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The peak frequency of bat echolocation is a species-specific functional trait

linked to foraging ecology. It is tailored via evolution to suit conditions within

the distribution range of each species, but the evolutionary drivers are not

yet well-understood. Global patterns of humidity correlate with many aspects

of bat ecology. We hypothesized that atmospheric absolute humidity could

explain global peak frequency variation directly and indirectly via increasing

species body size and bat species richness. These hypotheses were tested

using Bayesian phylogenetic path analysis on 226 tropical and subtropical

bat species. In line with our predictions, we found a positive total e�ect of

humidity on peak frequency, which was dominated by the positive indirect

e�ects via body size and bat species richness. We did not observe the negative

direct e�ect of humidity on peak frequency, which was hypothesized based

on atmospheric attenuation of sound. In line with our expectations, excluding

the predominantly clutter foraging bat families from our dataset downplayed

the importance of the richness-mediated route. To conclude, our findings

suggest that indirect e�ects, owing to ecology and biogeography of bat taxa,

play a major role in the global relationship between peak frequency and

atmospheric humidity.

KEYWORDS

bats, echolocation, adaptation, climate, biogeography, functional traits, bioacoustics,
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Introduction

Most (87%) of the 1,401 extant bat species orient and locate their prey

using echolocation (Wilson and Mittermeier, 2019). These species form an

acoustic image of their surroundings by emitting ultrasonic repetitive acoustic

pulses and interpreting the delay and structure of the returning echoes

(Schnitzler and Kalko, 2001; Metzner and Müller, 2016). To be effective, the

emitted signal must be adapted to the variable situations and surroundings

experienced by the species in question. The observed similarity in pulses across

many unrelated bat taxa is evidence of notable convergent evolution and
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FIGURE 1

Attenuation hypothesis: bat echolocation is subject to

atmospheric absorption, which e�ectively decreases the

detection range, especially in the higher end of the frequency

spectrum. The slope of the relationship between absorption and

frequency increases with specific humidity. Thus, humidity

increases the cost of evolving higher echolocation frequency.

Calculation of absorption is carried out with an ISO

9613-1-based online calculator (National Physical Laboratory,

2018).

attributed to similarity in their foraging ecology (Schnitzler and

Kalko, 2001; Jones and Holderied, 2007; Metzner and Müller,

2016). The functional acoustics of bats are largely determined

by the way they overcome sensory challenges in food acquisition

like detecting small objects from afar, masking of prey echoes

by the echoes from background, and avoiding collisions while

commuting or chasing their prey (Schnitzler et al., 2003). The

relative importance of these challenges in foraging is greatly

affected by how close to the background clutter, such as

vegetation or ground, the species tends to forage. Consequently,

the bat taxa can be divided into feeding guilds such as aerial

hawkers and clutter foragers. Aerial hawkers, further divided

into open space and edge foragers, catch the airborne prey while

flying away from or close to obstacles, respectively (Schnitzler

and Kalko, 2001; Denzinger and Schnitzler, 2013). On the other

hand, clutter foragers predominantly glean stationary food from

surfaces, except for the constant frequency calling taxa. Some

gleaners can locate and identify their prey solely by echolocation

(Geipel et al., 2013), but usually prey-generated sounds or

olfactory cues are also followed (Denzinger and Schnitzler,

2013). However, most species are flexible in their feeding habits,

and therefore, the guild identity for some species is ambiguous

(Denzinger and Schnitzler, 2013).

Research on bat echolocation often treats this feature as a

tool for foraging and navigational tasks (Armstrong and Kerry,

2011; Pedro and Simonetti, 2014). For a bigger picture, however,

it is important to understand the environmental conditions that

create the set of challenges that require specific adaptations.

As we hypothesize, atmospheric humidity, that is, the absolute

amount of gaseous water in atmosphere, has potential to affect

these challenges and therefore drive evolution of bat traits. From

now on, we refer to this as specific humidity, which is the

measure of atmospheric humidity used in this study. Unlike

relative humidity, specific humidity is not directly affected by

changes in temperature. This eliminates fluctuations arising

from daily and seasonal temperature cycles (Encyclopedia

Britannica, 1998).

