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Movement and olfactory signals:
Sexually dimorphic antennae
and female flightlessness in
moths
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Darwin argued a role for sexual selection in the evolution of male sensory

structures, including insect antennae, the strength of which will depend upon

the importance of early arrival at receptive females. There is remarkable

variation in the nature and degree of sexual dimorphism in moth antennae,

with males of some species having spectacular, feathery antennae. Although

it is widely assumed that these elaborate structures provide greater sensitivity

to chemical signals (sex pheromones), the factors underlying the interspecific

diversity in male antennal structure and size are poorly understood. Because

male antennal morphology may be affected by several female life–history

traits, including flight ability, we conducted a phylogenetic comparative

analysis to test how these traits are linked, using data from 93 species of moths

across 11 superfamilies. Our results reveal that elaborate antennae in males

have evolved more frequently in species where females are monandrous.

Further, female loss of flight ability evolved more frequently in species where

males have elaborate antennae. These results suggest that elaborate antennae

have evolved in response to more intense male competition, arising from

female monandry, and that the evolution of elaborate antennae in males has,

in turn, shaped the evolution of female flightlessness.

KEYWORDS

sex pheromone, sexual selection, mating system, antennal morphology, flightless
moth, mate location

Introduction

Signalling is a crucial component of reproduction for mobile diecious species,
playing a role in both bringing mates together and in facilitating mechanisms of pre–
mating sexual selection (e.g., Darwin, 1871; Andersson, 1994; Rosenthal, 2017). The
latter is responsible for the evolution of an extraordinary diversity of conspicuous,
sexually selected signals, across the range of sensory modalities, and has attracted very
extensive research interest. In many moths, females use sex pheromones (olfactory
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signals) to advertise their location to mate searching males.
Although long–distance location–revealing sex pheromones are
typically not regarded as being subject to sexual selection [see
Johansson and Jones (2007)], they may cause sexual selection to
act on male receptor organs (Darwin, 1871; Elgar et al., 2019).

Darwin (1871) suggested that sexual selection will favour
improvements in “organs of sense” if that improves the
likelihood of male mating success in a competitive environment.
Darwin did not explicitly mention antennae as “organs of
sense,” because pheromones and the odour receptors located
on antennal sensilla (e.g., Hansson, 1995) were not known
at that time (Elgar et al., 2019). Nevertheless, his perspective
suggests that selection will favour males with antennal features
that improve the speed of detection of sex pheromones if that
allows males to locate females more quickly than rival males.
The taxonomically widespread sexual dimorphism in insect
antennal morphology (e.g., Schneider, 1964; Elgar et al., 2018),
together with several lines of empirical evidence, are consistent
with this perspective (Elgar et al., 2019). Field experiments on
a sexually dimorphic moth, the gum-leaf skeletonizer Uraba
lugens, demonstrated that males with longer antennae were
more likely to detect lower amounts of pheromone (Johnson
et al., 2017b), and laboratory experiments with the same species
revealed that larvae developing in higher densities (thereby
anticipating greater reproductive competition as adults) resulted
in males with larger antennae and testes (Johnson et al.,
2017a), and in females releasing more attractive sex pheromone
(Pham et al., 2020).

Sexual dimorphism in some species of moths is remarkably
striking, with the elaborate, feathery, pennate antennae of males
contrasting with the simple threadlike or filiform antennae
of females (Schneider, 1964; Young, 1997). Phylogenetic
comparative analyses indicate that while elaborate antennae
are linked with larger body size, suggesting a functional cost
to these structures, this pattern is not necessarily consistent
with a greater capacity to detect chemical signals, because
larger females might be expected to release larger quantities
of pheromone (Symonds et al., 2012). On the other hand, in
species where males have elaborate antennae, there is a negative
correlation between male abundance and male antennal
length. This result suggests that lower population densities
with concomitantly lower concentrations of pheromone, may
select for larger antennae in males, at least in species
where males have elaborate antennae (Symonds et al., 2012).
Regardless, males of most moth species possess relatively
simple filiform antennae, whilst females still emit long–distance
sex pheromones. This suggests that the strength of selection
on male antennal morphology is linked to other factors
that determine the importance of quickly locating a female,
and thus rapidly detecting her sex pheromone. A previous
comparative analysis of male elaborate antennae in geometrid
moths (Javoiš et al., 2019) found that they were more likely to
be found in species where females were capital breeders (i.e.,

that eclose with greater body reserves already available for
breeding). Javoiš et al. (2019) suggested that such a strategy may
be associated with traits that make them more difficult for males
to locate quickly, such as reduced mobility.

There is emerging interest in the effects of movement on
the production and detection of signals and cues, although
research is largely confined to visual and auditory sensory
modalities (Tan and Elgar, 2021). Nevertheless, movement may
be consequential for chemical signalling: female moths may
adjust the detectability of their sex pheromones by selecting
different kinds of locations where they call (emit pheromones).
For example, pheromones released in closed habitats may be
less easily detected, and females may compensate by moving to
a more open location (Murlis et al., 1992). Clearly this option
is not available to less mobile, flightless female moths. Females
are flightless in roughly 1% of lepidopteran species, although it
is taxonomically widespread, occurring in 25 families (Sattler,
1991). Female wing loss in these species varies from a complete
loss of wings (aptery) to retaining full sized wings but with a
loss of function (Tweedie, 1976; Sattler, 1991). Flightlessness is
associated with winter–active adults and spring feeding, as well
as high host breadth (Hunter, 1995). In most flightless species,
the females are unable to move far and remain on or near their
pupation site throughout their typically short adult life (Sattler,
1991). Hackman (1966) noted that these locations may not
necessarily be optimal for calling and suggested that this selects
for greater sensitivity to the pheromone in males. The converse
may also be possible: that loss of flight evolved in part due to the
speed with which highly sensitive males can locate females.

