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Ecological niche models (ENMs) have become a practical and key mechanism

for filling major gaps in spatial information for targeted conservation

planning, particularly when only occurrence data are available. Nonetheless,

accounting for abundance patterns in the internal structure of species’

ranges, and the role of biotic interactions in such models across broadscale,

remains highly challenging. Our study gathered baseline information on

abundance data of two Endangered Amazonian primates (Ateles chamek

and Lagothrix lagotricha cana) to create geospatial abundance models

using two spatial interpolation methods: Inverse distance weight (IDW) and

Ordinary kriging (OK). The main goals were to: (i) test whether geospatial

abundance models are correlated with habitat suitability derived from

correlative ENMs; (ii) compare the strength of the abundance-suitability

relationships between original and interpolated abundances; (iii) test whether

interspecific competition between the two target taxa constrained abundance

over broad spatial scales; and (iv) create ensemble models incorporating

both habitat suitability and abundance to identify high-priority areas for

conservation. We found a significant positive relationship between habitat

suitability with observed and predicted abundances of woolly (L. l. cana) and

spider (A. chamek) monkeys. Abundance-suitability correlations showed no

significant differences when using original relative abundances compared

to using interpolated abundances. We also found that the association

between L. l. cana abundance and habitat suitability depended on the

abundance of its putative competitor species, A. chamek. Our final models

combining geospatial abundance information with ENMs were able to provide

more realistic assessments of hotspots for conservation, especially when

accounting for the important, but often neglected, role of interspecific
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competition in shaping species’ geographic ranges at broader scales. The

framework developed here, including general trends in abundance patterns

and suitability information, can be used as a surrogate to identify high-

priority areas for conservation of poorly known species across their entire

geographic ranges.

KEYWORDS

abundance, Ateles chamek, biotic interactions, conservation prioritization, habitat
suitability, Lagothrix lagotricha cana, spatial interpolation

Introduction

Ecological niche models (ENMs; also referred to as species
distribution or habitat suitability models) have become a
practical and important mechanism for filling major gaps in
spatial information for targeted conservation planning (Zurell
et al., 2021), particularly when only occurrence data are available
(Phillips et al., 2006; Sillero et al., 2021; Valavi et al., 2021). ENMs
relate geo-referenced species observations to environmental
variables to estimate suitable habitats in a geographical space,
providing hypothesis for the geographic distributions of the
species (Sillero et al., 2021). Although ENMs have proven
useful to adequately describe the geographic distribution of
species, their capacity to inform about the abundance patterns
in the internal structure of species’ ranges remains an unsolved
problem (Weber et al., 2017; Dallas and Hastings, 2018;
Jiménez-Valverde et al., 2021; Lee-Yaw et al., 2021). Therefore,
incorporating species abundance information across broad
spatial scales is a fundamental step toward effective conservation
and management of species.

Abundance is not evenly distributed across space. It is
expected that most species occur at low abundances in most of
their range, and are highly abundant in relatively few locations
(Brown et al., 1995). These patterns reflect population responses
to local conditions in which the species meet its ecological
requirements (de la Fuente et al., 2021). Another classical
assumption of abundance distribution is that abundance
variation is spatially autocorrelated, so that the probability of
sites having similar abundance values is an inverse function of
the distance between them (Brown et al., 1995). This is in line
with the foundation of Tobler’s first law of geography (Tobler,
1970), which poses that “everything is related to everything
else, but near things are more related than distant things.” This
fundamental spatial dependence and autocorrelation concepts
lies at the heart of methods of spatial interpolation (Li and Heap,
2008, 2011, 2014).

Spatial interpolation is the process of mapping a variable
of interest at unsampled locations using the values present in a
sampled set of known locations to generate spatially continuous

surfaces (see Li and Heap, 2014 for topic review). Conservation
scientists, policymakers and environmental managers usually
require such kinds of spatially explicitly data to make
effective and confident decisions over a region of conservation
concern. Consequently, geostatistical techniques have been
widely disseminated in different disciplines (e.g., mining
engineering, soil sciences, anthropology: Li and Heap, 2008;
Relethford, 2008; Li and Heap, 2014). Spatial interpolation
has been used for characterizing the spatial distribution and
mapping soil gradients and properties (e.g., Robinson and
Metternicht, 2006; Zuquim et al., 2019), generating climate
surfaces of precipitation and temperature (e.g., Tan et al.,
2021), and mapping epidemic vectors and diseases (e.g.,
Zhou et al., 2021). In ecological studies, they have also
been applied, for example, to map temporal changes in
live coral cover (Walker et al., 2012), predict forest stem
volume (Wallerman et al., 2002), or to characterize the
spatial structure of vegetation communities (Wallace et al.,
2000). However, the use of interpolation methods for spatial
conservation prioritization and abundance predictions has been
considerably scarcer, especially for Amazonian data-deficient
species.