The frequencies emitted by echolocating bats are generally

in the ultrasonic range. Sufficiently high frequencies are essential

for revealing details because sound reflects less effectively from

an object of smaller dimensions than its wavelength. As a

downside, high frequencies attenuate more in the air, thus

compromising detection distances (Griffin, 1971; Lawrence and

Simmons, 1982; Schnitzler and Kalko, 2001). For this study,

we focus on peak frequency, which is the frequency of the bat

call with the highest amplitude. Because attenuation depends

on the frequency of the sound, the effects on peak frequency

cannot be directly modeled in multiple bat taxa with variable

peak frequencies. However, attenuation increases with sound

frequency more rapidly in higher specific humidity (Figure 1)

(National Physical Laboratory, 2018). This relationship is

consistent within the range of ambient temperature and

atmospheric pressure experienced by foraging bats (National

Physical Laboratory, 2018) and potentially favors low peak

frequencies in humid environments. Therefore, a negative

association is expected between peak frequency and specific

humidity across all echolocating bats (attenuation hypothesis,

Figure 1). Even though attenuation is often proposed as an

important driver of the evolution of call frequency (Griffin,

1971; Snell-Rood, 2012; Luo et al., 2014; Jacobs et al., 2017),

the results have been mixed (Jiang et al., 2010; Luo et al.,

2019), and supporting evidence has been limited to few studies

with very little geographic and taxonomic coverage (Jiang

et al., 2010; Armstrong and Kerry, 2011; Snell-Rood, 2012).

To our knowledge, the current study is the first attempt to

model the effect of specific humidity on global variation of bat

peak frequencies.

A negative association between body size and environmental

heat is observed in homeothermic animals due to

thermoregulation constraints but can also be expected to

apply to heterothermic mammals, particularly because of

the elevated body temperature during foraging (James,

1970; Thomas et al., 1991; Meiri and Dayan, 2003; Voigt

and Lewanzik, 2011; Conenna et al., 2021; Rubalcaba et al.,

2022). Specific humidity represents a combined effect of

temperature and relative humidity, both of which increase
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heat stress by affecting body temperature directly and

impeding evaporative cooling, respectively (James, 1970).

In addition, a negative association between body size and

peak frequency is well-demonstrated in bats (Barclay, 1991;

Bogdanowicz et al., 1999; Jones, 1999; Thiagavel et al., 2017;

Luo et al., 2019; López-Cuamatzi et al., 2020). Considering this

together with the aforementioned association between specific

humidity and body size, body size could mediate the indirect

effect of specific humidity on peak frequency, as previously

suggested by Mutumi et al. (2016) (body size constraint

hypothesis, Figure 2).

In addition, specific humidity could indirectly affect bat

echolocation via bat species richness. Specific humidity and

bat species richness are positively correlated in the global

tropics and subtropics (Supplementary Figure 1). This could

be due to humidity governing global patterns of vegetation

biomass (Sankaran et al., 2004; Malhi et al., 2009), and habitats

with complex vegetation providing niches for a more diverse

bat community. However, complex vegetation could be more

beneficial to clutter foragers than aerial hawkers. While the

former group is restricted to sites with sufficient vegetation

complexity to provide their tightly framed foraging habitat,

suitable habitat for the latter does not necessarily require

structural complexity to the same degree (Mtsetfwa et al., 2018;

Conenna et al., 2021). On average, clutter foragers use higher

peak frequencies than edge space foragers (Denzinger and

Schnitzler, 2013), which potentially creates a positive association

between species richness and peak frequency. In addition, this

association could also result from acoustic resource partitioning,

according to which bat species adapt to using echolocation

frequency bands that are less utilized by other sympatric bat

species (Jones and Siemers, 2011; Russo et al., 2018) and are

consequently utilizing higher frequencies in areas with high

species richness. Considering these aspects, specific humidity

could be predicted to have an indirect effect on peak frequency

via bat species richness (Figure 2). From now on, we refer to this

as the diversity hypothesis.

We tested these three hypotheses simultaneously by

contrasting the direct effect of specific humidity on peak

frequency with its indirect effects via body mass and bat

species richness using a global sample of 226 tropical and

subtropical bat species. We predict that part of the peak

frequency variation must be explained by a negative direct

effect of specific humidity for the attenuation hypothesis to be

supported. For body size constraint and diversity hypotheses,

we expect positive indirect effects on peak frequency mediated

by body size or species richness, respectively. Furthermore,

the mass-mediated indirect effect needs to consist of two

negative direct effects (i.e., from humidity to body mass

and from body mass to peak frequency) for the body mass

hypothesis to be supported. By contrast, two positive direct

effects (i.e., from humidity to species richness and from species

richness to peak frequency) in the species richness-mediated

route are expected according to the diversity hypothesis

(Figure 3). We test our hypotheses using a phylogenetic

path analysis, which accommodates both direct and indirect

effects while accounting for phylogenetic non-independence

between the species (von Hardenberg and Gonzalez-Voyer,

2013).