Here we use a phylogenetic comparative approach to
examine several potential selection pressures favouring male
antennal complexity in moths, including flightlessness and other
life–history traits. Specifically, we ask whether certain female
traits that potentially reduce their reproductive window (i.e.,
monandry, short lifespan, and the stage of egg development)
are associated with the evolution of elaborate male antennae.
Our hypothetical framework is that rapid location of a female
would be favoured under female monandry, or when females
eclose with a full complement of eggs (proovigeny): slower males
may arrive after a female has mated and is no longer receptive,
or after she has commenced ovipositing, and thus their sperm
will fertilise fewer eggs (Jervis et al., 2005; Shuker, 2014). We
hypothesise that these female life–history traits would likely
increase the level of competition among males and increase the
strength of selection favouring elaborate antennae, because such
antennae should increase the male’s likelihood of locating the
female more quickly.

Subsequently, we explore the links between male antennal
morphology, female life-history and the evolution of female
flightlessness. We specifically test the hypothesis proposed by
Hackman (1966) that female flightlessness will be associated
with the need for greater male sensitivity to sex pheromone, and
hence with male elaborate antennae.
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Materials and methods

Data collection

We collected information on female mating strategy, male
antenna type, female flight ability, egg development, oviposition
behaviour, lifespan, and fecundity for 93 species of moths
from 11 superfamilies. The species were selected based on the
availability of these data, which were collated from various
sources including published literature, field guides and online
lepidopterist resources (see Table 1).

We characterised male antennae as either simple or
elaborate: the former is filiform or ciliate, whereas elaborate
antennae have one or more side branches (pectinate, bipectinate,
quadripectinate). Information on male antennae was obtained
from published descriptions or images from various resources
(see Table 1 for a full list). Females were designated as capable
of flying (macropterous) or flightless: flightless females may still
have wings, but do not fly (e.g., Lymantria dispar) or may be
brachypterous (small remnant wings) or apterous (wingless).

Mating strategies of females were classified as either
monandrous or polyandrous, using information on female
remating frequencies (mating frequency of males was not
taken into account, as less information is available on this).
Monandrous species are those with a remating frequency of
30% or less. This is a conservative value compared with rates
previously used to categorise monandry [for example, <50%
in Arnqvist et al. (2000), and <40% in Torres–Vila et al.
(2002)]. Where detailed data on remating frequency were
not available, we followed published qualitative descriptions
of species as being either monandrous (including mostly
monandrous) or polyandrous.

Females were classified as either synovigenic (continuing to
form eggs during their adult life) or proovigenic (eclosing as an
adult with a full complement of mature eggs). Species where
females eclose with some mature eggs but produce more as
an adult were classified as synovigenic. We also distinguished
between females that oviposit eggs singly, in multiple small
clutches of eggs, or in a single clutch. We then made this
classification binary by combining the data for species in the
latter two categories who did not lay eggs singly, as this was
necessary for statistical analysis (see below). The fecundity and
lifespan of the females were obtained from published papers,
and we included the midpoint if a range was given. Fecundity
was the total reported number of eggs laid over the lifespan.
Female lifespan was the average number of days as an adult, as
observed in natural field populations where possible. Finally, as
body size may affect aspects of mating behaviour (Blanckenhorn,
2000) and male antennal morphology (Symonds et al., 2012),
we also obtained measures of the maximum wingspan to use as
a proxy for body size (Miller, 1977, 1997). We included male
wingspan if the wingspan of both sexes were reported, and the
midpoint of the range if a range was reported.

Phylogenetic comparative analysis

We used phylogenetic comparative methods to control
for common ancestry (Harvey and Pagel, 1991) in our
analysis of evolutionary associations between traits. There is
no single phylogeny that incorporates all the species in our
sample, and genetic data covering these species is sufficiently
poor to make phylogenetic estimation unreliable. Following
recommendations by Beaulieu et al. (2012), we compiled a
composite phylogeny from the published phylogenies of the
families included in our sample. The full tree, along with
character mapping for binary traits, is presented in Figure 1.

The main framework for the phylogeny was the
superfamilial tree constructed by Heikkilä et al. (2015).
The superfamilies Hepialoidea, Sesoidea, and Zygaenoidea each
contained two species only, and so further resolution was not
necessary. Any species from the same genus were also grouped
together. We used the phylogeny from Regier et al. (2012b) to
resolve relationships within the Pyraloidea. No further details
were available for the Phycitinae family, leaving this group of
eight species as a polytomy except for those species from the
same genus, which were grouped together. The Tortricoidea
were resolved to species level where possible following Regier
et al. (2012a). Within the Tortricoidea, Paralobesia viteana was
absent from all published phylogenies and therefore its position
was left unresolved as a basal polytomy within this clade. The
Archipini was also lacking detail on species from our analysis
leaving those four species unresolved. Sohn et al. (2013) was
used to fully resolve the Yponomeutoidea phylogeny, whereas
Löfstedt et al. (1991) was used to resolve the three species in
the genus Yponomeuta. The Bombycoidea phylogeny was taken
from Mutanen et al. (2010). Mutanen et al. (2010) also provided
further resolution to the Psychidae, although two species were
missing rendering this group not fully resolved. Yamamoto and
Sota (2007) and Sihvonen et al. (2011) were used to resolve
the Geometroidea to subfamily, but no further details were
available for all species present in our phylogeny leaving the
six species of the Ennominae unresolved as well as the three
species in the genus Operophtera. The Noctuidae were resolved
using Zahiri et al. (2013), and the Lymantria phylogeny was
taken from Sutrisno (2014). The superfamily Gracillariidae was
fully resolved using the phylogeny from Regier et al. (2013).
Relationships within the Gelechiidae were taken from Kaila
et al. (2011) and Heikkilä et al. (2014).

