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The effect of landscape patterns and environmental factors on the population

structure and genetic diversity of organisms is well-documented. However,

this effect is still unclear in the case of Mymaridae parasitoids. Despite

recent advances in machine learning methods for landscape genetics,

ensemble learning still needs further investigation. Here, we evaluated the

performance of different boosting algorithms and analyzed the effects of

landscape and environmental factors on the genetic variations in the tea green

leafhopper parasitoid Stethynium empoasca (Hymenoptera: Mymaridae). The

S. empoasca populations showed a distinct pattern of isolation by distance.

The minimum temperature of the coldest month, annual precipitation,

the coverage of evergreen/deciduous needleleaf trees per 1 km2, and

the minimum precipitation of the warmest quarter were identified as

the dominant factors affecting the genetic divergence of S. empoasca

populations. Notably, compared to previous machine learning studies, our

model showed an unprecedented accuracy (r = 0.87) for the prediction

of genetic differentiation. These findings not only demonstrated how the

landscape shaped S. empoasca genetics but also provided an essential basis
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for developing conservation strategies for this biocontrol agent. In a broader

sense, this study demonstrated the importance and efficiency of ensemble

learning in landscape genetics.

KEYWORDS

landscape genetics, machine learning, parasitoid, climate change, biology
conservation

Introduction

The field of landscape genetics quantifies how
heterogeneous landscape features and environmental factors
shape genetic variations in living organisms. It has been
applied in many research areas, such as conservation biology,
alien species invasion, and pest management (Bowman et al.,
2016; Jonsson et al., 2017). Traditional landscape genetics
studies are often restricted by the subjectivity of producing
resistance surfaces and the difficulty of addressing inter-variable
interactions (Pless et al., 2021). Compared to these traditional
methods, machine learning algorithms can develop strong
non-linear regression models (Elavarasan et al., 2018). Further,
with increasing access to remote sensing and climate data,
machine learning methods can be used to explore the effects
of multiple environmental factors on genetic variations at any
sampling scale. Some machine learning approaches include
deep learning (Kittlein et al., 2022) and random forest (Murphy
et al., 2010; Sylvester et al., 2018; Shanley et al., 2021) been
recently developed for their application in landscape genetics.

Despite increasing applications, current machine learning
methods still show some limitations for landscape genetics.
For example, a convolutional neural network (CNN), a deep
learning method first introduced in landscape genetics by
Kittlein et al. (2022), usually performs poorly on small
datasets (Elavarasan et al., 2018). This is a major limitation
as the number of sample sites in most population-based
landscape genetic studies is often <50. Additionally, CNN
approaches are limited in their ability to identify features
at different sampling scales, such as sampling over oceans.
They show substantial distance disparities, resulting in high
variance across samples. Consequently, extracting useful
features from remote sensing images using CNN becomes
challenging. Comparatively, ensemble learning methods are
gaining attention in landscape genetics. Ensemble learning aims
to improve predictive performance by aggregating predictions
from many weak models (Opitz and Maclin, 1999; Polikar,
2006) and has some algorithms, such as bagging, boosting, and
stacking. Ensemble methods have currently shown excellent
performance in various fields, including production forecasting
and gas emission forecasting (Bossavy et al., 2013; Liu et al.,
2020; Chen K. et al., 2021). Random forest is the most frequently

used ensemble learning algorithm in landscape ecology and
genetics. It is compatible with multiple variables and can
effectively extract the relative importance of features. However,
the recently developed algorithm, iterative random forest,
have low prediction accuracy (Pless et al., 2021); therefore,
evaluating the performance of different ensemble algorithms
and identifying the appropriate methods that can be used in
fine-scale landscape genetics studies is necessary.

