, and inhibitor evidence showed that
phospholipase C (PLC) and protein kinase C (PKC) activities
are involved in the bombykal-receptor-mediated Ca2+ signals of
hawk moths. It could be hypothesized that MsexOrs couple to
Gαq proteins, requiring the activation of PLC for pheromone
transduction (Wicher et al., 2017). Immunocytochemistry
research showed that anti-Gαq and anti-Gαs antisera stained the
inner and outer dendritic segments of the putative OR neuron
in male and female antennae, which suggested that each subunit
mediates a subset of the odorant response (Miura et al., 2005).
In addition, a computational model of the insect pheromone
transduction cascade had been used to calculate the presence
of the G-protein pathway in pheromone detection (Gu et al.,
2009). Furthermore, recent research showed that in HEK293A
cells expressing BmOR3 and human Gαi, the dose-dependent
coupling of BmOR3 and Gαi on bombykal stimulation was
detected through BRET (Lin et al., 2021). From the biophysical
perspective, a conservation residue W103 in transmembrane
2 of BmOR3 is the key that determines receptor-Gi coupling
(Lin et al., 2021). Pretreatment with specific Gi inhibitor
PTX had no significant effects on bombykal-induced BmOR3-
BmOrco complex formation or complex-regulated calcium
influx, suggesting that Gi coupling and BmOrco coupling are
the two independent processes in the case of BmOR3 (Lin et al.,
2021).”

Due to a production error, bombykol was erroneously
described as the agonist of MsexOR1 and BmOR3; the correct
agonist is bombykal.

A correction has been made to “Downstream Signaling
Pathways of Sex Pheromone Receptors”, paragraphs 1 and 2:

“Early research revealed the presence of G-protein, belonging
to the Gαq family, in antennal preparations (especially the
pheromone-sensitive sensilla trichodea) of B.mori andAntheraea
pernyi, implied a participation of G-protein of the Gαq family
in the signal transduction of OR cells in moths (Laue et al.,
1997; Nakagawa et al., 2005). The bombykol stimulation of
Xenopus laevis oocytes expressing BmOR-1 and BmGαq elicited
robust dose-dependent inward Ca2+-dependent Cl− currents
on two-electrode voltage-clamp recordings, demonstrating that
the binding of bombykol to BmOR-1 leads to the activation
of a BmGαq-mediated signaling cascade (Sakurai et al., 2004).
MsexOR1 and MsexOrco coexpressed in HEK293 and CHO
cells caused bombykal-dependent increases in the intracellular
free Ca2+ concentration, and inhibitor evidence showed that

phospholipase C (PLC) and protein kinase C (PKC) activities
are involved in the bombykal-receptor-mediated Ca2+ signals of
hawk moths. It could be hypothesized that MsexORs couple to
Gαq proteins, requiring the activation of PLC for pheromone
transduction (Wicher et al., 2017). Immunocytochemistry
research showed that anti-Gαq and anti-Gαs antisera stained the
inner and outer dendritic segments of the putative OR neuron
in male and female antennae, which suggested that each subunit
mediates a subset of the odorant response (Miura et al., 2005).
In addition, a computational model of the insect pheromone
transduction cascade had been used to calculate the presence
of the G-protein pathway in pheromone detection (Gu et al.,
2009). Furthermore, recent research showed that in HEK293A
cells expressing BmOR3 and human Gαi, the dose-dependent
coupling of BmOR3 and Gαi on bombykal stimulation was
detected through BRET (Lin et al., 2021). From the biophysical
perspective, a conservation residue W103 in transmembrane
2 of BmOR3 is the key that determines receptor-Gi coupling
(Lin et al., 2021). Pretreatment with specific Gi inhibitor
PTX had no significant effects on bombykal-induced BmOR3-
BmOrco complex formation or complex-regulated calcium
influx, suggesting that Gi coupling and BmOrco coupling are
the two independent processes in the case of BmOR3 (Lin et al.,
2021).