In the absence of branch length information, all branches
were assigned equal length (=1). The exception to this
rule was cases where there remained uncertainty over the
branching pattern; any polytomies were arbitrarily resolved
but the resolved branches were assigned minimal branch
lengths of 0.00001, giving them negligible weight in the
analyses. This resolution was necessary because the phylogenetic
comparative analysis approach requires fully dichotomously
resolved phylogenies.
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TABLE 1 Classification of species for traits examined.

Species AS FA MS ED OB LS F WS References

Acentria ephemerella S F B 1 180 12 3, 18, 28, 125

Achroia grisella S M M 20 18.5 12, 27, 66, 107, 229

Adoxophyes orana S M P M 300 19.5 25, 156, 215, 222

Alsophila pometaria S F M P B 100 27.5 37, 150, 171, 188

Anarsia lineatella S M M 24 120 13.5 55, 87, 152, 194

Auchmophila kordofensis E F B 21 30 133

Austromusotima camptozonale S M M M 5.7 24, 241

Autographa gamma S M S 12 210 40 37, 85, 138, 230

Biston betularia E M P M 670 52.5 37, 106, 171

Bupalus piniaria E M M 10 150 35 16, 44

Cadra cautella S M P S 200 17 12, 106, 124, 142, 143, 229

Callimorpha (Panaxia) dominula S M M S 6.25 250 48 50, 51, 71, 230

Chilo suppressalis S M M 10 250 22 54, 108, 159, 160, 206

Chloridea (Heliothis) virescens S M P S M 800 32 140, 164, 175, 201, 211, 215, 229

Choristoneura fumiferana S M P S M 94 22.5 57, 184, 215, 225, 229

Choristoneura rosaceana S M P S 750 29, 57, 136

“Cnephasia” jactatana S M P S 137 109, 110, 111, 161

Corcyra cephalonica S M M S S 8.2 160 17 68, 163, 189

Cornutiplusia circumflexa S M 129, 138, 185

Cryptoblabes gnidella S M M S M 12.7 105 15 9, 100, 151, 238

Cydia pomonella S M P P S 17 200 18.5 26, 96, 120, 229

Dahlica lichenella F M B 10 70 15 64

Dasystoma salicella S F M 10 440 18.5 48, 112, 174

Desmia funeralis S M S 9 200 25 19

Diparopsis castanea M P S S 11.4 152 30 45, 106, 137

Earias insulana S M P S 7 300 16.5 8, 115, 116, 201, 203, 229

Elcysma westwoodi E M M M 121, 122

Ephestia elutella S M P M 21 175 17 10, 124, 189

Ephestia kuehniella S M P S S 9 264 2.25 7, 106, 114, 124, 189, 208, 239

Epiphyas postvittana S M P S M 400 18.5 25, 72, 73, 82, 110, 126, 215

Epirrita autumnata S M M P S 10 150 35 5, 89, 197, 205, 207

Etiella hobsoni S M M 65 63, 157

Etiella zinckenella S M M S 10 166 25 63, 88, 135, 229

Euproctis chrysorrhoea E M M 200 37.5 37, 74, 80, 118, 139

Euxoa messoria E M M S S 14.2 1,303 34 29, 43, 65, 106

Grapholita molesta S M P S 34 245 12.5 11, 26, 33, 62, 96, 167

Helicoverpa (Heliothis) armigera S M P S S 9.75 380 35.5 52, 104, 158, 201, 229, 243

Helicoverpa (Heliothis) punctigera S M P S S 1,400 201, 243

Helicoverpa zea S P S S 15 600 38.5 2, 49, 69, 119, 201, 229

Heterogynis penella E F B 123, 220

Homoeosoma electellum M M S 14 337 19 58, 144, 183

Hyalophora cecropia E M M P 135 38, 182, 216, 229, 233

Lambdina fiscellaria E M M S 22.5 200 91, 92, 153, 197, 236

Leucoma salicis E M P M 9.4 650 45 75, 80, 221, 226, 229

Leucoptera coffeella S M M S M 14 75 6.5 83, 132, 147, 148

Lobesia botrana S M M S S 100 12 26, 100, 213, 215

Lymantria dispar* E F M P B 8 800 50 34, 42, 80, 181, 226, 229

(Continued)
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TABLE 1 (Continued)