Biological control is a sustainable pest management strategy
to reduce the application and adverse effects of chemical
pesticides (Cranham, 1966; Nakai, 2009; Zhuang et al., 2009;
Yue et al., 2010; Carvalho, 2017) and genetically modified
crops (Rodriguez-Saona, 2018). To develop effective biological
control strategies, investigating the effects of landscape features
and environmental factors on the genetic variations in wild
natural enemies is necessary using landscape genetics methods.
Stethynium empoasca Subba Rao (fairy wasp; Hymenoptera:
Mymaridae) is an egg parasitic natural enemy (Huber, 1986;
Mills, 1994) of Empoasca onukii Matsuda, the most destructive
insect pest of tea plantations in East Asia. Some members of
the Mymaridae family, such as Gonatocerus ashmeadi Girault
in Tahiti (Grandgirard et al., 2007) and Paranagrus optabilis
Perkins in Hawaii (Funasaki et al., 1988), have been used
in biological control since a long time. However, only a few
studies have analyzed their genetics (de León and Jones, 2005;
De Leon et al., 2009; Nadel et al., 2012; Li et al., 2021).
S. empoasca, having a high rate of parasitism (up to 30%;
Li et al., 2021) in the field, is the most promising candidate
for conservative biological control of E. onukii. Examining
its population genetic variation and its relationship with the
landscape features and environmental factors will provide a
better understanding of its survival requirements and the
influence of environmental factors; moreover, this may further
assist in developing conservative strategies for better biological
control of E. onukii.

In this study, we determined which ensemble model
performed best on the collected data and then identified the
environmental and landscape factors that could affect the
genetic differentiation and diversity of S. empoasca. Our findings
could provide practical suggestions for conserving S. empoasca
parasitoids that serve as biocontrol agents. To the best of our
knowledge, our research is the first to demonstrate a practical
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empirical method for exploring the landscape genetics of the
Mymaridae family.

Materials and methods

Sample collection and microsatellite
genotyping

The study was conducted in Fujian Province, China. Twenty
tea plantations with different ambient landscape patterns and
latitudes were selected for the study. To minimize the influence
of recent tea seedling transportation and differences in pesticide
use, only conventional tea plantations planted many years
ago were selected for this study. In total, 506 S. empoasca
individuals were collected from 20 sample sites (17 sites in
Wuyishan city and 1 site each in Anxi, Fuzhou, and Fuding
cities) in 2019 (Table 1). After sample collection, all individuals
were confirmed by morphological identification according to
previous studies (Triapitsyn et al., 2019).

The habitus image of S. empoasca is shown in
Supplementary Figures 1, 2. Ten microsatellite loci developed
by Li et al. (2021) were tested and selected to genotype
S. empoasca. To improve the amplification efficiency of these
loci and to reduce their cost, a primer tail C was added to
the 5′ end of the candidate forward primer, and a fluorescent
marker was added to identify the genotypes of the various
loci (Blacket et al., 2012). A polymerase chain reaction (PCR)
reaction was conducted in a 10 µL. After amplifying the
microsatellite marker listed in Supplementary Table 1 and
the PCR procedures shown in Supplementary Table 2, the
PCR products were analyzed using an ABI 3730 xl DNA
Analyzer (Thermo Fisher Scientific, Waltham, MA, USA)
and a GeneScanTM 500 LIZ R© Size Standard (Thermo Fisher
Scientific). The microsatellite loci were manually determined
using GeneMapper v. 3.2 (Lemonick., 2000) and checked
for stuttering and large allele dropout by MICROCHECKER
v. 2.2.3 (Van Oosterhout et al., 2004). Finally, microsatellite
genotype data were obtained from 506 individuals and used in
the subsequent landscape genetics analysis.

Climate and landscape data

Two datasets were used to evaluate the effect of the
environment and landscape on genetic differentiation in
S. empoasca. We selected 19 bioclimatic variables with 1 km2

resolution in Woldclim (Fick and Hijmans, 2017) and 12
landscape variables with the same resolution in EarthEnv
(Tuanmu and Jetz, 2014). In the EarthEnv datasets, some
variables, such as open water, snow/ice, barren, deciduous
broadleaf trees, and regularly flooded vegetation, which rarely
exist in our study region, were finally not included in the

model (Supplementary Table 3). Each pixel on the map in
this EarthEnv dataset represents the percentage of one land-
cover class in a 1 km2 area. The ensemble learning method is
based on decision trees, which have been proven highly efficient
in dealing with redundant variables. Therefore, we did not
remove multicollinearity variables. All datasets were cropped
according to the extent of our study region. The straight-line
(STR) method was applied to construct the resistance surface to
calculate the resistance distance among the selected sample sites.
All resistance distances in this study were calculated using the
mean value of each pixel on the path between pairwise sampling
sites, aiming to avoid some distance-based bias that potentially
resulted from sampling site selection/distribution.