Black faced black spider monkeys (Ateles chamek) and
the gray woolly monkeys (Lagothrix lagotricha cana) are
two Endangered Amazonian primate taxa with just such
abundance-data limitations, and at a number of scales (Alves
et al., 2021; Cornejo et al., 2021). These two taxa are
members of the subfamily Atelinae (Platyrrhini, Atelidae).
They are considered to be keystone dispersers, providing
invaluable ecosystem services (Peres et al., 2016; Sales
et al., 2020). The extirpation of such large-bodied forest-
dwelling animals from ecosystems could critically alter long-
term forest dynamics and maintenance of above-ground
biomass and carbon storage (Peres et al., 2016). It is
estimated that Ateles spp. and Lagothrix spp. (spider and
woolly monkeys, respectively) shared a common ancestor
approximately 10–11 mya (Di Fiore et al., 2014). They are
highly frugivorous taxa, have large home ranges that can
reach up to 1,021 hectares, and are the most large-bodied
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genera within the Amazonian forests (Di Fiore and Campbell,
2007). Consequently, it has been suggested that a complex
combination of ecological forces (e.g., regional and local
variation in the degree of interspecific competition), historical
biogeographical process (e.g., dispersal factors), and local
hunting pressure have been shaping the current distributions
of these species (Peres, 1990, 1991; Iwanaga and Ferrari,
2002; Peres et al., 2016; Rabelo et al., 2018; Cavalcante et al.,
2020).

Ateles chamek has a broader distribution range that extends
south, north and west of the Solimões and Japurá rivers, while
L. l. cana is limited by the Guaporé River valley to an area
between the Brazilian states of Mato Grosso and Rondônia
(Iwanaga and Ferrari, 2002; Rabelo et al., 2018; Cavalcante
et al., 2020). The geographic distribution of L. l. cana is
entirely embedded within the range of A. chamek. This extensive
sympatric area (1,791,200 km2) falls within the southwestern
Brazilian Amazon, a region that has been called the “arc of
deforestation” due to habitat loss and ongoing deforestation
(Michalski et al., 2008; Trancoso, 2021). Therefore, identifying
high-priority areas for conservation of these taxa across their
geographic distributions can help to protect other forest-
dwelling species, so reducing the rate of overall Amazonian
biodiversity loss.

Our study gathered baseline information on abundance
data of two Endangered Amazonian primates (Ateles chamek
and Lagothrix lagotricha cana.) to create geospatial abundance
models and assess abundance patterns across the entire
range of each taxon. The main goals of this study were to:
(i) test whether geospatial abundance models are correlated
with habitat suitability derived from correlative ENMs;
(ii) test whether interspecific competition between the two
target taxa constrained abundance over broad spatial scales;
(iii) compare the strength of the abundance-suitability
relationships between original and interpolated abundances;
and (iv) create ensemble models incorporating both habitat
suitability and abundance to identify high-priority areas
for conservation.

We hypothesized that geospatial abundance models
are positively correlated with habitat suitability derived
from ENMs, and that interspecific competition between
our two target taxa will be an important factor in limiting
their abundances across their geographic distributions.
We predicted a negative correlation between A. chamek
and L. l. cana abundances due to their close relatedness,
comparable body sizes, specialization on ripe fruits as
the principal diet component, and other similarities in
their feeding ecology and ecological niche requirements
(Iwanaga and Ferrari, 2001, 2002; Cavalcante et al., 2020).
Finally, we expected that there would be no difference in the
correlation strengths between geospatial abundance models
and original abundance estimates with habitat suitability, which
would support the viability of using geospatial abundance

and ENMs as a surrogate to identify high-priority areas
for conservation of poorly known species across their
geographic distributions.

Materials and methods

Relative abundance and ecological
niche models

Our study area lies within the Amazon forests of Brazil, Peru
and Bolivia (2◦S, 55◦W and 15◦S, 75◦W), and covers the whole
geographic distribution of the two target taxa. We gathered 77
geo-referenced abundance records from the literature for the
two taxa of Amazon atelins. Our abundance dataset comprises
18 different studies addressing community structure and species
diversity of primates and other mammals that spanned from
1983 to 2018 across different habitat types in all three countries
where both taxa occur (Figure 1 and Supplementary Table 1).
To avoid bias in abundance estimation, we selected abundance
data only from those studies using standard line transect surveys
(see Brockelman and Ali, 1987; Peres, 1999). This standard
sampling protocol documents encounter rates (sightings per
10 km surveyed), which are commonly used as indices of relative
abundance for diurnal mammals (Scheel, 1993; Iwanaga and
Ferrari, 2002; Gray et al., 2016). Abundance gathered from
the selected studies varied from 0 (i.e., local absence) to 7.97
sightings per 10 km (mean = 0.78 ± SD 1.43), indicating that
the selected studies were not biased to areas with known high
primate abundance.