Species AS FA MS ED OB LS F WS References

Lymantria fumida E M 99, 226

Lymantria mathura E M M 375 45 56, 226

Lymantria monacha E M M P M 190 45 37, 80, 106, 192, 226

Lymantria obfuscata E F M M 7.6 285 31.8 60, 84, 209, 226

Lymantria xylina E M B 800 40, 195, 226

Mamestra configurata M P S M 2,150 40 97, 232

Manduca sexta S M S S 250 100 61, 117, 169, 229, 240

Metisa plana E F M P B 7 155 177, 179

Mnesampela privata S M M S M 11.8 300 41 196, 197, 201, 223, 224

Mythimna separata M P S 6.5 850 35 94, 231

Mythimna unipuncta M P S M 14 1,500 40 32, 199

Oiketicus kirbyi E F M B 6,400 17, 177, 178

Oncopera fasciculatus S M M M 1,500 47, 131

Operophtera bruceata S F S 27.5 75, 90, 170

Operophtera brumata S F P P M 8.8 100 26.5 30, 90, 106, 218, 219, 229

Operophtera fagata S F 31.5 90, 193, 229

Orgyia antiqua E F M P B 7 175 25 38, 106, 180, 204, 226

Orgyia leucostigma E F P B 167 32.5 38, 79, 204, 210

Orgyia pseudotsugata E F M B 180 34 67, 98, 200, 226

Ostrinia nubilalis S M P S M 15 750 30 70, 106, 186, 229

Paleacrita vernata E F M 251 29, 149, 171

Panolis flammea S M S M 11 100 36 106, 127, 128, 201

Paralobesia viteana S M S 18.5 33 10 39, 100, 113

Phigalia titea E F M 110 35 31, 53, 170, 171

Phthorimaea operculella S M P S M 18.3 100 14 46, 134, 155, 229

Platynota stultana S M M M 307 12.5 22, 78, 81, 233, 234

Plodia interpunctella S M P S 80 15.5 7, 50, 76, 106, 124, 215, 229

Plutella xylostella S M M S S 18.8 100 13 106, 202, 227, 229

Siederia listerella F M B 10 50 15 64

Sitotroga cerealella M P M 11.5 125 11.2 4, 189

Sparganothis sulfureana S M M 20 59, 78, 168,

Spodoptera exigua S M P P M 13.9 1,000 27.5 1, 37, 212, 214, 245

Spodoptera littoralis S M P S M 16 1,800 38 6, 77, 115, 187, 229

Spodoptera litura S P S M 1,849 30 106, 141, 190, 245

Sthenopis argenteomaculatus S M 80 37

Synanthedon pictipes M M S S 9.2 140 24.5 106, 176, 237

Teia anartoides E F M P B 400 25 41, 86, 198, Pers. Obs.

Thyrocopa kikaelekea S F 145

Trichoplusia ni S M P S S 18 1,500 35.5 191, 228, 229, 242, 244, 245

Utetheisa ornatrix S M P S M 17 350 37.5 23, 37, 101, 102, 103, 130

Vitacea polistiformis E M M P S 7 350 21, 162, 166, 235

Yponomeuta cagnagella S M P S M 50 23 13, 95, 146, 165, 217, 229

Yponomeuta evonymella S M M 13 105, 146, 217

Yponomeuta padella S M P M 31 13, 93, 165, 173, 217

(Continued)
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TABLE 1 (Continued)

