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Patterns of Fungal Community
Assembly Across Two Culex
Mosquito Species

Patil Tawidian, Ari Jumpponen and Kristin Michel*

Division of Biology, Kansas State University, Manhattan, KS, United States

In the aquatic environment, mosquito larvae encounter bacteria and fungi that assemble
into bacterial and fungal communities. The composition and impact of mosquito-
associated bacterial community has been reported across larvae of various mosquito
species. However, knowledge on the composition of mosquito-associated fungal
communities and the drivers of their assembly remain largely unclear, particularly across
mosquito species. In this study, we used high throughput sequencing of the fungal
Internal transcribed spacer 2 (ITS2) metabarcode marker to identify fungal operational
taxonomic units (OTUs) and amplicon sequence variants (ASVs) associated with field-
collected Culex restuans and Culex pipiens larvae and their breeding water. Our analyses
identified diverse fungal communities across larval breeding sites collected on a fine
geographic scale. Our data show that the larval breeding site is the major determinant
of fungal community assembly in these mosquito species. We also identified distinct
fungal communities in guts and carcasses within each species. However, these tissue-
specific patterns were less evident in Cx. restuans than in Cx. pipiens larvae. The
broad ecological patterns of fungal community assembly in mosquito larvae did not
vary between OTU and ASV analyses. Together, this study provides the first insight
into the fungal community composition and diversity in field collected Cx. restuans and
Cx. pipiens larvae using OTUs and ASVs. While these findings largely recapitulate our
previous analyses in Aedes albopictus larvae, we report minor differences in tissue-
specific fungal community assembly in Cx. restuans larvae. Our results suggest that
while the fungal community assembly in mosquito larvae may be generalized across
mosquito species, variation in larval feeding behavior may impact fungal community
assembly in the guts of mosquito larvae.

Keywords: fungal community, Culex pipiens, Culex restuans, larvae, fungal diversity

INTRODUCTION

Bacterial communities “i.e., microbiota’ associated with mosquito larvae have been well-
characterized across several mosquito species using culture-dependent and culture-independent
methods (Rani et al., 2009; Chavshin et al., 2012; Gimonneau et al., 2014; Kim et al., 2015; Coon
et al., 2016; Bascufdn et al., 2018; Galeano-Castafieda et al., 2019; Scolari et al., 2021). In addition,
the impact of these communities on mosquito life history and vector competence have been
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reported (Gaio et al., 2011; Dennison et al., 2014; Coon et al,,
2016, 2017; Wang et al,, 2018). Knowledge on mosquito-fungus
interactions is largely confined to fungal entomopathogens of
mosquito larvae and adults (Christophers, 1952; Jenkins, 1964;
Scholte et al.,, 2004; Tawidian et al., 2019) or yeasts as food
source for mosquito larvae and support larval development
to adulthood (Asahina, 1964; Timmermann and Briegel, 1996;
Steyn et al, 2016; Coon et al, 2017; Souza et al, 2019).
However, mosquito-fungus encounters are not restricted to
entomopathogenicity but can include symbiotic interactions that
may further impact mosquito life history. More recently, studies
have characterized the fungal communities of several species of
field collected mosquito adults, including Aedes aegypti, Aedes
albopictus, Aedes japonicus, Aedes triseriatus, Anopheles coluzzii,
and Culex quinquefasciatus (Muturi et al., 2016; Krajacich et al,,
2018; Thongsripong et al., 2018; Luis et al., 2019). In addition,
recent studies report the fungal community composition and
assembly in field collected Ae. albopictus and Ae. aegypti larvae
(Tawidian et al., 2021; Zouache et al., 2022). However, it remains
unclear whether similar patterns in fungal community assembly
are observed in the larvae of other mosquito species.

Mosquito larval breeding sites harbor rich bacterial and fungal
communities that vary across large and small geographic scales
(Gimonneau et al., 2014; Coon et al., 2016; Bascuiian et al., 2018;
Shelomi, 2019; Tawidian et al., 2021). The microbiota associated
with field-collected mosquito larvae is largely influenced by the
bacterial community in the aquatic habitat they reside in. Indeed,
studies report a considerable overlap of bacterial taxa among
mosquito larvae and their breeding environment (Gimonneau
etal., 2014; Kim et al., 2015; Coon et al., 2016; Scolari et al., 2021).
Similarly, fungal communities associated with field-collected Ae.
albopictus and Ae. aegypti larvae reflect those in the larval
breeding site (Tawidian et al., 2021; Zouache et al., 2022). In
addition, tissue-specific fungal communities were observed in
Ae. albopictus larval guts and carcasses, driven by mosquito
feeding behavior and fungal mode of nutrition (ecological guild)
(Tawidian et al., 2021). To date, no studies have characterized the
fungal communities in larvae of any other mosquito species or
the aquatic habitat they inhabit.