Ecological niche models used in this study were previously
constructed by Rabelo et al. (2018) and Cavalcante et al.
(2020) using spatially explicit variables that could reasonably
be expected to influence a primate species’ distribution
(see Supplementary Material). These variables consisted of
climatic, topographic, edaphic, and vegetation layers. The
estimated area of occupancy for A. chamek was 927,754 km2.
Temperature seasonality, net primary productivity and potential
evapotranspiration were the most important variables in the
final model (Rabelo et al., 2018). Suitable habitats for the species
are distributed in the Amazonas-Javary interfluvial region in
Peru, and along the Lower-Jutaí and Juruá rivers in Brazil. The
estimated area of occupancy for L. l. cana was 412,250 km2. The
most important variables in the final model were mean annual
temperature, temperature seasonality, occurrence of arenosols,
and a layer of habitat suitability for A. chamek as a biotic
predictor variable (Cavalcante et al., 2020). A wide area with
high habitat suitability for L. l. cana is located within the
southwestern Brazilian Amazonia, and also in the Amazonas-
Javary interfluvial region in Peru. The two taxa show a high
proportion of habitat suitability overlap (Cavalcante et al., 2020),
due to similar ecological niche requirements (Iwanaga and
Ferrari, 2001, 2002; Cavalcante et al., 2020).
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FIGURE 1

Habitat suitability from previously published ecological niche
models (Rabelo et al., 2018; Cavalcante et al., 2020), and
distribution of geo-referenced abundance records for gray
woolly monkeys (Lagothrix lagotricha cana) and black-faced
black spider monkeys (Ateles chamek).

Spatial interpolation analyses

We plotted all geo-referenced abundance records for each
taxon into a GIS environment and created a polygon layer by
drawing the boundaries using the previously published ENMs
(Rabelo et al., 2018; Cavalcante et al., 2020). We then created
a grid of 0.09◦ × 0.09◦ latitude-longitude cells to interpolate
species abundance. The spatially referenced original abundance
estimates data were used to interpolate the abundances across
their geographic ranges, producing spatially explicit predictions
of species abundance.

We created the geospatial abundance models using Inverse
distance weight (IDW) and Ordinary kriging (OK). Both
methods are based on the principle of spatial autocorrelation
where the greater the distance, the less influence the cell
has on the interpolated values, while closer cells have greater
influence (Li and Heap, 2011). IDW is a simpler method which
uses arbitrary exponential weighting according to distance
(Watson and Philip, 1985), while OK is a more powerful
and sophisticated statistical method that takes into account
spatial autocorrelation of the data to assign interpolation
weights based on automated variogram modeling (Pebesma
et al., 2011). This later method is a reliable and highly
recommended univariate method with unbiased estimates that

minimize prediction errors with relatively low variances (Laslett
et al., 1987; Oliver and Webster, 1990; Li and Heap, 2011).
We used these two different methods because (i) they are
suitable for irregularly spaced samples (Li and Heap, 2014),
as in our training dataset and (ii) we intended to combine
methods from different families [geostatistical (OK) and simpler
non-geostatistical methodologies (IDW)] to overcome inherent
biases from each individual model. Both spatial interpolation
methods were implemented in ArcGIS 10.5 using the default
parameter settings. Specifically, for IDW, we used a weighting
power of two and for OK, we used spherical semivariogram
for modeling the distance decay and infer lag, nugget and
sill (Meek and Sauer, 2003; Fletcher and Fortin, 2018). More
details about the OK variograms and fitted models are available
in Supplementary Figure 1. Abundances predicted by the
IDW and OK technique will be hereafter referred to as IDW-
abundance and OK-abundance, respectively.

Correlation tests and comparisons

We tested the association between habitat suitability derived
from the two previous published ENMs (Rabelo et al., 2018;
Cavalcante et al., 2020) with the original relative abundance,
and IDW- and OK-abundances using Pearson product-moment
correlation. We aimed to determine if a significant positive
relationship existed between predicted habitat suitability and
predicted and original local relative abundance. Correlation
methods are widely used to measure the relationship between
abundance and habitat suitability derived from occurrence
data (see Weber et al., 2017 for an overview). We explored
other correlation coefficients that do not assume linearity (e.g.,
Spearman’s rs and Kendall’s tau) during data exploration but
Pearson’s r provided the best fit for the correlations between
abundance and suitability. We log-transformed [log(x + 1)]
abundance data to match Pearson’s correlation assumptions.