The land use raster map for each of the three regions
was downloaded from the 2018 National Standard Land Use
Type Classification on the Geospatial Data Cloud platform.1

The downloaded raster maps were classified into four land
cover types: forest, tea plantation, crop, and non-vegetation
area (e.g., water body, built-up, and empty area). Further, 1,000
and 2,000-m radius buffers were drawn for each site using
the “rgeos” package (Bivand et al., 2017) in R. To measure
the fragmentation levels in each study region, four class-
level and two landscape-level indexes were computed at the
allocated buffers. At the class level, the number of patches (NP),
edge density (ED), patch density (PD), and patch cohesion
index (COHESION) were used to describe fragmentation and
connectivity. Shannon’s diversity index (SHDI) and Shannon’s
evenness index (SIEI) were used to illustrate the landscape-level
fragmentation. The R package “landscape metrics” computed
these indexes (Hesselbarth et al., 2019).

Data analysis

Population genetic differentiation and genetic
structure analysis

Seven parameters, including allele number, allele
proportion, allele richness (AR), expected heterozygosity
(He), observed heterozygosity (Ho), inbreeding coefficient
within the population (Fis), and Hardy–Weinberg equilibrium
(HWE), were selected to illustrate S. empoasca genetic diversity
within a population. All variables were calculated using the
R package “diveRsity” (Keenan et al., 2013). Population
pairwise genetic differentiation (FST) was calculated between
a population pair using the R package “adegenet” (Jombart,
2008).

Discriminant analysis of principal components (DAPC) was
then performed using the R package “adegenet” to deduce
the spatial pattern of population structure. DAPC is a low
computational-cost method that performs a k-mean algorithm
after the transformation of principal component analysis (PCA)

1 http://www.gscloud.cn/
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TABLE 1 Genetic diversity and geographic information of 20 S empoasca populations based on 10 microsatellite loci.

Pop ID Longitude Latitude Sample size Allele number Alleles proportion AR Ho He P(HWE) Fis