The overall goal of this study was to determine whether the
fungal community assembly observed in the larvae of Aedes
mosquitoes also hold true for Culex restuans and Culex pipiens
mosquito larvae. In the United States, Cx. restuans and Cx.
pipiens are mosquitoes of public health concern due to the
transmission of the causative agent of West Nile Virus by the
adult females (Andreadis et al., 2004; Andreadis, 2012; Rochlin
etal,, 2019). Cx. restuans and Cx. pipiens larvae exhibit a temporal
pattern of prevalence in urban and suburban areas in east-
central United States with Cx. restuans larvae being abundant in
early summer, whereas Cx. pipiens larvae dominate in mid- to
late summer (Jackson and Paulson, 2006; Gardner et al., 2013;
Johnson et al., 2015). Larvae of both species occupy natural and
human-made breeding sites (e.g., woodland pools, tires, catch
basins, and storm drains) (Yee, 2008; Rochlin et al., 2019). In
this study, we collected Cx. restuans and Cx. pipiens L4 larvae
from various natural and human made mosquito breeding sites in
the midwestern U.S. city of Manhattan in Kansas. To determine

the fungal community composition and diversity in breeding
water and mosquito larval guts and carcasses, we amplified
and sequenced the fungal internal transcribed spacer 2 (ITS2)
metabarcode marker and analyzed the data using OTU and ASV-
based approaches. Both approaches congruently identified the
larval breeding habitat as the major driver of fungal community
assembly in these mosquito species. In addition, we identified
different fungal communities across mosquito tissues, likely
driven by mosquito feeding behavior and fungal nutritional
mode. However, the variation in fungal communities in the
larval guts and carcasses was less evident in Cx. restuans larvae,
potentially because of lesser larval feeding as reflected by the low
OTU/ASV richness across Cx. restuans.

MATERIALS AND METHODS
Sampling

A total of ten Cx. restuans and Cx. pipiens L4 mosquito larvae
and a single water sample (50 mL) were collected from each of
eight larval breeding sites in Manhattan, KS. One breeding site
(site 1) was sampled during 2017, whereas the remaining seven
sites were sampled during 2018. Breeding sites 2, 4, 5, 6, and 8
were man-made containers consisting of tires, plastic containers,
and a mosquito oviposition cup lined with seed germination
paper (Anchor Paper Co., St Paul, MN, United States) (Figure 1).
Sites 1, 3, and 7 were natural mosquito breeding sites consisting
of small ponds (Figure 1). Site 1 was revisited a year after
the first collection, and the revisited collection is referred to as
site 3. Site 4 was revisited 2 months after the first collection
and is referred to as site 5. Table 1 depicts sampling locations,
dates, and mosquito species found at each larval breeding site.
Mosquito larvae were collected in their breeding environments
and transported to the laboratory in plastic containers (Bare
Eco-Forward Rpet Deli Container).

Sample Processing

In 2017, the larvae were incubated in their breeding water for
24 h at 27°C with 75% RH prior to gut dissection. In 2018,
larvae were dissected immediately. Mosquito dissections were
performed as described previously (Tawidian et al.,, 2021). In
brief, larvae were washed six times with sterile Milli-Q water prior
to gut dissection to eliminate fungal carryover from the breeding
water and decapitated to remove loosely attached fungi from the
breeding water on the mosquito mouth brushes. Sterile forceps
and dissecting pins were used to dissect the larval guts, which
included the gastric caeca, anterior midgut, posterior midgut,
Malpighian tubules, and hindgut from the remainder of the body
(carcass). Sterile net pieces were used as dissection controls to
identify fungi introduced during the dissection process and to
be subsequently removed from the community data. The larval
breeding waters, dissected mosquito guts and carcasses, and
controls were stored at —80°C until further processing.

The larval breeding water was filtered through 1-micron
nuclepore membranes (Whatman®) immediately prior to
nucleic acid extraction. From each of the collection sites,
nucleic acids were extracted from ten individual guts and
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and July (site 5) 2018, respectively.

FIGURE 1 | Map depicting the collection sites of Cx. restuans and Cx. pipiens mosquito larvae and their breeding water in Manhattan, KS. Solid circles indicate Cx.
restuans breeding sites while circles with half left black symbol indicate Cx. pipiens breeding sites. Cx. restuans breeding sites 1 and 4 were revisited in a May (site 3)

TABLE 1 | Locations, dates, and types of larval breeding sites across Manhattan, KS during 2017 and 2018.