We compared the ENMs to the original relative abundance
data by extracting the values of predicted habitat suitability in
the geo-referenced abundance points. We excluded localities
with small sampling effort (i.e., <35 km of line transects
surveyed, N = 11), as localities with less accurate abundance
data may hide or weaken the abundance-suitability correlation
(see for discussion Weber et al., 2017), especially because
such possible outliers may have undesirable effects on Pearson
correlation coefficient estimates (Schober et al., 2018). In case
of the predicted abundances, we sampled 1,000 random points
across the complete range within the extents of occurrence of
both taxa to extract the values of predicted habitat suitability
and predicted relative abundance for each taxon. We performed
a randomization approach for spatial thinning using the “thin”
function in the R package spThin (Aiello-Lammens et al., 2015)
to avoid the clustering of random points in geographic space.
This function returns a dataset with the maximum number
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of records for a given thinning distance. We used 30 km as
the filter distance, following the largest control radius used in
previous ENMs for the taxa of this study (Rabelo et al., 2018).
The thinning process resulted in a sample of 597 random points
for L. l. cana, and 751 random points for A. chamek.

We performed a set of tests of significance to compare
the magnitude and strength between the correlations with the
purpose of testing whether the associations differed when using
original and predicted abundances. First, we compared the
correlations between the original relative abundance and habitat
suitability vs. the correlation between the IDW-abundance and
habitat suitability. Second, we compared the same original
relative abundance correlation vs. the correlation between
the OK-abundance and habitat suitability. To ensure a valid
and interpretable comparison, we directly contrasted the two
correlations under investigation using Fisher’s z and Zou’s
confidence interval (Zou, 2007) within the R package cocor,
version 1.1-0 (Diedenhofen and Musch, 2015). Fisher’s z is
commonly used to test the significance of the difference between
two correlation coefficients, while Zou’s test considers the
magnitude and precision of an estimated effect. The latter test
is based on the computation of confidence intervals, which is
considered to be superior to significance tests used by most
of the other available approaches (Olkin and Finn, 1990; Zou,
2007; Diedenhofen and Musch, 2015). Since we expected no
differences between the correlations and no a priori expectation
of directionality, we used a two-tailed test of significance.
Statistical difference is assigned for Fisher’s z test when P < 0.05
and Zou’s (2007) confidence intervals are considered significant
different when there is no overlap with zero. A null hypothesis
is retained when confidence intervals overlap zero.

Broadscale interspecific competition
hypothesis

To assess the role of broadscale interspecific competition, we
tested if abundance variation is related to an interaction between
habitat suitability and a putative interspecific competition
between the two target taxa (see Braz et al., 2020; Cavalcante
et al., 2020). After validating the geospatial abundance models
using the tests of correlation and strength of association, we
decided to use the modeled abundances to test the competition
hypothesis because it was possible to make use of a large and
well distributed random sample of locations within the area
of sympatry of the two target taxa, providing a robust test;
an approach that would not be possible using the original
compiled abundance data. We used only the OK-abundances
because they showed the strongest relationship with habitat
suitability (see results below). For this purpose, we sampled
1,000 random points within the area of sympatry of the two
target taxa. We applied the same thinning process used for the
correlation tests. We extracted the values of predicted habitat

suitability and predicted abundance from 607 random points
to fit a generalized linear model (GLM) using the glmmTMB
package (Brooks et al., 2017). To build the model, we used
L. l. cana OK-abundance as the response variable, and habitat
suitability and A. chamek OK-abundance extracted at the same
localities as predictor variables. We decided to assess the effect of
competition for only one of the two taxa because the geographic
distribution of L. l. cana is entirely embedded within the range
of A. chamek. Thus, the geographic distribution of L. l. cana is
our main area of interest (i.e., their sympatric area).

We fitted the models with untransformed abundance data
using a Tweedie error distribution with a logarithmic link
function to compensate for overdispersion and to handling the
zero data in our abundance models (Supplementary Figure 2;
Tweedie, 1984; Dunn and Smyth, 2005). For the hypothesis
testing, we compared full vs. null models using analysis of
variance (ANOVA) with a chi-square test. For the full model,
we used the fixed effects with an interaction term (i.e., habitat
suitability∗A. chamek OK-abundance). We tested the final
model performance by checking residual diagnostics using
the R package DHARMa (Hartig and Lohse, 2020). We used
cross-sectional plots in the R package visreg (Breheny and
Burchett, 2017) to visualize and identify the directionality of the
interaction between habitat suitability and the abundance of the
putative competitor. For this purpose, we took cross-sections
at the 10, 50, and 90th percentiles of habitat suitability. Finally,
given that we tested our hypothesis by comparing the full vs. null
models and by testing the significance of the interaction term,
we did not perform a post-hoc analysis to identify the individual
effects of low, medium, and high habitat suitability.