Species AS FA MS ED OB LS F WS References

Zeiraphera canadensis M M S M 28 79 13.5 35, 36, 154, 172

Zeiraphera diniana S M M S 30 150 19 14, 15, 20, 26

Male antennal structure (AS) = simple (S) or elaborate (E); Female flight ability (FA) = macropterous (M) or flightless (F); Female mating strategy (MS) = monandrous (M) or polyandrous
(P); Egg development strategy (ED) = synovigenic (S) or proovigenic (P); Oviposition behaviour (OB) = single (S), multiple batches (M), or one batch (B); Lifespan of adult females
(LS) = number of days; Fecundity (F) = number of eggs; Male wingspan (WS) = mm.
*The subspecies of Lymantria dispar used for this study was the European or North American spongy moth, which is flightless in nature and has the most available data.
1Abdullah et al. (2000); 2Abernathy et al. (1994); 3Kipp et al. (2022); 4Akter et al. (2013); 5Ammunét et al. (2009); 6Anderson et al. (2007); 7Anderson and Lofqvist (1996); 8Anwar
et al. (1973); 9Ascher et al. (1983); 10Ashworth (1993); 11Atanassov and Shearer (2005); 12Australian moths online (2018) (moths.csiro.au); 13Bakker et al. (2008); 14Baltensweiler (1993);
15Baltensweiler and Fischlin (1988); 16Barbour (1988); 17Barnes (2002); 18Batra (1977); 19Bentley and Coviello (2012); 20Benz (1969); 21Bergh (2012); 22Bettiga (2013); 23Bezzerides et al.
(2008); 24Boughton et al. (2007); 25Bradley et al. (1973); 26Bradley et al. (1979); 27Brandt et al. (2005); 28Buckingham and Ross (1981); 29Bugguide (2017); 30Buse and Good (1996);
31Butler (1985); 32Capinera (2008); 33Cardé and Baker (1984); 34Cardé and Hagaman (1983); 35Carroll (1994); 36Carroll and Quiring (1993); 37Carter (1984); 38Carter (2004); 39Cha
et al. (2008); 40Chao et al. (2001); 41Charles et al. (2006); 42Charlton et al. (1993); 43Cheng (1972); 44Cheraghian (2013); 45Chijikwa (2012); 46Coll et al. (2000); 47Common (1990);
48Contant (1988); 49Cook and Weinzierl (2004); 50Cook and Gage (1995); 51Cook and Wedell (1999); 52Coombs et al. (1993); 53Covell (2005); 54Cuong and Cohen (2003); 55Damos and
Savopoulou–Soultani (2008); 56European and Mediterranean Plant Protection Organization (2005); 57Delisle et al. (2000); 58DePew (1988); 59Deutsch et al. (2015); 60Dharmadhikari et al.
(1985); 61Diamond et al. (2010); 62Dustan (1964); 63Edmonds et al. (2000); 64Elzinga et al. (2011); 65Encyclopedia of Life (2018) (eol.org); 66Engqvist et al. (2014); 67EPPO (2017); 68Etman
et al. (1988); 69Evenden et al. (2003); 70Fadamiro and Baker (1999); 71Fisher and Ford (1947); 72Foster and Ayers (1996); 73Foster and Howard (1999); 74Frago et al. (2009); 75Furniss
and Carolin (1977); 76Gage (1995); 77Gerling and Schwartz (1974); 78Gilligan and Epstein (2014); 79Grant et al. (2014); 80Grijpma et al. (1987); 81Groenen and Baixeras (2013); 82Gu
and Danthanarayana (2000); 83Guerreiro Filho (2006); 84Gupta and Tara (2013); 85Harakly (1975); 86Harris (1988); 87Hart (2006); 88Hattori and Sato (1983); 89Haukioja and Neuvonen
(1985); 90Hausmann and Viidalepp (2012); 91Hébert and Brodeur (2013); 92Hébert et al. (2003); 93Hendrikse (1986); 94Hirai (1984); 95Hora and Roessingh (1999); 96Horak and Komai
(2006); 97Howlader and Gerber (1986); 98Hunter (1995); 99Identification guide of Japanese Moths (2018) (jpmoth.org); 100Ioriatti et al. (2012); 101Iyengar and Eisner (1999); 102Iyengar
and Eisner (2002); 103Iyengar et al. (2002); 104Jallow et al. (1999); 105Javois et al. (2005); 106Jervis et al. (2005); 107Jia and Greenfield (1997); 108Jiao et al. (2006); 109Jiménez–Pérez and
Wang (2004a); 110Jiménez–Pérez and Wang (2004b); 111Jiménez–Pérez et al. (2002); 112Jonko (2004–2022); 113Jordan, 2014; 114Karalius and Bûda (1995); 115Kehat and Gordon (1975);
116Kehat and Gordon (1977); 117Keil (1989); 118Kelly et al. (1988); 119Kingan et al. (1993); 120Knight (2007); 121Koshio (1996); 122Koshio et al. (2007); 123Kristensen (2003); 124Landcare
Research (2018). Manaaki Whenua (www.landcareresearch.co.nz); 125Lau et al. (2007); 126Lawrence and Bartell (1972); 127Leather (1984); 128Leather (1994); 129Lepiforum e. V. (2018).
(lepiforum.org) 130Lim and Greenfield (2008); 131Madge (1954); 132Magalhaes et al. (2008); 133Mahmoud (2015); 134Makee and Saour (2001); 135Malinen (2007); 136Marcotte et al. (2006);
137Marks (1976); 138Mazor and Dunkelblum (2005); 139Mazzei et al. (1999–2022); 140Mbata and Ramaswamy (1990); 141McCormack (2007); 142McNamara et al. (2009a); 143McNamara
et al. (2009b); 144McNeil and Delisle (1989); 145Medeiros and Gillespie (2011); 146Menken et al. (1992); 147Michereff et al. (2007); 148Michereff et al. (2004); 149Millar et al. (1990); 150Mitter
and Klun (1987); 151Molet (2013); 152Molinari and Zanrei (2004); 153Moths of Canada (2016). Canadian Biodiversity Information Facility (2013–2017); 154Mutuura and Freeman (1966);
155Nabi and Harrison (1983); 156Nagata et al. (1972); 157Naito et al. (1986); 158Naseri et al. (2009); 159Moth Photographers Group (2020); 160Nozato (1982); 161Ochieng–Odero (1992);
162Olien et al. (1993); 163Olsen (1995); 164Park et al. (1998); 165Parker et al. (2013); 166Pearson et al. (2004); 167Phillips and Proctor (1969); 168Polavarapu et al. (2001); 169Potter et al.
(2011); 170Powell and Opler (2009); 171Price (1997); 172Quiring (1994); 173Raijmann and Menken (2000); 174Raine (1966); 175Ramaswamy (1990); 176Reed et al. (1988); 177Rhainds and
Gries (1998); 178Rhainds et al. (1995); 179Rhainds et al. (1999); 180Richards et al. (1999); 181Richerson et al. (1976); 182Riddiford and Ashenhurst (1973); 183Riemann (1986); 184Robison
et al. (1998); 185Ronkay and Behounek (2015); 186Royer and McNeil (1993); 187Sadek (2001); 188Schneider (1980); 189Sedlacek et al. (1995); 190Seth and Sharma (2002); 191Shorey et al.
(1962); 192Skuhravy (1987); 193Snäll et al. (2007); 194Sorenson and Gunnell (1955); 195St. Laurent and McCarthy (2016); 196Steinbauer (2005); 197Steinbauer et al. (2001); 198Suckling et al.
(2007); 199Svard and McNeil (1994); 200Swaby et al. (1987); 201Symonds et al. (2012); 202Talekar and Shelton (1993); 203Tamhankar (1995); 204Tammaru et al. (2002); 205Tammaru et al.
(1996); 206Tang et al. (2014); 207Tanhuanpää et al. (2003); 208Tarlack et al. (2015); 209Thakur et al. (2016); 210Thurston and MacGregor (2003); 211Tingle and Mitchell (1991); 212Tisdale
and Sappington (2001); 213Torres–Vila et al. (2002); 214Torres–Vila et al. (2001); 215Torres–Vila et al. (2004); 216Tuskes et al. (1996); 217Van der Pers et al. (1980); 218Van Dongen et al.
(1998); 219Van Dongen et al. (1999); 220Vegliante (2005); 221Wagner and Leonard (1979); 222Walker (2005); 223Walker and Allen (2010); 224Walker and Allen (2011); 225Wallace et al.
(2004); 226Wallner (1989); 227Wang et al. (2005); 228Ward and Landolt (1995); 229Watson et al. (1975); 230Watson and Dallwitz (2003–2022); 231Watson and Hill (1985); 232WCCP
(1995); 233Webster and Cardé (1984); 234Webster and Cardé (1982); 235Weihman (2005); 236West and Bowers (1994); 237Wong et al. (1969); 238Wysoki et al. (1993); 239Xu et al. (2008);
240Yamamoto and Sota (2007); 241Yen et al. (2004); 242Zacharuk (1985); 243Zalucki et al. (1986); 244Zhu et al. (1997); 245Ziaee (2012).