Larval breeding site Collection date Latitude, longitude

Reuvisited sites Mosquito species Type of larval breeding site

1 09/24/2017 N 39°18'13.4", W 96°59'44.6"
2 05/06/2018 N 39°20'15.4", W 96°58'78.4”
3 05/17/2018 N 39°18'13.4”, W 96°59'44.6”
4 05/28/2018 N 39°19'06.7", W 96°57'05.2”
5 07/25/2018 N 39°19'06.7", W 96°57'05.2”
6 03/08/2018 N 39°19'06.7”, W 96°57'05.2”
7 08/18/2018 N 39°19'74.7", W 96°58'28.3”
8 10/01/2018 N 39°20'19.4”, W 96°59'01.6”

Yes Cx. restuans Natural (Pond)

No Cx. restuans Man-made (Tire)

Yes Cx. restuans Natural (Pond)

Yes Cx. restuans Man-made (Rainwater bucket)
Yes Cx. restuans Man-made (Rainwater bucket)
No Cx. pipiens Man-made (Oviposition cup)
No Cx. pipiens Natural (Pond)

No Cx. pipiens Man-made (Tire)

ten corresponding carcasses as well as a water sample
and dissection control wusing the DNeasy® PowerSoil®
Kit (MoBio Laboratory, Carlsbad, CA, United States)
following the manufacturers instructions with minor
modifications. The extracted DNA was quantitated and
standardized to 2 ng/pL concentration using the NanoDropTM
2000/2000c spectrophotometers (Thermo Scientific, Waltham,
MA, United States).

Total Nucleic Acid Extraction and

Mosquito Identification

We identified mosquitoes by PCR amplification of
the mosquito ITS2 region using the forward 5.8F (5-
TGTGAACTGCAGGACACATG-3') and reverse 28R
(5'-ATGCTTAAATTTAGGGGGTA-3')  primers  following
the protocol described by Collins and Paskewitz (1996). PCR

cycling conditions were as follows: initial denaturation of 5 min
at 94°C, 34 cycles of denaturing, annealing, and extension at
94°C for 30 s, 61°C for 30 s, 72°C for 30 s, respectively, followed
by a final 72°C extension step for 5 min. The PCR included
nuclease-free water as a PCR negative control. Amplicons were
visualized by aliquoting 3 pL of each amplified product on 1%
agarose gels in 1x TAE buffer at 100 V constant voltage for
30 min. Finally, the PCR products were purified on columns
and sequenced using Sanger sequencing by Genewiz, Inc. (South
Plainfield, NJ, United States).

Fungal Internal Transcribed Spacer

Library Construction and Sequencing

The total nucleic acids from breeding water and mosquito
tissues were used for PCR amplification of the fungal ITS2
region in triplicate PCRs with the barcoded forward fITS7
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(5-GTGARTCATCGAATCTTTG-3') and reverse ITS4 (5'-
TCCTCCGCTTATTGATATGC-3') primers, as described
in Tawidian et al. (2021). PCR cycling conditions were as
follows: an initial denaturation of 30 s at 98°C, 35 cycles of
denaturing, annealing, and extension at 98°C for 10 s, 54°C
for 30 s, 72°C for 1 min, followed by a final 72°C extension
step for 9 min. The PCR included nuclease-free water as a
PCR negative control. For positive control, we included a
mock fungal community created with DNA from ten fungal
species belonging to the phyla Ascomycota (Aspergillus niger,
Chaetomium globosum, Penicillium notatum, Sordaria fimicola,
Saccharomyces cerevisiae), Basidiomycota (Agaricus bisporus
and Coprinus cinereus), Chytridiomycota (Phlyctochytrium
acuminatum), and Mucoromycota (Phycomyces blakesleeanus
and Rhizopus stolonifer) to determine the sequencing depth,
error rate, and amplification with the fungal primers. Aliquots of
5 pL of each amplified product were visualized on 1% agarose
gels in 1X TAE buffer at 100 V constant voltage for 30 min. The
remaining volume from triplicate PCRs were pooled and purified
using Mag-Bind® RXNPure plus (Omega Bio-Tek; Norcross,
GA, United States). A total of 200 ng of amplicons from each
sample were pooled for Illumina MiSeq sequencing. Illumina
MiSeq adaptors were ligated onto the amplicon library using a
NEBNext® DNA MasterMix for Illumina Kit (KAPA Biosystems,
Wilmington, MA, United States), and sequences were generated
using a MiSeq instrument (2 x 300 cycles: Illumina, San Diego,
CA, United States) at the Kansas State University Integrated
Genomics Facility (Manhattan, KS, United States).