Final ensemble models

To combine the ecological niche and geospatial abundance
models, the output from each model’s predictions (i.e., habitat
suitability, IDW-abundance, and OK-abundance) were united
in an ensemble model, which is an effective approach to
overcome any biases inherent to each individual model (Araújo
and New, 2007; Anderson et al., 2017; Abrahms et al., 2019;
Brodie et al., 2020). The two abundance models (IDW- and
OK-abundance) were rescaled between zero and one to match
the habitat suitability models. Ensemble projections were then
created using the averaged index across all three models, which
provides a robust consensus output of an abundance-informed
ENM, where one represents greatest abundance-suitability and
agreement among the models.

Finally, to identify high-priority areas for conservation of
the two target taxa accounting for the broadscale interspecific
competition between them, we binarized the ensemble models
(L. l. cana: 0 and 1; A. chamek: 0 and 2; where 1 and 2
represent suitable-abundant areas) by setting a threshold of
abundance-suitability. For this purpose, we used the threshold
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that has maximum sensitivity (i.e., the proportion of observed
presences predicted as such) and specificity (i.e., the proportion
of correctly predicted absences) in the original ENMs (Rabelo
et al., 2018; Cavalcante et al., 2020), which were considered as
the species’ area of occupancy (sensu IUCN: Alves et al., 2021;
Cornejo et al., 2021). We then summed the binarized maps
to represent how suitable-abundant areas for each taxon alone
(values of 1 or 2) and coincident suitable-abundant areas (values
of 3) were distributed.

Results

Our abundance dataset based on 18 studies and 77 geo-
referenced records resulted in a mean sighting rate for L. l.
cana of 0.36 sightings per 10 km surveyed (SD = 0.69,
range = 0–3.20). Overall, A. chamek had a higher mean sighting
rate (mean = 1.19 ± SD 1.80, range = 0–7.97). The areas
with higher abundances predicted by the IDW- and OK-
abundance models for L. l. cana were mostly distributed in
the south and northeastern Amazonia, especially in Brazil,
while A. chamek had areas with higher abundances extending
toward the southwestern edges of the Amazon basin (Figure 2).
The IDW-abundance predicted density estimates for L. l.
cana ranged from 0 to 2.99 individuals per ∼10 km2 and
from 0 to 1.14 per ∼10 km2 in the OK-abundance. The
mean predicted density estimated for L. l. cana by IDW were
slightly smaller than OK mean estimates (mean = 0.40 ± SD
0.36 and mean = 0.42 ± SD 0.31 individuals per ∼10 km2,
respectively). The IDW-abundance predicted density estimates
for A. chamek ranged from 6.05 to 7.83 individuals per
∼10 km2 and from 4.54 to 4.72 per ∼10 km2 with OK-
abundance. The mean predicted density estimated for A. chamek
by IDW was also slightly smaller than OK mean estimates
(mean = 1.24± SD 1.25 and mean = 1.29± SD 1.13 individuals
per∼10 km2, respectively).

Regarding the abundance-suitability relationships, we found
a significant positive relationship between habitat suitability
and predicted and original abundances in all cases evaluated
(Table 1 and Figure 3). We observed a relatively low correlation
coefficient (r < 0.30) in the correlations using IDW-abundances
and in the OK-abundance model for A. chamek. The strongest
relationship between original relative abundance and habitat
suitability was observed for L. l. cana. Between the geospatial
abundance models, OK-abundances have strongest correlations
with habitat suitability.

For the differences in magnitude and significance of the
relationships between the correlations, the null hypothesis was
retained in all cases in the two types of tests (Fisher’s z
and Zou’s test; Table 2). Therefore, we found no significant
differences between the correlations of the original relative
abundances and IDW- and OK-abundances. For both taxa,
the abundance-informed ENMs generated more conservative

FIGURE 2

Predicted density estimates generated by Inverse distance
weighting (IDW) and Ordinary kriging (OK) for gray woolly
monkeys (Lagothrix lagotricha cana) and black-faced black
spider monkeys (Ateles chamek) across their entire geographic
ranges.

values with smaller concentrated areas of greatest abundance-
suitability in comparison to the original ENMs (Figure 4).