XC 117.915436 27.638767 17 29 45.53 2.5 0.44 0.43 0.566 −0.0237

QLC 117.955289 27.609211 23 30 48.17 2.61 0.41 0.45 0.940 0.0886

FPC 118.027957 27.508488 30 36 55.42 2.84 0.46 0.45 0.904 −0.0138

XD 118.040168 27.755573 27 33 51.53 2.69 0.42 0.45 0.311 0.0627

HXZ 117.990902 27.767785 27 35 51.75 2.58 0.4 0.42 0.157 0.0611

TXC 117.986111 27.684444 22 30 47.61 2.46 0.4 0.41 0.951 0.0281

TM 117.93197 27.70965 25 31 48.81 2.56 0.43 0.44 0.26 0.0362

BYQ 117.935532 27.688545 26 31 49.5 2.55 0.45 0.45 0.086 0.0028

CD 117.857567 27.719317 32 30 48.17 2.45 0.45 0.42 0.847 −0.0794

JLS 117.941715 27.715562 31 31 50.08 2.51 0.42 0.42 0.26 0.004

DHP 117.961667 27.671231 28 32 51.67 2.68 0.49 0.46 0.937 −0.0644

WYX 117.99246 27.719104 18 33 52.3 2.7 0.43 0.46 0.578 0.0748

YZC 117.94686 27.802791 34 36 56.08 2.75 0.46 0.45 0.996 −0.0269

WX 118.005577 27.747276 30 33 53.33 2.65 0.43 0.46 0.717 0.0651

PKK 117.742787 27.684942 13 29 46.42 2.61 0.46 0.47 0.903 0.0102

SPC 117.985014 27.634001 24 37 57.58 2.84 0.48 0.5 0.003 0.0593

HXC 117.822625 27.673072 43 33 52.64 2.68 0.47 0.46 0.992 −0.0239

FD 120.388308 27.145455 20 39 62.86 2.9 0.51 0.5 0.038 −0.0109

FZ 119.22779 26.088089 28 37 56.42 3.02 0.5 0.51 0.418 0.0216

AX 117.873972 25.002417 8 26 42.17 2.45 0.48 0.47 0.851 −0.01

Pop ID, population abbreviations; allele number, the mean value of alleles observed across loci per population sample; alleles proportion, the mean percentage of total alleles observed
across loci per population sample; AR , allele richness; Ho and He , observed and expected heterozygosity, respectively; P(HWE) , p-value from Fisher’s exact test in Hardy–Weinberg
equilibrium (p < 0.05); Fis , inbreeding coefficient.

(Jombart et al., 2010). We used the “find cluster” function
with 107 iterations to determine the best genetic cluster.
A linear regression model and Pearson’s correlation analysis
were performed to detect the pattern of isolation by distance
(IBD).

Model comparison and construction
All models were run in Python 3.8. In the preliminary

analysis, we evaluated the performance of eight commonly used
ensemble learning algorithms: the Adaboost algorithm with
decision tree and random forest classifier, the eXtreme Gradient
Boosting (XGBoost) algorithm C decision tree and random
forest classifier, GradientBoosting algorithm with decision tree
classifier, the light gradient boosting (lightGBM) algorithm
with decision tree classifier, the goss algorithm, and the
cat boosting algorithm. In all eight models, environmental
resistance distance was used as an explanatory variable, and the
fixation index (FST) was used as a response variable. A Scikit-
learn test train split function was used with a 0.3 test set
split, and MinMaxScaler was used for data normalization. Four
metrics, namely, Pearson’s correlation coefficient (r), R-squared
(R2) value, root mean square error (RMSE), and mean absolute
percentage error (MAPE), were used to evaluate and compare
the performance of these models. Subsequently, a model with
the best performance was selected for further analysis.

The best model was tuned by GridSearchCV in Scikit-
learn. Specifically, all 28 environmental variables were used
to predict the STR-based resistance surface by the fitted
model. Resistance distance was then calculated using the STR-
based resistance surface by the least cost path (LCP) method.
A new model was tuned again using the new LCP datasets.
We also use the permutation importance to visualize our
machine learning model. Compared to other feature importance
ranking methods, permutation importance reconstructs the
relationship between the target and the feature through multiple
permutation calculations to explore the model’s dependence on
the feature. Subsequently, the predicted resistance surface was
transformed into a connectivity surface by taking the inverse of
each pixel value.

Effect of landscape pattern on genetic diversity
Considering the small number of datasets of 20 sample

sites, we performed Pearson’s correlation analysis in the R
package “Hmisc” (Harrell and Dupont, 2006) to evaluate
the relationship between the S. empoasca population’s genetic
diversity and landscape features around sampled tea plantations.
Three parameters, allele richness (AR), expected heterozygosity
(He), and observed heterozygosity (Ho), were selected to test the
relative relationship with landscape metrics by calculating the
relative coefficient and p-value in R.
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Results

Population’s genetic diversity and
differentiation

The estimates of genetic diversity determined by analyzing
the ten microsatellites in 506 individuals are shown in Table 1.
All genetic diversity indices showed extremely strong and
narrow ranges of changes (AR: 2.45–3.02; Ho: 0.4–0.51; and
He: 0.41–0.51). Except for Xingcun (XC), Fengpo (FPC),
Chengdun (CD), Dahongpao (DHP), Yangzhuang (YZC),
Hongxing (HXC), Fuding (FD), and Anxi (AX) populations,
the inbreeding coefficients (Fis) were more than zero for all
populations. The p-value of Fisher’s exact test showed deviation
from Hardy–Weinberg equilibrium (HWE) in Shangpu (SPC)
and FD populations. Higher genetic differentiation (FST > 0.07)
was found in Pikengkou (PKK), SPC, Fuzhou (FZ), and
AX populations (Figure 1) than in other pair populations
(FST < 0.04).