Sequence Processing and Operational

Taxonomic Unit Assignment

Fungal libraries were demultiplexed and the paired-end
sequences processed through the mothur pipeline (v.1.38.1)
(Schloss et al., 2009). As described in Tawidian et al. (2021), data
denoising included filtering out ambiguous bases, mismatches
to primers, and homopolymers longer than 10 bp. In addition,
110,151 chimeric sequences were removed using the VSEARCH
algorithm (Rognes et al., 2016). The remaining 9,374,188
high-quality paired-end sequences were assigned to fungal
taxa using naive Bayesian classifier against the UNITE-curated
International Nucleotide Sequence Database reference database
(Wang et al., 2007; Abarenkov et al., 2010). Paired-end sequences
assigned to Archaea, Plantae, and the protozoan phyla Cercozoa
and Ciliophora were removed from the dataset through sequence
processing in mothur. The filtered fungal sequences were
pairwise aligned to generate a distance matrix that was clustered
into fungal operational taxonomic units (OTUs) at a 97%
similarity threshold using the average neighbor algorithm
(UPGMA) using mothur (v.1.44.3) (Schloss et al., 2009). OTUs
with less than ten sequence reads were considered as low
abundance OTUs and removed from the dataset. In addition,
OTUs assigned as unclassified fungi, unclassified Ascomycota,
and unclassified Basidiomycota were manually cross-checked
using NCBI’s Basic Local Alignment Search Tool (BLAST).!
BLAST revealed 296 non-fungal OTUs that were identified as

Uhttps://blast.ncbi.nlm.nih.gov/Blast.cgi

algae (62.8%), plants (24.7%), protozoa (7.77%), insects (3.7%),
fish (0.67%), and bacteria (0.33%). The non-fungal OTUs were
removed from the dataset prior to downstream data analysis.
Further, OTUs detected in the negative PCR and dissection
controls (279 OTUs accounting for 529,196 reads) were also
removed from the dataset. This resulted in a fungal dataset
consisting of 1,670 OTUs and 695,922 reads for Cx. restuans
samples and 1,543 OTUs, and 698,411 reads for Cx. pipiens
samples (Supplementary Table 1).

The non-rarefied OTU dataset was further filtered prior to
downstream data analysis to exclude all paired mosquito gut
and carcass samples with fewer than 1,034 sequence reads. This
eliminated all mosquito samples from two Cx. restuans breeding
sites (sites 4 and 5), one Cx. pipiens breeding site (site 6), a single
gut and carcass pair from site 2, two pairs of gut and carcass
samples from site 1 and 7, respectively, and three pairs of gut
and carcass samples from site 3. In addition, two Cx. restuans
breeding sites (sites 2 and 5) were co-occupied by three and
two Cx. pipiens mosquito larvae, respectively. The identified Cx.
pipiens larvae were removed from downstream analyses because
of the low sample size. The final dataset used in downstream
analyses included five breeding water samples (three from Cx.
restuans breeding sites and two from Cx. pipiens breeding sites),
21 guts and 21 carcasses of Cx. restuans larvae, and 18 guts and
18 carcasses of Cx. pipiens larvae. In addition, we also rarefied
the data to the sequencing depth equal to the lowest yielding
sample (1,034 sequence reads). Analysis of the rarefied data were
congruent to our analysis of the non-rarefied data (data not
shown). However, subsampling resulted in loss of 92% of the
sequence reads, including the loss of the rare taxa in the samples.

Amplicon Sequence Variant Assignment

We used mothur (v.1.44.3) (Schloss et al., 2009) to compare
the mosquito fungal community composition and assembly
using OTUs and ASVs, while preserving the data denoising
and cleanup performed in the OTU pipeline described above.
For ASV assignment in mothur, pairwise aligned sequences
were pre-clustered at a threshold of two nucleotide differences,
prior to removing chimeric sequences through VSEARCH
(Rognes et al., 2016). Upon removing chimeric sequences,
ASVs were assigned to paired-end sequences using the UNITE-
curated International Nucleotide Sequence Database reference
database (Wang et al., 2007; Abarenkov et al, 2010). Similar
to the OTU assignments, non-fungal ASVs and low abundance
ASVs (accounting for less than ten reads) were removed from
the dataset through the mothur pipeline. In addition, ASVs
associated with the 296 non-fungal OTUs identified using
BLAST were removed from the dataset. The final ASV dataset
consisted of 3,303 ASVs, and 2,080,836 reads for Cx. restuans
samples, and 2,548 ASVs, and 1,518,762 reads for Cx. pipiens
samples (Supplementary Table 2). Similar to OTUs, ASVs were
filtered to exclude all paired mosquito gut and carcass samples
with fewer than 1,034 reads. The additional filtering steps
eliminated the same mosquito samples and breeding sites as
those listed with OTUs. Rarefaction analyses of the fungal ASV's
were saturated for most samples (Supplementary Figure 1B)
consistent with the high Good’s coverage (0.998 % 0.003 SD),
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indicating that the sequencing depth was sufficient to capture
the fungal diversity across most of the samples. Downstream
ASV community analyses were performed as described for the
OTUs. Results of the ASV community analyses are available in
Supplementary Data Sheet 1.