We finally found that the full model (with the interaction
term) predicting L. l. cana OK-abundance performed
significantly better than the null model (ANOVA: χ2 = 320.45,
df = 3, P < 0.005), supporting our hypothesis of broadscale
interspecific competition (Figure 5). Additionally, we found
a significant interaction term in the full model indicating
that the association between L. l. cana abundance and habitat
suitability also depends on the abundance of its putative
competitor species (see Supplementary Table 2 for GLM
summary statistics). Our final reclassified map also reinforces
the broadscale competition hypothesis showing a pervasive
pattern of spatial segregation within the area of sympatry of the
two target taxa (Figure 6).

Discussion

This study presents an innovative approach to identify
important areas for conservation taking as examples two
threatened sympatric Amazonian lowland primate species. By
incorporating abundance information in ENMs and, especially,
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TABLE 1 Pearson’s correlation coefficients between habitat suitability and log-transformed abundance data for gray woolly monkeys (Lagotrhix
lagotricha cana) and black-faced black spider monkeys (Ateles chamek).

Observed and predicted abundances Habitat suitability

Lagothrix l. cana Ateles chamek

Original relative abundance 0.39** N = 53 0.36** N = 66

IDW-abundance 0.25** N = 597 0.21** N = 715

OK-abundance 0.33** N = 597 0.25** N = 715

Modeled abundances were interpolated using Inverse distance weighting (IDW) and ordinary kriging (OK).
**Significant at P < 0.005.

TABLE 2 Differences between the abundance-suitability correlations when using original relative abundances compared to using Inverse distance
weighting (IDW) and Ordinary kriging (OK) for gray woolly monkeys (Lagotrhix lagotricha cana) and black-faced black spider monkeys
(Ateles chamek).

Observed abundance x ENM

Zou’s (CI) Fisher’s z

95% CI Z P

Lagothrix lagotricha cana IDW× ENM −0.1278 0.3597 1.0531 0.2923

OK× ENM −0.2048 0.2805 0.4734 0.6359

Ateles chamek IDW ENM −0.0762 0.3440 1.3177 0.1876

OK× ENM −0.1120 0.3074 1.0070 0.3139

FIGURE 3

Relationship between habitat suitability and log-transformed observed and predicted abundances for gray woolly monkeys (Lagotrhix lagotricha
cana) and black-faced black spider monkeys (Ateles chamek). Abundances were interpolated using Inverse distance weighting (IDW) and
Ordinary kriging (OK).

accounting for the important, but often neglected, role of
interspecific competition in shaping species’ geographic ranges
at broader scales, our analytical framework was able to provide
more realistic assessments of spatial information yielding
targeted biodiversity management efforts and conservation
planning at large scales.

Abundance-suitability relationship

The abundance-suitability relationship is not new to ecology
and substantial efforts have been made to explore the capacity of
ENMs to predict abundance patterns in the internal structure
of species’ ranges (Brown et al., 1995; VanDerWal et al., 2009;
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FIGURE 4

Ecological niche models (ENMs) and abundance-informed
ENMs for gray woolly monkeys (Lagothrix lagotricha cana) and
black-faced black spider monkeys (Ateles chamek). Ensemble
projections were created using the averaged index across the
two geospatial abundance models [Inverse distance weighting
(IDW) and Ordinary kriging (OK)] and the previously published
ENMs (Rabelo et al., 2018; Cavalcante et al., 2020).

Weber et al., 2017; Dallas and Hastings, 2018; de la Fuente
et al., 2021; Jiménez-Valverde et al., 2021; Lee-Yaw et al.,
2021). Previous studies have been corroborating a general
positive trend between predicted habitat suitability from ENMs
and species abundance regardless of taxonomic group and
modeling methods (see Weber et al., 2017 for an overview).
In our current study, we are extending these findings for
abundance estimates predicted by two interpolation methods.
More importantly, comparisons between abundance-suitability
correlations using original and interpolated values showed no
significant differences, validating the use of the two geospatial
methodologies in our study case. This lack of significant
differences in abundance-suitability correlations comparing
original relative abundances against IDW- and OK-abundances
have broad implications for conservation biology.

For instance, broadscale abundance estimates of declining
species for input into ENMs are difficult to acquire, but
are urgently required for conservation efforts. The geospatial
models explored here, in addition to giving insightful and useful
information concerning trends in abundance patterns for the
two taxa, were combined with ENMs to identify high-priority

FIGURE 5

Relationship between modeled abundances for gray woolly
monkeys (Lagothrix lagotricha cana) and black-faced black
spider monkeys (Ateles chamek) in localities with low, medium,
and high habitat suitability. A cross-sectional plot is shown
depicting the fitted model with an interaction term between
A. chamek OK-abundance and L. l. cana habitat suitability. Each
point represents a random locality within the area of sympatry of
the two species. The lines represent predicted means derived
from the Generalized Linear Model. The overlaid red, blue, and
green bands represent the 95% confidence intervals in the
cross-sections at the 10, 50, and 90th percentiles of habitat
suitability.