The GPCRs usually direct the recruitment, activation, and
scaffolding of the cytoplasmic signaling complexes via two
multifunctional adaptor and transducer molecules, β-arrestins 1
and 2, and arrestins also function to activate signaling cascades
independently of G-protein activation or mediate receptor
desensitization (Lefkowitz and Shenoy, 2005; DeWire et al.,
2007). Individual arrestins had been reported to function in
both olfactory and visual pathways in Dipteran insects (Merrill
et al., 2001) but not in Lepidopteran insects. Recent research
reported that bombykal robustly stimulated the recruitment of
human β-arrestin-1/2 and B. mori intrinsic arrestin to BmOR3
in HEK293A cells in a concentration-dependent manner, and
the arrestin, in turn, regulated BmOR3 internalization (Lin
et al., 2021). Bombykal also induced downstream kinase (i.e.,
ERK, SRC, AKT, and JNK) activation (phosphorylation) through
arrestin (Lin et al., 2021). These results confirmed the arrestin-
mediated signaling downstream of BmOR3. The knockdown
of β-arrestins significantly reduced bombykal-induced calcium
influx through BmOR3-BmOR2, which was accompanied by the
collapse of the receptor complex, suggesting that the β-arrestins
mediate Ca2+ response mainly by regulating the structural and
functional integrity of the BmOR3-BmOR2 complex (Lin et al.,
2021). The summarized researches show that insect pheromone
receptors may both have G-protein and arrestin downstream
pathways (Figure 4).”

The same correction has also been made to “Metabotropic
Ion Channel by the Coupling of Lepidopteran Sex Pheromone
Receptors and Orcos”, paragraphs 1 and 2:

“BmOR1 and BmOR3 of B. mori are mutually exclusively
expressed in a pair of adjacent pheromone-sensitive neurons of
male antennae, and both of which are coexpressed with the highly
conserved insect Orco. Heterologous cells coexpressing BmOR2
can greatly enhance the sensitivity of BmOR1 to bombykol, and
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the current-voltage analysis showed that bombykol activated a
non-selective cation channel in oocytes expressing BmOR1 and
BmOR2, which is different from Ca2+-activated Cl− channel
through BmGαq, and the non-selective cation channel activity
in response to bombykol was also observed when BmOR1 was
coexpressed with HvirOR2 or Or83b (Whelan and Goldman,
2001; Nakagawa et al., 2005; Figure 4). As reported in MsexOR1,
the PLC/PKC activity is a prerequisite to bombykal-receptor-
mediated Ca2+ signals in HEK293 and CHO cells, and it
could be hypothesized that MsexOR1 and MsexOrco need to
be phosphorylated before they can be gated by bombykal as an
ionotropic odor receptor-ion channel complex (Wicher et al.,
2017).

In a recent study, the BmOR3-BmOR2 combination elicited
a response to bombykal and showed similar channel properties,
and the coupling of BmOR3 and BmOR2 forms a cation channel
with the detection of calcium influx (Lin et al., 2021). From the
view of biophysics, there was also physical interaction between
BmOR3 and its Orco BmOR2. On bombykal stimulation, the
cytoplasmic parts intracellular loop 1 (ICL1), ICL2, and ICL3

moved away from the N-terminus, while the C-terminal helical
kink moved close to the N-terminus of BmOR3. On the contrary,
the lower part of loop7a-7b moved away from the N-terminus
in BmOR2. ICL1, ICL2, and ICL3 also moved away from the
N-terminus of BmOR2 (Lin et al., 2021). The replacement of
transmembrane 7 in both receptors confirmed its indispensable
role in BmOR3-BmOrco coupling for ionotropic functions
(Lin et al., 2021). Several key motifs determine the BmOR3-
BmOR2 coupling, the charged residue pair of BmOR3-E403 and
BmOrco-K437 represents an important “ionic lock” in regard
to mediating BmOR3-BmOrco coupling, and the hydrophobic
patches F428/F433 of BmOR3 and zipper Y464/V467/L468/L471
of BmOrco are spatially close to each other, suggesting that they
might form hydrophobic interactions (Lin et al., 2021). These
reports suggest that the coupling of both SPR and Orco plays a
vital role in sex pheromone signal detection and transduction.”

The authors and publisher apologize for these errors and
state that this does not change the scientific conclusions
of the article in any way. The original article has
been updated.
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FIGURE 3 | Predicted structure of Lepidopteran SPRs BmOR3 and Orcos

through SwissModel. In total, 7 transmembrane helixes were colored rainbow

in the form of silk ribbon (Cartoon) and lines.
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FIGURE 4 | Downstream signaling pathway of SPR and metabotropic channel of SPR-Orco. In macro environment, male insects sense the SPM released by female

insects through an olfactory sensory neuron in antennae, and SPM works as an agonist to SPR, and signal transduction leads to ultimate mating behavior.
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