Community and Statistical Analyses

To assess the fungal diversity and richness in breeding water and
mosquito guts and carcasses, alpha diversity indices, including
observed richness (Spps) and Shannon’s diversity (H’) were
iteratively estimated (100 iterations) using mothur (v.1.44.3)
(Schloss et al,, 2009). The diversity indices were compared
using non-parametric Wilcoxon signed-rank tests between paired
mosquito guts and carcasses of each mosquito species separately.
Breeding water samples were not included in the statistical
analyses because of the low sample size after filtering. Wilcoxon
signed-rank tests were performed using the GraphPad Prism
version 8.4.3 for Windows (GraphPad Software, San Diego,
CA, United States).

The Bray-Curtis dissimilarity matrices were computed for
the fungal OTU data to compare and visualize the fungal
community assemblages between the breeding water and
mosquito guts and carcasses using non-metric multidimensional
scaling (NMDS). To determine how much variation in the fungal
community composition was inferred by larval breeding sites
or mosquito tissue type, permutational multivariate analysis of
variance (PERMANOVA) was performed. PERMANOVAs were
performed using the vegan package in R.” In addition, Wilcoxon
signed-rank tests on the Bray-Curtis distances were used to
assess the similarity of the fungal community composition in
the breeding water to each mosquito tissue type. To identify the
fungal OTUs that drive the fungal community variation across
mosquito tissue types, we used the indicator value index (IndVal)
analysis (Dufréne and Legendre, 1997). In addition, the point-
biserial correlation index (rpb) (Caceres and Legendre, 2009)
was used to determine the tissue niche preference of the OTUs
associated with the mosquito guts and carcasses. Both analyses
were performed using the indicspecies package in R with 9,999
permutations (see text footnote 2). Finally, to determine the
ecological guild of the identified OTUs, we assigned them to
ecological guilds as saprophytes, plant pathogens, endophytes,
animal pathogens, lichen parasites, fungal parasites, epiphytes,
and animal endosymbionts using the FUNGuild annotation tool
(Nguyen et al., 2016).

RESULTS

Temporal Prevalence of Culex
Mosquitoes

We identified two Culex mosquito species collected from eight
sites in Manhattan, KS, during 2017 and 2018 (Figure 1). Cx.
restuans mosquito larvae were collected from five larval breeding
sites, one in September 2017 and the remaining four during
May-July 2018 (Table 1). While two Cx. restuans breeding

Zhttp://www.r-project.org/

sites were co-occupied by Cx. pipiens mosquito larvae, the
prevalence of Cx. pipiens larvae was low in the early season.
However, during August-October 2018, Cx. pipiens mosquitoes
were more widespread and collected from three larval breeding
sites (Table 1). These results show that both mosquito species
are widely distributed and may have a largely complementary
temporal pattern of prevalence in Manhattan, KS.

Fungal Community Composition in the
Breeding Water and Mosquito Tissues

To determine the fungal community composition across larval
breeding sites and mosquito tissues, we analyzed the fungal
ITS2 metabarcode markers of breeding water as well as
mosquito gut and carcass samples. Our analyses revealed
1,670 OTUs associated with Cx. restuans samples and 1,543
OTUs with Cx. pipiens samples. Rarefaction analyses indicated
that the fungal OTUs were saturated for most samples
(Supplementary Figure 1A). In addition, the average Good’s
coverage across all samples was high (0.999 + 0.001 SD).
These results indicated that our sampling had sufficient
sequencing depth and coverage to detect the fungal diversity
across the samples.

To determine the fungal community composition across all
samples, we plotted the relative abundances of the identified
OTUs on the phylum and order levels (Figure 2). Twelve
fungal phyla were identified accounting for 74.4% of total
sequence reads. The phylum Ascomycota dominated with
45.8% of the sequences, followed by the phyla Basidiomycota
(24.1%), Chytridiomycota (1.7%), Mucoromycota (1.7%),
and Mortierellomycota (0.47%). A small proportion (0.63%)
of the reads was assigned to seven rare phyla including
Blastocladiomycota, =~ Glomeromycota,  Entorrhizomycota,
Kickxellomycota, Monoblepharomycota, Rozellomycota, and
Zoopagomycota (Figure 2). The remaining 25.6% of the
reads were not classified beyond Fungi but were included in
downstream analyses. In addition, the ascomycetous orders
Pleosporales, Hypocreales, and Eurotiales were dominant and
shared across most breeding water and mosquito samples
(Figure 2). Within the phylum Basidiomycota, the order
Ustilaginales was assigned the highest number of sequence reads
(36.1%) followed by the order Agaricales (11.5%). As for the low
abundance phyla, the majority of the remaining reads (90.5%)
were assigned to the orders Mucorales and Mortierellales within
the phylum Mucoromycota (Figure 2).