areas for conservation of poorly known Amazonian species
across their entire geographic range. Since recent studies are
challenging the inherent capacity of ENMs to inform abundance
patterns and other biological aspects of real populations (see
Jiménez-Valverde et al., 2021; Lee-Yaw et al., 2021), the
framework developed by this study, implicitly incorporating
abundance proxies in ENMs, can be applied to a wide range
of other species and with different approaches. For instance,
using geospatial models as input or response variables to build
ENMs and/or during modeling exercises, including setting up
and interpreting results (e.g., Bahn and McGill, 2007).

The importance of interspecific
competition for conservation
prioritization

Biotic interactions are important theoretical mechanisms
limiting species distributions across different spatial scales,
but they are frequently absent from most ENMs (Anderson
et al., 2002; Guisan and Thuiller, 2005; Godsoe and Harmon,
2012). This is especially true for interspecific competition,
since this type of biotic interaction is often neglected in
ENMs when considering broadscale patterns (but see Braz
et al., 2020; Novella-Fernandez et al., 2021 for exceptions).
There is substantial evidence and previous efforts showing
that interspecific competition can scale up to broad spatial
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FIGURE 6

Hotspots for conservation of gray woolly monkeys (Lagotrhix lagotricha cana) and black-faced black spider monkeys (Ateles chamek) across
their sympatric range.

scales, affecting and shaping species’ geographic ranges and
abundance variation (e.g., Gotelli et al., 2010; Braz et al.,
2020; Novella-Fernandez et al., 2021; Braga et al., 2022). In
agreement, we found evidence for our hypothesis of broadscale
interspecific competition unraveling a pervasive pattern of
spatial segregation across the geographic distribution of our
two target taxa.

Interspecific competition has been previously suggested to
affect the local-scale patterns of coexistence between L. l. cana
and A. chamek (Iwanaga and Ferrari, 2001, 2002). Also, previous
studies at broader scales have identified strong similarities in
the environmental niche between these taxa (Cavalcante et al.,
2020). Interestingly, we found that the abundances of the two
taxa are negatively related, conditional on estimated habitat
suitability (Figure 5), suggesting that interspecific competition
between them constrains local abundance at different strengths
in low, moderate and highly suitable areas. In addition to the
ecological perspective, this pattern is extremely important from
a conservation standpoint since using information based only
on habitat suitability could mislead efforts and affect our ability
to efficiently guide resource allocation toward areas likely to be
strongholds for atelins populations. For example, a previously
published ENM for A. chamek (Rabelo et al., 2018) predicted

that highly suitable areas would be present in the northeastern
part of the species’ distribution (see Figure 4). However, the
gray woolly monkey’s high density and suitability predicted by
our abundance-informed ENM is liable to significantly affect
spider monkey’s populations in this region. The opposite is
true for gray woolly monkeys at the southwestern part of its
geographic distribution. This pattern of competitive exclusion at
the broadscale clearly emerged when we binarized and summed
our abundance-informed ENMs, indicating a clear distinction
between the eastern and western parts of the areas of sympatry
for these species.

The hottest hotspot

We identified priority areas for woolly and spider monkeys’
conservation in our study region as those containing highly
suitable habitats with high predicted densities for each taxon.
Notably, we identified an interesting high-priority area that
falls within the southwestern Brazilian Amazon between the
Juruena and Guaporé rivers (see Figure 6). This area holds
jointly suitable habitat and high predicted densities for both
taxa, in addition to some key factors and biological criteria
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(e.g., irreplaceability and vulnerability) that can be invoked for
priority-setting purposes. First, it falls within the Rondônia
center of endemism, an important component of Amazonian
diversity given the high number of endemic species (Cracraft,
1985; Silva and Oren, 1996; Braga et al., 2022). Additionally,
this region is located along the southern border of the Amazon
rainforest in Brazil, within a region known as the arc of
deforestation, where nearly half of the world’s deforestation
occurs (Gascon et al., 2001; da Silva et al., 2005; Michalski et al.,
2008; Silva Junior et al., 2021).

Other major threats leading to deforestation and habitat loss
in this region include fire (Brando et al., 2020; Feng et al., 2021),
road construction (Fearnside, 2015), mega-dam construction
(Cochrane et al., 2017), and mining (Rudke et al., 2020). Our
two focal taxa are part of the largest-bodied highly frugivorous
clade of primates within the Amazonian forests, have large
area requirements, are particularly vulnerable to habitat loss,
and play major roles in ecosystem functioning (Peres, 1994;
Di Fiore and Campbell, 2007; Peres et al., 2016; Rabelo et al.,
2018; Cavalcante et al., 2020; Sales et al., 2020). Therefore, the
identification and conservation of this high-priority area can
extend protection to a large number of naturally co-occurring
forest-dwelling species, reducing the rate of overall biodiversity
loss and helping to stem the biodiversity crisis in the Amazonian
arc of deforestation.