The DAPC cluster results showed that the best cluster
number of all 506 individuals was three (Figures 2A,B),
with no clear boundary identified between clusters. When the

cluster number was five and seven, all clusters are closed
to each other (Figures 2C,D). However, when the cluster
number was greater than seven, one cluster was distinctly
differentiated (Figures 2E,F). Both the linear regression model
(y = −0.0826 + 0.0133x; R 2 = 0.36; p < 0.001; Figure 3) and
Pearson’s correlation analysis (r = 0.60; p < 2.2e−16) showed
a significantly positive relationship between log-transformed
geographic distance and FST.

Effect of environmental factors and
landscape features on genetic variation

The model comparison results showed that the eXtreme
gradient boosting algorithm with a random forest regression
model (XGBoost-RFR) performed better than the other seven
boosting algorithms (Figure 4), with the highest R2 and r-value
and the lowest RMSE value. The MAPE value of the XGBoost-
RFR model is not the lowest. However, this model still has
an overall advantage over others. The Adaboost algorithm
with random forest regression model (Adaboost-RFR) showed
similar evaluation metrics, including r, R2, and MSE, but

FIGURE 1

Pairwise FST values among the twenty Stethynium empoasca populations.
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showed a higher MAPE value compared with the XGBoost-
RFR model (Figure 4). For both STR and LCP models,
the XGBoost-RFR model performed slightly worse on the
test set than on the train set (Table 2). The permutation
importance results showed that in the STR-based model, the
top four important factors were annual precipitation (bio_12),
temperature seasonality (bio_4), precipitation of the driest
quarter (bio_17), and precipitation of the driest month (bio_14),
while other factors, such as cultivated and managed vegetation
(class_7), evergreen/deciduous needleleaf trees (class_1), and
min temperature of the coldest month (bio_6), explained only
a small fraction of the prediction of genetic differentiation

(Figure 5). In the LCP-based model, the top four important
factors were bio_6, bio_12, class_1, and bio_18. Moreover, in
the test set, there is a strong correlation between the predicted
values produced by the XGBoost-RFR model with LCP distance
and the true values, but poor predictive power was found
for low values in the FST dataset (Figure 6). The predicted
genetic connectivity (Figure 7) and the map of the top four
important environmental factors (Figure 8) showed that less
precipitation and higher minimum temperature could block the
genetic connectivity of S. empoasca.

Most landscape metrics showed no significant relationship
with the three population’s genetic diversity metrics (i.e.,

FIGURE 2

Estimated population genetic cluster of S. empoasca populations. (A–F) DAPC cluster results at K = 3, 4, 5, 7, 8, and 15 separately.
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FIGURE 3

The linear regression model between log-transformed geographic distance and FST.

FIGURE 4

Model comparison of eight boosting algorithms with four loss metrics. “Adaboost-DT” and “Adaboost-RFR” are Adaboost algorithms with the
decision tree and the random forest classifier. “XGBoost-DT” and “XGBoost-RFR” are XGBoost algorithms with the decision tree and the random
forest classifier. “LightGBM-DT” and “LightGBM-goss” are light gradient boosting algorithms with the decision tree classifier and goss algorithm.
“GBM” is the gradient boost algorithm with the decision tree.
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TABLE 2 XGBoost-RFR model performance for train, test, and full sets using straight-line and least cost path methods.

Str-train Str-test Str-full LCP-train LCP-test LCP-full

Mean squared error (MSE) 0.00019 0.00031 0.00022 0.00012 0.00032 0.00018

Coefficient of determination (R2) 0.83063 0.73601 0.80143 0.88606 0.72528 0.83619

Mean absolute percentage error (MAPE) 0.29984 0.39686 0.32895 0.23631 0.42828 0.29390

FIGURE 5

Permutation feature the importance of the straight-line-based and LCP-based XGBoost-RFR model. The X-axis represents the permutation
importance score for each environmental factor.