Fungal Community Composition in Culex
Mosquito Larvae Is Driven by the Aquatic
Habitat

To identify whether the larval breeding site drives fungal
community assembly in Cx. restuans and Cx. pipiens mosquito
larvae, we analyzed the Bray-Curtis community dissimilarities
for each mosquito species separately. We visualized the
community data using non-metric multidimensional scaling
(NMDS) (Figure 3). We used permutational multivariate
analysis (PERMANOVA) to determine whether fungal
communities were distinct across Cx. restuans and Cx.
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pipiens breeding sites. These analyses revealed distinct
fungal communities across larval breeding sites. In addition,
PERMANOVA analysis showed significant differences in
mosquito-associated fungal communities across larval breeding
sites, suggesting that the aquatic breeding environment
is a major driver of fungal community assembly in
the larvae of both mosquito species (Figures 3A,B). In
addition, fungal communities differed in composition
across guts and carcasses of Cx. pipiens mosquito larvae

with no evidence of tissue specificity in Cx. restuans larvae
(Figures 3A,B).

Fungal Diversity Varies Across Mosquito

Tissue Types

To identify whether fungal communities varied across mosquito
tissues within each breeding site, we visualized the Bray-
Curtis distances from individual guts and carcasses using
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FIGURE 3 | Non-metric Multidimensional Scaling (NMDS) ordination of the Bray-Curtis dissimilarity distances across larval breeding water and mosquito guts and
carcasses. (A) NMDS of Bray-Curtis dissimilarity distances across Cx. restuans breeding water and guts and carcasses. (B) NMDS of Bray-Curtis dissimilarity
distances across Cx. pipiens breeding water and guts and carcasses. The keys at the top left of each plot indicate the color designated to each larval breeding site,
while the keys at the bottom left designate the shapes associated with each sample type. Samples cluster significantly by site as presented by the PERMANOVA
results at the top right of each plot. Samples also cluster by tissue type as indicated by the PERMANOVA results at the bottom right of each plot.
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FIGURE 4 | Bray-Curtis dissimilarity distances of fungal communities from the breeding water to larval guts vs. larval carcasses across all breeding sites.
(A) Bray-Curtis distances for Cx. restuans guts and carcasses. (B) Bray-Curtis distances for Cx. pipiens guts and carcasses. Connecting lines shows matched
individual mosquito gut and carcass samples. Statistical significance is inferred by a Wilcoxon signed-rank test.

NMDS (Supplementary Figure 2A) and compared them using  also evident when we plotted the paired Bray-Curtis dissimilarity
PERMANOVAs. Our results revealed significant differences in  distances from the breeding water to guts and breeding water
fungal community composition among guts and carcasses for one  to carcasses for each mosquito species across all breeding sites
of three Cx. restuans and two Cx. pipiens breeding sites. This was  (Figure 4). The results revealed that larval guts were more

Frontiers in Ecology and Evolution | www.frontiersin.org 7 July 2022 | Volume 10 | Article 911085


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Tawidian et al.

Fungal Communities in Culex Mosquitoes

similar to the breeding water than the paired carcasses, indicating
that mosquito guts had fungal communities more similar to
the breeding water than the carcasses did. While this pattern
was evident for both mosquito species when analyzed across
all breeding sites, within individual breeding sites, the fungal
communities in Cx. restuans larval guts and carcasses did not
significantly differ in their distance to the breeding water. This
is likely because the distances between the guts and breeding
water varied widely among sites in Cx. restuans larvae. This
variability was not observed in the Cx. pipiens gut to breeding
water distances (Supplementary Figure 2B).

In addition, our diversity analyses revealed variation in the
fungal OTU richness (Spps) and diversity (Shannon’s H’) diversity
across mosquito guts and carcasses (Figure 5). In Cx. restuans
larvae, OTU richness was significantly higher in guts than in
carcasses (Figure 5A), whereas Shannon’s diversity did not differ
among mosquito tissues (Figure 5B). As for Cx. pipiens larvae,
OTU richness as well as Shannon’s diversity were significantly
higher in guts than carcasses (Figures 5C,D). While these
results indicate differences in fungal community composition and
diversity across guts and carcasses of both mosquito species, the
observed tissue specificity was more evident in Cx. pipiens than
in Cx. restuans larvae.

Tissue-Specific Indicator Fungi Reflect
Mosquito Feeding Behavior and Fungal

Niche Preference

To identify the OTUs that drive tissue-specific patterns in fungal
community assembly in Cx. restuans and Cx. pipiens mosquito
larvae, we used indicator taxon analyses using the indicator value
index (IndVal) (Figure 6 and Supplementary Table 3). We then
used the FUNGuild annotation tool to assign the identified OTUs
to ecological guilds. Three OTUs were identified as Cx. restuans
gut indicators, whereas none were identified as indicators of
carcasses (Figure 6A and Supplementary Table 3A). Two of
three identified OTUs were assigned to unique ecological guilds
(endophyte and fungal parasite). The third remaining OTU could
not be assigned to an ecological guild. However, Cx. pipiens larval
guts had higher number of indicators than Cx. restuans larvae.
IndVal analysis identified 19 Cx. pipiens gut indicator OTUs
(Figure 6B and Supplementary Table 3A), whereas carcasses
were not assigned any indicators. The identified gut indicators
OTUs were assigned to five ecological guilds [saprophyte (50%),
plant pathogen (22.7%), endophyte (9.1%), animal pathogen
(4.5%), and epiphyte (4.5%)] (Figure 6B and Supplementary
Table 3A). The remaining 14.8% of indicator OTUs were not
assigned to ecological guilds.