Geospatial model limitations and
conclusions

When comparing the interpolation techniques, we found
that the resultant correlation coefficients of OK-abundances
have stronger relationships with habitat suitability than IDW-
abundances, which showed relatively low correlation coefficients
(Table 1). Although these differences between both procedures
were small, these results were expected because geostatistical
methodologies (e.g., OK) are broadly considered better
interpolators than simpler non-geostatistical methodologies,
such as IDW (Li et al., 2011). Particularly, IDW tends to
respond more strongly to discrepant values at individual data
points, rather than the smoothness underlying the distance-
based averaging approach in kriging methods.

Besides the interpolation techniques, the strength of the
abundance-suitability relationships in our study case will also
depend on distinctly factors that initially affect the ENMs and
the geospatial models (e.g., the sampling distances and the
density of samples in the training datasets; Li and Heap, 2008;
Zarco-Perello and Simões, 2017). The sampling gaps across
the taxon’s geographic distributions and a mismatch between
the ENMs and geospatial models’ distribution of samples can
be related to the small differences between the interpolation
methods. In areas with such gaps, interpolation accuracy can
significantly vary, being lower where data density is low. In

this sense, our abundance predictions for the western part of
the distribution of both taxa should be carefully considered
and validated in situ before and alongside any conservation or
management action. For these reasons we are avoiding drawing
strong conclusions from our geospatial abundance models alone
(e.g., estimating species populations at a geographical range
scale based on spatial predictions). However, when we combined
the ecological niche and geospatial abundance models using the
output from each model’s predictions (i.e., habitat suitability,
IDW-abundance, and OK-abundance), we are “feeding” the
final models with suitability data. In other words, we are
providing habitat requirements information for areas that have
few or no abundance data, and these final models are the ones
being used to draw the main conclusions of this study, making
the case for abundance-informed ENMs as important tools for
conservation purposes.

The ENMs and geospatial models exhibited similar
sampling gaps across the Amazon basin. These shortfalls
are intrinsically related to the lack of knowledge of species’
geographic distribution and abundance in space and time, which
are often scarce and inadequate at most scales (Hortal et al.,
2015). Such shortfalls notably include the highly remote regions
of the Amazon basin, such as the forests of southwest Amazonia
(Bush and Lovejoy, 2007; Hopkins, 2007). We expect that
more sophisticated interpolation methods, which are becoming
increasingly available [e.g., Euclidean distance fields in machine-
learning (EDM): Behrens et al., 2018; Random forest (RF):
Hengl et al., 2018], could possibly be used to partially overcome
these caveats by using covariates and machine-learning methods
that can improve the accuracy of the maps and the strength
of the abundance-suitability relationship. Future expeditions to
those remote areas are also necessary to improve geospatial
models and ENMs with new field-collected abundance and
occurrence records, consequently affecting the correlation
coefficients of these abundance-suitability relationships.

In conclusion, the framework developed in this study
can be used as a surrogate to identify high-priority areas
for conservation of poorly known species across their entire
geographic distributions. This procedure integrates the
relationship between general trends in abundance patterns
and suitability information across broader spatial scales. We
confirmed a significant positive relationship between woolly
(L. l. cana) and spider (A. chamek) monkeys’ habitat suitability
with observed abundances and predicted abundances from
geospatial abundance models. Most importantly, abundance-
suitability correlations showed no significant differences when
using original relative abundances against using IDW- and
OK-abundances. We also found that the association between
L. l. cana abundance and its habitat suitability depends on
the abundance of its putative competitor species, A. chamek.
Therefore, disregarding interspecific competition between
our two focus taxa could affect our ability to accurately and
efficiently guide resource allocation toward priority areas for
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conservation actions for these two large arboreal mammals
that inhabit the Amazonian arc of deforestation. Finally,
fundamental spatial dependence and autocorrelation concepts
and principles, which lies at the heart of spatial interpolation,
are pervasive in natural ecosystems and biological aspects of
real populations (Koenig, 1999; Dormann, 2007). This can
be seen by the widespread use of interpolation methods in
several environmental disciplines (Li and Heap, 2011, 2014).
We argue that the use of interpolation methods should
be extended for spatial conservation prioritization since its
use has been considerably scarce in conservation biology,
especially for Amazonian data-deficient species, such as the two
we have studied.
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