Because the ecology of a bat species most likely affects

the evolutionary drivers of its sensory ecology (Fenton, 1990;

Denzinger et al., 2018), we repeat the analyses with a subset

of data consisting of predominantly aerial hawking families

or subfamilies of bats (n = 158 species). We predict that

attenuation is a more severe issue for aerial hawking bats

because their airborne prey items are scattered in vast three-

dimensional space, and sufficient detection distance significantly

increases the volume scanned with echolocation. Furthermore,

these bats rely solely on their echolocation, unlike gleaners

which often complement detection with olfaction and passive

hearing (Schnitzler and Kalko, 2001; Denzinger and Schnitzler,

2013). We thus expect that the indirect effect predicted by the

diversity hypothesis will appear stronger if the clutter foraging

bats are involved.

Materials and methods

Bat data

We used echolocation peak frequency, the frequency with

the highest intensity in the echolocation pulse, as our as our

species-specific variable. It is a widely adopted parameter in

bioacoustics studies because its variation is connected to many

ecological and morphological factors (Schnitzler and Kalko,

2001; Denzinger and Schnitzler, 2013).

We extracted information on species-specific average

peak frequencies from various literature sources (see

Supplementary Data). Only the bat taxa using laryngeal

frequency-modulated echolocation were used in fitting the

model. In other words, we excluded the tongue clicking

Rousettus spp. among the non-echolocating pteropodid bats,

and also the constant frequency calling bats (superfamily

Rhinolophoidea and Pteronotus spp. in the subgenus

Phyllodia), which have a highly specialized acoustic

method for localization of airborne insects within the

clutter (Schnitzler and Denzinger, 2011). Regardless of the

ecological importance of these bat taxa in many ecosystems,

their inclusion in the modeling would significantly widen the

definition of the study system and hinder interpretability of

the model results.

An average echolocation peak frequency value was

calculated for every species. When multiple references for

a species were available, the final average was obtained by

first calculating averages within these sources and finally
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FIGURE 2

Mechanisms leading to a lower average peak frequency in bat communities occurring in low-humidity area, and vice versa. According to the

body mass constraint (a) and diversity (b) hypotheses: blue bats represent taxa with open space aerial hawking traits (low peak frequency),

purple bats represent taxa with edge space aerial hawking traits, and red bats represent taxa with clutter foraging traits (high peak frequency).

between the sources. In the calculation of the within-

source averages, the recordings from different contexts

(location, situation, call type) were first averaged within the

context and then between the contexts. Some references

reported calls separately characterized by different strongest

harmonics, but these call types were not considered as

different contexts.

We gathered body mass data primarily from the Phylacine

trait database (Faurby et al., 2018) to represent body size of the

bats. Some records in these data did not have measurements so

were assumed allometrically based on forearm length. Where

possible, we replaced these data withmeasured values from other

literature sources; however, the assumed values were retained in

the absence of reported values for 12 of 226 species (detailed

source information in Supplementary Data).

The allometric non-linear relationship between bat peak

frequency and body mass has been demonstrated (Heller,

1996; López-Cuamatzi et al., 2020). However, we use the path

model that assumes linear relationships between variables and

therefore performed natural log (ln) transformation on these

variables to achieve linearity. Using linear regression to fit the

individual paths also makes interpretations of indirect effects in

a straightforward manner.

A species-level phylogenetic supertree for mammals was

obtained from the Phylogenetic Atlas of Mammal Macroecology

(Faurby et al., 2018). This atlas provided a posterior sample of

1,000 trees, from which 500 random trees were drawn to be

used in all analyses. This reduction was made to reduce the

processing time in the following steps. Species distribution data

were downloaded from the IUCN website (IUCN Red List of

Threatened Species, 2019).

Only the species represented in both the species distribution

dataset and the phylogeny were included in the data. We

further discarded any species with a median of annual average

temperatures within its distribution range<15◦C because many

of these species go through an annual prolonged period of

hibernation when there is no foraging activity. In such cases,

annual means of specific humidity would be biased by the

cold period, which bats spend in hibernation. However, bat

hibernation behavior is a gradient, and consequently, any

hard limit is rather arbitrary (Humphries et al., 2002). We

consider an annual average of 15◦C as a limit providing

a satisfying trade-off between cutting the most problematic

species out and retaining the sample size while roughly

including the subtropical climate zones of the world. A

list of the discarded species is provided as a separate
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sheet in the Supplementary Data. The temperature data were

downloaded from the CHELSA climatology dataset (Karger

et al., 2017) as a raster. The workflow to obtain these

medians was similar to that described for the other raster data

given later.

With 226 species in the final full dataset, we further selected

a subset of 158 species from the families and subfamilies

that predominantly rely on aerial hawking as the foraging

strategy. These taxa included families Emballonuridae,

Cistugidae, Craseonycteridae, Miniopteridae, Molossidae,

Mormoopidae, Rhinopomatidae, and vespertilionid subfamilies

Vespertilioninae and Myotinae. The final dataset is provided

as Supplementary Data. Table 1 shows the key statistics of

both datasets.