Finally, we used the point-biserial correlation index ()
to determine the role of fungal niche preference on fungal
community assembly across mosquito tissue types (Figure 6
and Supplementary Table 3B). Our results revealed three OTUs
differentially abundant in Cx. restuans guts, all of which were also
gut indicators (Figure 6C and Supplementary Table 3B). As for
Cx. pipiens larvae, 14 OTUs were significantly associated with gut
samples assigned to the ecological guilds [saprophyte (58.8%),
plant pathogen (11.8%), endophyte (5.9%), animal pathogen

(5.9%), and epiphyte (1.2%)] (Figure 6D and Supplementary
Table 3D). The remaining 11.8% of OTUs were not assigned
to ecological guilds. The r,, analyses did not identify any
OTUs as significantly associated with the carcasses of either
mosquito species.

DISCUSSION

This study provides fundamental insight into the composition
and diversity of fungal communities associated with Cx. restuans
and Cx. pipiens mosquito larvae. In addition, we determine
whether the observed fungal community assembly in mosquito
larvae were similar across mosquito species. Overall, our OTU
and ASV data demonstrate that the breeding site was the major
determinant of fungal community assembly in the larvae of both
mosquito species. In addition, we observed tissue-specific fungal
community assembly in larval guts and carcasses. However,
variation in fungal diversity and composition across mosquito
tissues was more evident in Cx. pipiens larvae compared to
Cx. restuans.

The fungal community associated with larval breeding water
and mosquito guts and carcasses was dominated by the phyla
Ascomycota and Basidiomycota, consistent with data reported
in Ae. albopictus mosquito larvae collected in Manhattan, KS
(Tawidian et al., 2021) and Aedes mosquito adults and larvae
collected from the field (Muturi et al., 2016; Luis et al., 2019;
Zouache et al., 2022). The observed phylum dominance was
not surprising given the high prevalence of fungi in the phyla
Ascomycota and Basidiomycota in habitats where mosquito
larvae reside (Shelomi, 2019; Tawidian et al, 2021; Udujih
Obinna Godwin et al., 2021; Zouache et al., 2022). In addition, it
can also be attributed to the amplification bias of the ITS2 primers
(fITS7 and ITS4) toward fungi belonging to these phyla with low
affinity for early-diverging fungal lineages, e.g., including taxa in
the Chytridiomycota (Bellemain et al., 2010; Blaalid et al., 2013;
Bokulich and Mills, 2013).

The filamentous fungi and yeasts largely overlapped (42.6%)
in Cx. restuans and Cx. pipiens mosquito larvae. The majority
(96.4%) of fungal genera that overlapped across both Culex
species were ascomycetes (68.7%) and basidiomycetes (27.7%).
Similarly, an overlap of fungal genera (17.3%) was also observed
between our Culex datasets and fungi detected by similar
metabarcode sequencing of larval Ae. albopictus tissues (Tawidian
et al., 2021). This overlap (95.9%) was also largely attributable
to ascomycetes and basidiomycetes. In addition, a considerable
proportion of fungi (62.9% genus level and 15.1% species level)
isolated from field collected mosquito larvae, including Cx.
pipiens were also identified in our dataset (Badran and Aly, 1995;
Pereira et al., 2009; Steyn et al., 2016). The observed overlap
of ascomycetes and basidiomycetes across larvae of different
mosquito species can be explained by the ubiquity and co-
occurrence of these taxa in freshwater ecosystems (Manohar
and Raghukumar, 2013; Panzer et al., 2015; Lepere et al., 2019;
Shelomi, 2019; Tawidian et al., 2021).