Following Ives and Garland (2014), we ran multiple tests
to improve the strength of our inferences. These tests included
generalised linear mixed models with Bayesian estimation
(MCMCglmm) (Hadfield and Nakagawa, 2010) and the
concentrated changes test (Maddison, 1990). The MCMCglmm
models were conducted using the MCMCglmm package in R
(Hadfield, 2010; R Core Team, 2014). To determine which traits
are linked to our dependent variables when controlling for
phylogenetic relatedness, all independent variables of interest
were tested using MCMCglmm in separate models where
wingspan was included as the covariate to control for body
size. Specificially we performed one set of tests with antennal
morphology as the dependent variable, coded as simple (1) and
elaborate (2) antennae. In these tests the independent variables
were female mating system (monandrous/polyandrous), egg
development (proovigenic/synovigenic), and lifespan. In the
second set of tests the dependent variable was female wing type
coded as macropterous (1) or flightless (2). In these tests the

independent predictors were female mating system, lifespan,
antenna type, egg development, oviposition strategy (single eggs
laid/multiple eggs clutches), and fecundity.

These models cannot incorporate missing data; therefore,
the data sets were reduced to include only those species where
all data were available for the variables being tested in each
analysis. These tests require a prior to be set, and when the
response variable is categorical in nature the prior for the
residual variance should be fixed. For our analyses, we set the
residual variance to 1 and used a χ2 distribution with 1 degree
of freedom (v = 1, nu = 1000, alpha.mu = 0, alpha.V = 1)
for the random effects variance, as suggested by Villemereuil
et al. (2013). We used the categorical family response, and
used the slice function to improve mixing. To obtain adequate
mixing with low autocorrelation, 5 × 107 iterations were used
with a 10,000 burnin period, followed by sampling every 2,500
iterations (thinning). The R code used in this procedure is
provided in the Supplementary material.
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FIGURE 1

Composite phylogeny of the moth species used in the analysis, with character states of categorical traits indicated (missing blocks indicate the
character state was unknown). Branch lengths are for illustrative purposes only, and do not represent the lengths used for analysis.

The Concentrate Changes Test (CCT) was used to
investigate the co–evolution of two binary discrete characters
across a phylogeny, using the computer program MacClade
4 (Maddison and Maddison, 2005). CCTs examine changes

from one state to another in a character of interest (the
dependent variable) and whether these are more concentrated
in lineages that have evolved a particular state of interest in
another character (the independent variable) than would be
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expected by chance (determined by comparison with 1,000
permutations of the dependent variable on the phylogeny).
When characters are mapped onto the phylogeny, the most
parsimonious reconstruction of the character is applied for all
species, including those with missing data, allowing us to leave
all 93 species in each analysis. CCTs require a fully resolved
phylogeny and we used MacClade to randomly resolve any
polytomies 20 times in our composite phylogeny, performing
the analysis on each tree individually, thereby yielding a mean
p-value ± SEM. For each pair of traits, the tests were run in both
directions, with the independent and dependent traits switched,
to determine the order of evolution. We also applied the test only
to changes where the parsimonious resolution of the evolution
of the dependent was unequivocal. These tests lack the statistical
power of MCMCglmm, and cannot control for body size, but
unlike the MCMCglmm, they do provide information about the
direction of evolution (i.e., which correlated trait preceded the
evolution of the other), and possible patterns of causality.