GIS data

We use mean annual specific humidity to describe the

humidity within the distribution range of each species. In the

FIGURE 3

A schematic path diagram showing the variables and direct and

indirect e�ects in the model: The e�ects corresponding to each

of the three hypotheses are shown in di�erent colors.

frequency range used by bats, specific humidity is by far the

largest determinant of absorption of sound, which makes up

a major part of attenuation for ultrasonic frequencies (Griffin,

1971; National Physical Laboratory, 2018). Specific humidity

also works well in representing heat stress because it combines

the effect of both temperature and humidity (James, 1970). The

specific humidity data were obtained from the NASA Langley

Research Center (LaRC) POWER Project funded through the

NASA Earth Science/Applied Science Program. The global data

surface consists of annual averages of daily average values from

1984 to 2020 at 2m height from the ground averaged over half

a degree grid or 55 km by cosφ 55 km, where φ is the latitude

(NASA, 2020).

We loaded the species distribution dataset as a shapefile,

and species richness and specific humidity as global raster

surfaces into R version 4.0.4 (R Core Team, 2015) workspace.

The species richness raster for all extant bats, including the

taxa removed from the modeling dataset, was downloaded from

https://biodiversitymapping.org/ (Jenkins et al., 2013; Pimm

et al., 2014) and re-projected to match its resolution to the

humidity raster (0.5 degrees). Each global raster layer was

masked separately with species-specific distribution polygons,

cutting out the cells where the species were absent. Then, cell

values in the resulting raster layer were summarized, and the

resulting median value was saved to represent environmental

conditions within the distribution range of that species. These

operations were performed using the raster package version

3.4-5 (Hijmans, 2019).

Phylogenetic comparative methods

We conducted a phylogenetic path analysis (vonHardenberg

and Gonzalez-Voyer, 2013) that describes the variation of the

species-specific average peak frequency with prevailing average

specific humidity via direct and indirect (i.e., multiplication

of direct effects along a given route) effects through species

TABLE 1 Descriptive statistics for the variables used in this study: both raw scale and natural logarithm (ln) transformations are shown for peak

frequency and body mass.

Aerial hawking (n = 158) Full data (n = 226)

Variable Unit Mean Median SD Min, max Mean Median SD Min, max

specific humidity g/kg 12.57 12.94 3.58 4.37, 18.07 13.38 14.41 3.52 4.37, 18.18

Body mass g 14.62 9.15 14.84 2.2, 104.4 16.68 10.05 19.76 2.1, 167.7

Ln (body mass) 2.35 2.21 0.77 0.79, 4.65 2.42 2.31 0.84 0.74, 5.12

Species richness 10 species 4.04 3.35 2.64 0.5, 10.25 4.51 3.87 2.82 0.5, 10.7

Peak frequency kHz 40.61 40.85 14.28 7.4, 89.83 51.17 47.11 24.74 7.4, 158.97

Ln (peak frequency) 3.63 3.71 0.4 2, 4.5 3.83 3.85 0.48 2, 5.07

The raw body mass and peak frequency were not used in the analysis.

Frontiers in Ecology andEvolution 05 frontiersin.org

https://doi.org/10.3389/fevo.2022.934876
https://biodiversitymapping.org/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Kotila et al. 10.3389/fevo.2022.934876

richness and body mass. Instead of fitting phylogenetic path

analysis using generalized least squares (GLS) (von Hardenberg

and Gonzalez-Voyer, 2013), we applied the Bayesian framework

using the R package brms version 2.14.4 (Bürkner, 2018) for

Bayesian multilevel modeling using Stan. This was done because

GLS is inherently biased (Hadfield and Nakagawa, 2010), and

this bias is likely to be exacerbated; when the sample size is

not large, multivariate normality is not met and the model

is misspecified (Olsson et al., 2000). Moreover, the Bayesian

approach does not depend on the large sample theory and

is thus more appropriate for small to moderate sample sizes

(Depaoli, 2021). Finally, Bayesian estimation is not limited

by similar identification constraints as frequentist approaches

(Depaoli, 2021), allowing, for example, the possibility to perform

robustness checks for omitted confounding (see Robustness

Checks). We did not perform model selection because our aim

was to contrast a priori selected hypotheses.

A phylogenetic correlation matrix was compiled using the

package ape 5.4-1 (Paradis and Schliep, 2019). This matrix was

then used to specify the correlation structure in an intercept-

only group-level effects (equivalent to random effects in

frequentist approaches) in the phylogenetic pathmodels. Default

uninformative Student’s t-test (degrees of freedom= 3, location

= 0, scale = 2.5) priors were used for standard deviations

of group-level effects and residual standard deviations. We set

weakly informative normally distributed (mean = 0, SD = 2)

priors for the population-level effects (equivalent to fixed effects

of frequentist approaches) to rule out unrealistic parameter

draws during the Markov chain. We performed a sensitivity

analysis to confirm that our choice of priors for population-

level effects does not affect the results in an unexpected

way. The results were insensitive as both uninformative and

more informative priors yielded virtually the same results than

the weakly informative priors (see Supplementary Table 2 for

more details).