The overall goal of this study was to determine whether
the drivers of fungal community assembly in mosquito larvae
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can be generalized across mosquito species. Our results show
that fungal community assembly in Culex mosquito larvae
is driven by the breeding site. This result corroborates our
previous study assessing the fungal community assembly in
Ae. albopictus larvae (Tawidian et al., 2021). Similarly, bacterial
diversity in mosquito larvae also reflects that of breeding
water, as reported for several species of field-collected mosquito
larvae, including Ae. japonicus, Ae. triseriatus, Ae. aegypti, Ae.
albopictus, Anopheles albimanus, An. coluzzii, Anopheles darlingi,
Anopheles nuneztovari, Culex tharsalis, Cx. quinquefasciatus, and
Cx. restuans (Duguma et al., 2013; Gimonneau et al., 2014; Kim
et al., 2015; Coon et al., 2016; Bascufian et al., 2018; Galeano-
Castafieda et al., 2020; Scolari et al., 2021). To our knowledge, this
is the first study that assesses the fungal community composition
and diversity in field-collected Cx. restuans and Cx. pipiens
mosquito larvae and their breeding water. We acknowledge that
direct comparisons of fungal communities of Cx. restuans and
Cx. pipiens larvae in our study are not possible, because the two
species did not co-inhabit the larval breeding sites we sampled.
However, we show that the fungal communities of both Cx.
restuans and Cx. pipiens larvae cluster largely by site. Thus, these
data provide support that the larval aquatic habitat is a major
determinant of fungal community assembly in the larvae of both
Culex species.

Our results further show variation in fungal community
composition in the guts and carcasses of Culex mosquito larvae.
While the fungal communities in the guts of Culex larvae were
more similar to those in the breeding water than the carcasses,
this pattern was more consistent in Cx. pipiens guts compared
to Cx. restuans. The similarity of gut fungal community to that
of the water can be attributed to the filter-feeding behavior of
Culex larvae, which allows for the acquisition of fungi from the
environment (Merritt et al., 1992). However, while similar, the
gut fungal community of neither mosquito species was identical
to that of the breeding water. This may be attributed to grazing
behavior of Culex larvae on decaying plant detritus found in the
aquatic habitat, in addition to the filter feeding behavior in the
water column (Merritt et al., 1992; Yee et al., 2004; Winters and
Yee, 2012). This notion is supported by the result of the Cx.
pipiens indicator taxon analysis, in which the gut indicators were
enriched with saprophytes, plant pathogens, and endophytes.
These indicator taxa included obligate plant pathogens (family
Ustilaginaceae or the rust diseases) and other plant pathogens,
such as Gibberella tricincta (Desjardins, 2003; Geiser et al., 2014).
These results corroborate earlier studies with Ae. albopictus
larvae, in which the same taxa were indicators for the larval
guts (Tawidian et al, 2021). Combined, these results suggest
similar feeding behaviors of Cx. pipiens and Ae. albopictus larvae,
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and support earlier observations by Yee et al. (2004). Our
indicator taxon analyses further showed that Cx. restuans guts
were less enriched with plant-associated fungi and had lower
OTU richness than Cx. pipiens guts, irrespective of the greater
sample size. This suggests that Cx. restuans larvae fed less
on plant detritus than Cx. pipiens larvae do, resulting in the
observed differences in the gut fungal communities. These results
corroborate reports on Cx. restuans feeding behavior (Winters
and Yee, 2012), suggesting that Cx. restuans larvae affect detrital
decay less than Ae. albopictus larvae.

In comparison, carcasses of both mosquito species had
lower fungal diversity and richness than guts and breeding
water. In contrast to the Ae. albopictus dataset (Tawidian
et al, 2021), indicator species analysis did not reveal
entomopathogenic/entomotoxigenic fungi associated with the
carcasses of either Culex species. This is perhaps not surprising,
given the low abundance of known entomopathogens in larval
breeding environments. However, analysis of the ASV dataset
identified Alternaria tenuissima (ASV1048) as significantly
enriched in Cx. pipiens carcasses. While there is no evidence of
entomopathogenicity or entomotoxicity of A. tenuissima toward
mosquito larvae, one study has reported the entomotoxicity of
A. tenuissima extracts toward larvae of Galleria mellonella and
adult Acheta domesticus (Salimova et al., 2021). Interestingly, a
fungus within the genus, Alternaria porri was enriched in Ae.
albopictus carcasses (Tawidian et al., 2021), and causes mortality
in green apple aphids and lowers hatch rates of European corn
borer eggs (Lynch and Lewis, 1978; Sarhan and Baji, 2009).
A. tenuissima was also detected in the breeding water and guts
of Cx. pipiens larvae, suggesting that this fungus is ingested and
may disseminate from the gut into the larval body cavity. Future
studies are necessary to determine the entomopathogenic and/or
entomotoxigenic potential of A. tenuissima in mosquito larvae.

In conclusion, the present study provides the first
comprehensive  description of the fungal community
composition and assembly in Cx. restuans and Cx. pipiens
mosquito larvae. Our results show that the fungal community
assembly remains generally similar between the two Culex
species, and suggests that the observed variation is likely due
to differences in larval feeding behavior. We show that the larval
breeding site is the key driver of fungal community assembly
in mosquito larvae. We further show that mosquito feeding
behavior and fungal mode of nutrition contribute to differences
in fungal community assembly across mosquito tissues. However,
the observed tissue preference was more evident in Cx. pipiens
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