Results

We found a significant association between antennal type
and female mating system (MCMCglmm analysis: Table 2), with
the concentrated changes test indicating weakly (p = 0.062)
that elaborate male antennae evolve more frequently in species
where females are monandrous (CCT analysis: Table 3). Indeed,
most species in our analysis with elaborate male antennae have
monandrous females, whereas most species with simple male
antennae have polyandrous females (Figure 2A). Similarly, male
antenna type is also associated with egg development pattern,
with elaborate male antennae being associated with proovigenic
females (Table 2). Indeed, within our sample of species with
elaborate male antennae, only one is synovigenic, producing
eggs as an adult (Figure 2B). However, the CCT analysis
suggests (again weakly: p = 0.081) that proovigeny has evolved
more frequently in species where males have elaborate antennae
(Table 3). The type of male antennae was not associated with
female lifespan (Table 2).

We found a link between female flight ability and male
antenna type (Table 2), with the CCT analysis suggesting that
female flightlessness is more likely to have evolved in species
where males have elaborate antennae, rather than vice versa
(Table 3 and Figure 3C). Female flightlessness is also associated
with a shorter female lifespan (Table 2), and the association
between flight ability and oviposition strategy (single eggs vs.
batches) approached significance in the MCMCglmm analysis
(p = 0.056, Table 2 and Figure 3D). The CCT results suggest
that flightlessness has evolved more often in species where
females lay eggs in clutches (Table 3). While all the flightless
species in our sample are proovigenic (Figure 3B), the lack of
transitions from synovigenic to proovigenic severely limits the
power for the MCMCglmm analysis, and these analyses did

not converge, so we do not include these tests in our analysis.
Although most flightless species have monoandrous females
(Figure 3A), the phylogenetic comparative analyses found no
significant association between female flight ability and mating
system, or between flight ability and fecundity (Tables 2, 3).

Discussion

Prevailing wisdom states that elaborate antennae in males
evolved to increase their ability to detect odours (specifically
the sex pheromone of females). However, this hypothesis is
contradicted by the considerable number of moth species where
males do not possess elaborate antennae, despite most species
utilising long-distance female sex pheromones. Our results
suggest a more nuanced version of the hypothesis where ability
to detect and locate females quickly is advantageous in some
species: elaborate male antennae being more common in species
where females are monandrous, proovigenic, or flightless.
Concentrated changes tests indicate that it is more likely
that the evolution of elaborate male antennae is concentrated
lineages where females are monoandrous rather than vice
versa (suggesting that the mating system evolved prior to the
antennal morphology). Similarly, that the CCTs suggest that
female flightlessness is more likely to have evolved in lineages
where elaborate male antennae had already evolved rather
than the opposite, which argues against the Hackman (1966)
hypothesis that female flightlessness selects for males with more
sensitive antennae. These trends provide some insights into
the conditions leading to the evolution of both male elaborate
antennae and female flightlessness, and more generally highlight
how olfactory signal perception can be linked with movement.

Darwin’s (1871) conjecture that sexual selection favours
male sensory receptor traits that improve the ability to detect
and locate females more quickly is supported by the strong
association between complex male antennal structure and
female monandry. Female monandry places a premium on
males being able to rapidly locate virgin females, whose
numbers may decline during the male’s adult lifespan, and
larger or more elaborate male antennae apparently facilitate this
process [see also Johnson et al. (2017b)]. This interpretation
implicitly assumes that elaborate antennae bestow greater
sensory capabilities, and this has been widely assumed in
previous analyses of antennal morphology in moths (Symonds
et al., 2012; Javoiš et al., 2019). However, while elaborate
antennae might facilitate the trapping of air flow and hence
chemical compounds (Loudon and Koehl, 2000), the direct
evidence that they have higher sensitivity is surprisingly rare.
In this context exceptions to the patterns outlined above can
be informative. For example, selection may still favour elaborate
male antennae in the polyandrous satin moth Leucoma salicis
because females initially oviposit a large clutch of eggs, and
subsequently lay smaller clutches (Wagner and Leonard, 1979),
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FIGURE 2

(A,B) Percentage of species with particular traits relative to the type of male antennae.

FIGURE 3

(A–D) Percentage of species with particular traits relative to the flight ability of female.
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TABLE 2 Results from the MCMCglmm analysis comparing the dependent variable (male antennal type, female wing type) to the independent
variable, controlling for body size (male wingspan).

Dependent variable Independent variable N Posterior mean 95% CI P-value

Male antennae—Simple (1), Female mating system—Monandry (1), Polyandry (2) 45 Mating –6.17 –13.69, 0.43 0.043

Elaborate (2) WSpan 0.22 –0.01, 0.50 0.017

Egg development—Synovigenic (1), Proovigenic (2) 39 EggDevel 7.59 1.02, 15.57 0.005

WSpan 0.10 –0.02, 0.24 0.051

Female lifespan 40 Lifespan –0.15 –0.53, 0.20 0.410

WSpan 0.16 –0.05, 0.39 0.112

Female wing type—Macropterous Female mating system—Monandry (1), Polyandry (2) 53 Mating –3.39 –8.78, 1.36 0.155

(1), Flightless (2) WSpan –0.16 –0.41, 0.04 0.115

Female lifespan 48 Lifespan –0.64 –1.29, –0.06 0.005

WSpan –0.002 –0.23, 0.23 0.979

Male antennae—Simple (1), Elaborate (2) 62 Antennae 5.21 0.02, 10.92 0.028

WSpan –0.20 –0.43, –0.01 0.014

Oviposition—Single eggs (1), Egg batches (2) 60 Oviposition 4.47 –0.47, 10.3 0.056

WSpan –0.17 –0.40, 0.04 0.08

Fecundity 64 Fecundity –0.002 –0.01, 0.01 0.556

WSpan –0.16 –0.39, 0.04 0.113

Each categorical variable was given a value (1 or 2) according to the state (e.g., polyandry = 2 and monandry = 1). N values for each model are listed. The model of wing type vs. egg
development is not included due to lack of transitions with which to adequately test the relationship. Bold values indicate statistically significant relationships.