The model was run for 10,000 iterations with a warm-up

of 2,000 iterations using two chains, which was repeated for

500 random trees from the posterior sample of the phylogeny.

The posterior samples were thinned with a factor of 4 to avoid

autocorrelation (Depaoli, 2021). This resulted in 500 individual

model fits with 4,000 posterior samples each.

Convergence of chains was inspected by checking the

potential scale reduction factor (Gelman and Rubin, 1992).

This was 1.0 (full convergence) for every parameter in >90%

of model fits and always below 1.08. Before calculating the

following statistics, the posterior distributions of the 500

fitted models were combined by relevant parameters into the

final distributions with 2,000,000 posterior samples. Medians,

probabilities of direction (Makowski et al., 2019), and 95%

credibility intervals were extracted for the parameters of

interest from the corresponding posterior distributions. The

values for indirect effects were calculated by multiplying the

posterior distributions of the two associated path coefficients

(Miočević et al., 2018). Distributions for extracting values

of phylogenetic signals for each response variable were

calculated by dividing squared group-level standard deviations

by the sum of themselves and the residual standard deviation

[i.e., SD2
group/(SD

2
group+SDres)]. Model fitting was performed

separately with the same specifications for both the aerial

hawking subset and the full data. An example of R code for

fitting the brms model and calculating the descriptive statistics

from the results is available at https://github.com/mhkoti/path_

analysis.

We consider a hypothesis supported if the fitted path

coefficients are in line with the predicted direction and result in a

non-zero direct or indirect effect of humidity on peak frequency.

Because we test directional (constrained) hypotheses, we define

non-zero here as >95% probability of direction (pd), which

indicates the proportion of posterior mass located in the median

side of zero (Makowski et al., 2019).

Robustness checks and model fit

To check robustness of the previous results to external

model misspecification (i.e., omitted confounders), we fitted

the path model by estimating the error correlations among all

the response variables. Such error correlations model all the

unmodeled associations among the variables in question. Note

that such a model would not be identified in the frequentist

framework owing to the negative degrees of freedom but can

be estimated using the Bayesian approach (Depaoli, 2021). If

there are important unobserved confounders, we expect clear

changes in our estimates of direct and indirect effects (Pearl,

2009). In addition, fitting such error correlations provides an

opportunity to test model fit to the data using conditional

independences, given by d-separation criterion (Shipley, 2016).

For our model, there was just one conditional independency

statement (i.e., basis set), which would indicate a good model

fit to the data: species richness should be independent of body

mass when conditioned on humidity if the model was correctly

specified. Given the model structure examined here, such a test

is statistically equivalent to looking at whether the errors of

species richness and body mass are correlated (Shipley, 2016).

The default uninformative LKJ correlation prior for Cholesky

factors with a default eta parameter value of 1 was used for error

correlations among the response variables. The specifications

described earlier for the main model apply for the correlated

error model.

We further inspected the fit of the main models with

graphical posterior predictive checks (PPCs) using the

bayesplot R package version 1.8.0 (Gabry and Mahr, 2019)

through a wrapper function provided by the brms package

(Bürkner, 2018). In PPCs, new datasets are generated

according to the model. These sets are then visually

compared with the actual data used in fitting the model.
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If the model has performed well, generated and actual

data will resemble each other. A PPC was performed from

a combined output of 50 randomly selected model fits

to account for phylogenetic uncertainty, while combined

posterior distributions of 500 model fits were used to extract

all other parameters.

Finally, we examined the influence of intraspecific variation

in peak frequency measurements on our results. Such a variation

is documented in the literature since geographical area, season,

chosen methodology, and possibly other unknown parameters

could together affect the measured species-specific average

(Russo et al., 2018). However, the available data for most

species are insufficient in this regard. We fitted a quadratic

function between average peak frequency and its standard

deviation using all the species in the data with more than

one study as source information (see Supplementary Data

and Supplementary Figure 3). Using this fitted function, we

estimated standard deviation of intraspecific variability for

the range of peak frequencies. Then, we created simulated

datasets drawing random samples for each species from

a normal distribution with a species-specific mean (i.e.,

the average of the reported peak frequency values, see

Supplementary Data) and standard deviation derived using the

quadratic function. To account for phylogenetic uncertainty,

we used 20 different trees, for each of which we ran 10

samples; that is, a total of 200 models were estimated, and

the posterior distributions of these models were combined

into the final simulated error model. Furthermore, to evaluate

the consequences of more severe measurement errors in

peak frequency, we repeated the aforementioned procedure

by using a larger intercept for the function fitted (severe

error model, Supplementary Figure 3). The other specifications

were used in the main model. Separate models were again

fitted for the full data and aerial hawking subset. Should

the main model be sensitive to measurement error in

peak frequency, the estimates or their credibility intervals

in the simulated error models deviate from those in the

main model.

Results

We found no evidence for the attenuation hypothesis as the

direct effect of humidity on peak frequency did not statistically

differ from zero in the full dataset (Figure 4 and Table 2). This

was also true for the aerial hawking subset of the data, for which

we predicted a stronger negative direct effect of humidity on

peak frequency (Figure 4 and Table 2).

Instead, our results support the body size constraint

hypothesis as the associated path coefficients were positive

and differed from zero in both datasets (Table 2). The

resulting body mass-mediated indirect effect of humidity

on peak frequency was nearly 40% higher in the aerial

hawking subset (0.0078 with 98.15% pd) than in the full

data (0.0049 with 96.39% pd) (Figure 4 and Table 2). Due

to ln-transforming peak frequency, indirect effects contribute

to a 0.78 and 0.49 percent increase in peak frequency for

a one-unit (a gram of water vapor per kilogram of air)

increase in specific humidity in the aerial hawking subset

and in full data, respectively. In the aerial hawking subset,

for example, a standard deviation increase (3.58, Table 1) in

humidity is associated with a 1.13-kHz increase in 40-kHz

peak frequency.

The paths associated with the diversity hypothesis were

positive in both datasets as predicted (Table 2). In the full data,

the indirect effect via bat species richness was non-zero with

an estimate of 0.0123 and 99.85% pd (Figure 4 and Table 2),

supporting the diversity hypothesis. This indirect effect on peak

frequency equals a 1.24 percent change per one unit change

in humidity. Thus, 40-kHz sound would increase 1.76 kHz per

standard deviation increase (3.51, Table 1) in humidity. The

indirect effect was weaker in the aerial hawking subset, as

expected, and did not exceed the limit of 95% pd (Figure 4 and

Table 2).

We also calculated a total effect of humidity on peak

frequency, which is a sum of its direct and indirect effects. The

total effect of humidity was 0.0132 in the aerial hawking subset

and 0.0198 in the full data, contributing to 1.32 and 1.99 percent

changes per one unit change in humidity in the aerial hawking

subset and full data, respectively. Therefore, a standard deviation

increase in humidity (Table 1) would be associated with 1.94

and 2.88 kHz increases in 40-kHz peak frequency in the aerial

hawking subset and full data, respectively. Path- and route-

specific estimates, phylogenetic signals, and their corresponding

credibility limits are presented in Supplementary Table 4.

Allowing correlated error terms resulted in minor

changes in the estimates of direct and indirect effects

(Supplementary Table 5) suggesting that our results are

relatively robust to omitted confounders. Note that the

inclusion of error term correlations somewhat widened the

posterior distributions, but this is likely due to added complexity

in the model (i.e., a bias variance trade-off in estimated effects

and their uncertainty, Supplementary Figure 6). Moreover, the

errors of body mass and species richness were not associated in

either of the datasets [aerial hawking: posterior median = 0.055

(95% credibility limits = −0.166, 0.280); full dataset: posterior

median = 0.003 (95% credibility limits = −0.199, and 0.215)],

showing that the main models fitted the data well. Moreover,

graphical posterior predictive checking indicated that the data

generated by the primary model is relatively close to the actual

data, again suggesting a reasonable fit (Supplementary Figures 7,

8). In addition, simulated error models also did not indicate

high sensitivity to error in the peak frequency because regardless

of the slight changes in the estimated effects, our biological

conclusions were not affected (Supplementary Figure 9 and

Supplementary Table 10).

Frontiers in Ecology andEvolution 07 frontiersin.org

https://doi.org/10.3389/fevo.2022.934876
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Kotila et al. 10.3389/fevo.2022.934876

FIGURE 4

Posterior distributions for the direct and indirect e�ects of humidity on peak frequency from the path analysis for the aerial hawking subset and

full data: Plotted distributions consist of 200,000 posterior samples each because thinning factor of 10 was applied prior to plotting.

TABLE 2 Path coe�cients (coef.) and probabilities of direction (Pd) for each individual path and the corresponding indirect e�ects (bolded) by

dataset: all parameters are calculated from the full posterior distributions with 2,000,000 samples each.