TABLE 3 Results from the concentrated changes test investigating evolutionary associations between discrete characters with the state of
interest listed.

Character 1 Character 2 p-value ± SE (Character
1 = dependent)

p-value ± SE (Character
2 = dependent)

Male antennae—Elaborate Female mating system—Monandry 0.062 ± 0.004 0.317 ± 0.008

Egg development—Proovigenic 0.159 ± 0.011 0.081 ± 0.002

Female wing type—Macropterous Female mating system—Monandry 0.093 ± 0.004 0.957 ± 0.002

Male antennae—Elaborate 0.052 ± 0.003 0.676 ± 0.027

Oviposition—Egg batches 0.076 ± 0.005 0.983 ± 0.001

Results are presented where characters are assigned as dependent or independent, and then vice versa. The p-value ± SE corresponds to the mean p-value obtained from the analysis of
the 20 randomly resolved trees. N = 93 in all tests.

which places a premium on males locating virgin females. In
this context, it is interesting that there is a relationship between
egg development strategy and male antennal morphology, with
proovigeny (where females eclose with their full complement of
eggs) being associated with elaborate male antennae.

Although the large majority (>90%) of species with
elaborate male antennae have monandrous females, males have
filiform antennae in 17 of the 30 monandrous species in our
sample. In these species, perhaps males with filiform antennae
utilise other means of improving sensitivity in detecting female
pheromones. For example, detectability may be improved by
increasing the number and/or density of sensilla, changing
the distribution of the sensilla (Keil, 1989; Lee and Strausfeld,
1990), or adjusting the angle of antennal scales (Wang et al.,
2018). Additionally, features of the adult population, such
as high population density (Symonds et al., 2012) or male
flight speed, may relax selection on rapid detection. Finally,

male mating system may also affect the evolution of antennal
morphology, although the nature of the relationship between
typical male mating frequency and the strength of selection for
greater detection capacity seems unlikely to be independent of
other factors, including female mating strategy. Consequently
it may be that it is overall mating strategy (monogamy vs.
polygamy) that is the stronger determinant of selection on male
antennal morphology.

Female flightlessness is thought to allow females to
invest more resources in egg production, thereby yielding
higher fecundity (Tweedie, 1976; Roff, 1990; Sattler, 1991).
Our analyses revealed that female flightlessness is associated
with a shorter adult lifespan and confining oviposition to a
single clutch of eggs, an unsurprising pattern because laying
eggs singly or across multiple clutches would require an
ability to disperse to different oviposition sites (Sattler, 1991).
However, there was no significant correlation between female
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flightlessness and fecundity after controlling for phylogeny
and body size. Hunter (1995) reported a positive correlation
between female flightlessness and fecundity, but this pattern was
phylogenetically constrained, and the correlation was no longer
significant after taking account of phylogeny. Our analysis
supports that finding. Nevertheless, we cannot rule out the
possibility that females can improve reproductive success by
increasing egg size rather than egg number. Indeed, the flight
ability of female tussock moth Orgyia thyellina varies seasonally:
individuals eclosing in autumn have reduced wings whilst those
emerging in summer have fully functional wings (Kimura and
Masaki, 1977). The flightless females produce much larger
eggs than females that emerge in summer, a strategy that may
improve the survival of eggs that diapause over winter. Males
of O. thyellina have elaborate, bipectinate antennae (Table 1),
and it would be interesting to know if there is a similar seasonal
pattern in antennal size.

While our data broadly support the idea that the presence
of elaborate antennae in males favoured the evolution of
female flightlessness, there are seven species within our data
set where females are flightless, and yet males have simple,
filiform antennae (Figure 3). Interestingly, females in five of
these species are still mobile, either by walking or hopping
(Contant, 1988; Sattler, 1991; Medeiros and Gillespie, 2011),
and females of the other two species have unusual biological
features. Females of Acentria ephemerella are aquatic and
the loss of flight is likely to be an adaptation that supports
this lifestyle (Miler, 2008), highlighting that the evolution
of female flightlessness is not linked exclusively with issues
associated with mate search. The second species indicates that
the strength of selection through mate search can override
the relationship between elaborate antennae and flightlessness:
around 80% of Alsophila pometaria females are pseudogamous
asexuals (Mitter and Klun, 1987), who produce asexual
offspring after mating, resulting in a strongly female–biased
population. So, while the loss of flight has likely evolved due
to similar pressures affecting other species in our data set,
the pseudogamous nature of this species may relax selection
favouring elaborate male antennae.

To conclude, our findings suggest that the communication
and mating systems of moths are inherently associated, with
elaborate male antennae being associated with lineages where
females are monandrous, suggesting that necessity to detect
females quickly has selected for more sensitive males. In turn
male elaborate antennae may have subsequently driven the
evolution of female life-history and flightlessness where having
sensitive males promoted selection for complete development
of eggs at the expense of movement capability. A key aspect of
this narrative is that elaborate antennae in males is associated
with greater sensitivity, an assumption that still needs to be more
thoroughly tested in moths.
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