Aerial hawking Full data

Hypothesis Path / indirect effect Coef. Pd Coef. Pd

Attenuation Humidity on peak frequency −0.0012 56.42 0.0025 64.22

Body mass constraint Humidity on body mass −0.0303 98.15 −0.0248 96.39

Body mass on peak frequency −0.2623 100 −0.201 100

Indirect effect via body mass 0.0078 98.15 0.0049 96.39

Diversity Humidity on species richness 0.4291 100 0.4349 100

Species richness on peak frequency 0.0153 90.32 0.0285 99.85

Indirect effect via species richness 0.0065 90.32 0.0123 99.85

Discussion

Our results demonstrate that the positive covariance (i.e.,

total effect) between specific humidity and peak frequency is

likely explained by its indirect effects via body mass and bat

species richness. This finding thus supports both the body

mass constraint and diversity hypotheses. No direct effect

between specific humidity and peak frequency was observed.

The robustness checks performed indicate that the results are

reasonably robust to model misspecification and non-systematic

error in the reported peak frequency values.

Attenuation hypothesis

The lack of support for the attenuation hypothesis is

interesting because atmospheric attenuation of sound is perhaps

the most discussed candidate for a climatic driver of bat

bioacoustics (Griffin, 1971; Lawrence and Simmons, 1982).

Attenuation could simply be a less relevant issue than previously

suggested. However, the following possible reasons behind

the lack of support should be considered. The effects of

attenuation on the acoustic signals of different species could be

highly variable and not always manifest in the peak frequency.
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Thus, the alternative strategies among the studied bat taxa

could create enough noise to mask the effect of attenuation.

In addition to decreasing peak frequency, bat species could

increase the echolocation pulse duration and signal amplitude

to increase the detection range (Schnitzler and Kalko, 2001).

Furthermore, attenuation could be mitigated by optimizing,

for example, timing and location of the foraging activity,

and foraging patterns in relation to clutter. In this case, the

macroecological scale might not be fine enough to catch the

effect of attenuation.

Diversity hypothesis

Contrary to the attenuation hypothesis, the diversity

hypothesis can only be held true when a range of feeding

guilds is considered. According to our predictions, the effect

mediated by bat species richness decreased after excluding

clutter foraging bat taxa. As shown by the posterior predictive

check, the model did not perfectly predict bat species richness

values. Presumably, this is due to the oversimplification of the

humidity–richness–peak frequency–route; that is, our model

predicts the number of sympatric bat species solely based on

specific humidity, even though we know that there are many

other factors involved. As visualized in Supplementary Figure 1,

bat diversity on islands is often relatively low because of

isolation. Also, neotropics appear richer in bat species than the

old world. These and other unmodeled processes probably affect

the humidity richness regression and result in the predictive

error, increasing with specific humidity, which we observed

in the posterior predictive check (Supplementary Figure 8).

As discussed by Conenna et al. (2021), bats inhabiting areas

with extremely low humidity, such as the Arabian Peninsula,

may also deviate from the general trend by exhibiting clutter

forager traits. In such areas, the scarce food items are centered

around the few patches of vegetation. Moreover, considering the

abundance of different sympatric species would be beneficial

if frequency band partitioning is a major component for the

path between richness and peak frequency. Nevertheless, the

indirect effect predicted by the diversity hypothesis in the full

dataset was the strongest link between humidity and peak

frequency, indicating its important role in the evolution of

peak frequency.

Body size constraint hypothesis

As expected, the indirect effect mediated by body mass

persisted in both the aerial hawking subset and full data.

However, the aerial hawking subset had an almost 40% larger

estimate and slightly higher probability of direction, regardless

of smaller sample size. Both paths in the body mass-mediated

route had a larger estimate in the aerial hawking subset (Table 2).

This could simply result from the presence of phyllostomids

and other non-insectivorous bat taxa in the full data. Compared

to the insectivorous bat taxa, which make up nearly 100% of

the aerial hawking subset, there is indeed a weaker association

between body mass and peak frequency in phyllostomid and

non-insectivorous bats (Jones, 1999; López-Cuamatzi et al.,

2020).

Along with body size, the wing surface area contributes

to thermoregulation because a larger wing surface dissipates

more heat (Rubalcaba et al., 2022). Therefore, focusing on body

mass only could be problematic if surface area-to-body mass

ratio (S-MR) varies within data. This could be the case in the

full dataset because high S-MR associates with clutter foraging

(Nordberg and Rayner, 1987). On the other hand, S-MR could

have less variance in the aerial hawking subset, which lacks most

clutter foraging taxa. The weaker correlation between humidity

and body mass in the full data set compared to the aerial

hawking subset could therefore result from a problem in model

specification and not biological difference.

In addition, the difference between the two sets of data

could be explained with high metabolic heat generation in

flight (Thomas and Suthers, 1972; Thomas et al., 1991; Voigt

and Lewanzik, 2011). Although completely speculative, aerial

hawking bats may be spending more time aloft than clutter

foraging bat species, with the latter often utilizing alternative

feeding strategies such as perch hunting, catching vertebrates,

and visiting known stationary food sources such as fruiting trees.

Hence, large body size could be more of a burden in aerial

hawking bat families. Flight is indeed considered an important

constraint for body size in bats due to its biomechanical

requirements (Nordberg and Rayner, 1987; Arévalo et al., 2020).

However, heat conservation has been recently suggested as the

main thermoregulatory cost in flying bats (Rubalcaba et al.,

2022), contrasting the ideas of James (1970), and therefore the

premise of the body size constraint hypothesis.

Scientific framework

Recently, Conenna et al. (2021) found a negative correlation

between aridity and bat peak frequency. The result is analogous

with the positive total effect of humidity on peak frequency

observed in this study. Moreover, Conenna et al. (2021)

found a positive correlation between aridity and body size,

which is in agreement with the negative correlation that we

found between humidity and body size. However, our result

suggests that the positive indirect effect of body size also

contributes to the positive total effect of humidity on peak

frequency, adding a novel dimension to the understanding

of the topic. Other studies on the effects of climate on

bat echolocation characteristics are not widely applicable in

large scale because they have been hypothetical (Griffin, 1971;

Lawrence and Simmons, 1982; Luo et al., 2014), focused on
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only one or two species (Guillén and Ibáñez, 2000; Armstrong

and Kerry, 2011; Mutumi et al., 2016) or lacked phylogenetic

approaches to correct for relatedness among taxa (Snell-Rood,

2012).

While interpreting the results of this study, the spatial

and the temporal scale should be considered (Teng et al.,

2020). The spatial scale in our dataset might be too coarse

to accurately describe the species-specific foraging conditions

because there are usually variable habitats and microclimates

for a bat species to exploit within one 0.5-degree raster cell.

Moreover, the distribution polygons only specify the general

extent of distribution for each species, and not all cells within

that area are guaranteed to be occupied by the species. Similarly,

annual average conditions might not accurately summarize the

relevant periods of foraging activity for all species (Vasko et al.,

2020). For the aforementioned reasons, our results should be

interpreted as the correlation of the general conditions and

the selection of different habitats within the geographic area

occupied by a species. Unfortunately, the effect of the preferred

foraging habitat on bat traits is too fine-scaled for the used data.

However, error in the predictor variables could result

in causally inconsistent estimates regarding those predictor

variables (Shipley, 2016). This is a potential pitfall for our study

because the used body mass data do not consider intraspecific

variation, the distribution ranges might have errors, and current

environmental conditions are used, instead of historical ones.

Therefore, we do not want to interpret the observed correlations

as proven causal estimates, which are inherently unknown.

Significance and e�ect size

Despite the high probability of the direction of hypothesized

effects, the indirect effects predicted by the body mass constraint

and diversity hypotheses are quite small compared with the

range of peak frequency. Therefore, our results do not explain

a large portion of peak frequency variation, which is mostly

determined by other factors. The largest effect size for a single

indirect effect was for the richness-mediated route in the full

data and has a value of 0.0123 (1.24% change per 1‰ change

in specific humidity), while the total effect of humidity in

the full data was 0.0197 (1.99% change per 1‰ change in

specific humidity). According to these numbers, the effect of

humidity on 40-kHz peak frequency would be roughly 12.5 kHz

between the two extremes of the humidity range in our data

and only 2.9 kHz between environments with one standard

deviation (3.51) difference in humidity. For context, many bat

species can change their peak frequency 5 kHz or more on

average whenmoving between open and confined environments

(Mora et al., 2011; Pedro and Simonetti, 2014). However,

the frequently observed situation-dependent peak frequency

switches of <5 kHz suggest that such differences are ecologically

relevant. Even though error in the predictor variables could

influence our results, the observed trends in our data suggest

evolutionary pressure and could therefore provide important

considerations for future research. Moreover, we believe that

these trends can be significantly more pronounced or even

dominant drivers of acoustic evolution in some of the bat groups

included in our analysis. Carefully separating these groups in the

analyses could provide a yet more comprehensive understanding

of these effects and reveal even more relevant group-wise

effect sizes.

Conclusion

Specific humidity within the distribution range correlated

with species-specific average peak frequency of tropical and

subtropical bats via two distinct routes. These routes were

mediated by average body mass and sympatric bat species

richness, as predicted by the body mass constraint hypothesis

and the diversity hypothesis, respectively. Even though the

causal interpretation of the results could be affected by

measurement error in the predictor variables, the model

specification appears robust after vigorous testing, and the effect

size can be considered ecologically meaningful. This suggests

that the global variation of bat echolocation could be affected by

specific humidity and highlights the potential of indirect effects

in explaining contemporary variation of functional traits.
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