AR, He, and Ho). At the 1,000 and 2,000-m radius buffers
(Supplementary Table 4), He and Ho showed a significantly
negative relationship with the cohesion index of the cropland
cover [1,000 m: r (He) = −0.57, r (Ho) = −0.56; 2,000 m: r
(He) = −0.47, r (Ho) = −0.51]. At the 2,000-m radius buffer,
AR was significantly positively correlated to the cohesion index
of non-vegetation land cover [r (AR) = 0.53]. In contrast, Ho
was significantly negatively correlated to the cohesion index of
non-vegetation land cover [r (Ho) =−0.53].

Discussion

Mapping genetic connectivity and exploring the relationship
between environmental variables and genetic differentiation in

a species are critical preliminary aspects of landscape genetics
(Manel et al., 2003; Manel and Holderegger, 2013). In this study,
based on the population genetic differentiation analyses using
DAPC and FST estimation, we proposed an ensemble learning
method that uses XGBoost-RFR to map landscape connectivity
and identify the most critical landscape variables associated with
the population genetic variations in S. empoasca, an essential
parasitic natural enemy in tea plantations.

Regarding population genetic differentiation, DAPC showed
an unclear genetic cluster of S. empoasca populations, while FST

estimation proved significant differences between the PKK, SPC,
FZ, and AX populations. Previous studies on other parasitoids
conducted at large scales (Mitrović et al., 2013; Tait et al.,
2017) or both large and small scales (Zepeda-Paulo et al.,
2016; Garba et al., 2019) showed a distinct population genetic
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FIGURE 6

Line chart showing FST vs. predicted genetic differentiation value for the FST test set. Pearson’s correlation coefficient is 0.87 (p < 2.2e−16).

structure considering the large scale and an unclear population
genetic structure considering the small scale. Based on the
substantial differences between S. empoasca and other taxa
in terms of body size and dispersal capacity, we interpreted
that the genetic structure of parasitoids could be remarkably
influenced by dispersal capacity (Kankare et al., 2005). Our
results demonstrated that IBD strongly affected the genetic
differentiation of S. empoasca populations, with population
genetic distance increasing linearly with the log of geographic
distance, as previously detected in most arthropod species
(Silva-Brandão et al., 2015; Wright et al., 2015).

The results of primary model selection revealed that booting
strategy evaluation results were similar for all models, except
for the light gradient boost algorithm and the goss algorithm.
The XGBoost-RFR model showed the best metrics. Therefore,
XGBoost-RFR model algorithms can be a useful tool in
landscape genetics, especially at small sampling scales. Our
model exhibited a high correlation (r = 0.87) between the final
predicted value and actual genetic differentiation data, which
contrasts compared to the results of previous studies (Murphy
et al., 2010; Hether and Hoffman, 2012; Sylvester et al., 2018;
Pless et al., 2021; Shanley et al., 2021) with comparatively fewer

computing resources and workload. Although the accuracy of
the prediction depends on many aspects, such as data size, data
quality (Farooqi et al., 2018), feature number, model selection,
and parameter tuning (Deiss et al., 2020), the boosting algorithm
has been proven to be more efficient than the bagging algorithm
(Kotsiantis and Kanellopoulos, 2012). Conversely, the error
metrics of the XGBoost-RFR model indicated that no overfitting
was detected on the test set. Therefore, we believe that our model
is a good representation of genetic status.

We use the inverse of each pixel value of each predicted
map to represent genetic connectivity in our study region,
which means an area with high resistance capacity will exhibit
a low genetic connectivity value. All regions with distinctive
features (high or low genetic connectivity value regions) in
the connectivity map have a similar pattern to the original
map (Figures 7, 8) but are not the same. In other words, this
connectivity map can be seen as a comprehensive result of all
input factors. Individuals from high genetic connectivity regions
(light blue and light orange regions on the map) may encounter
more resistance when they move to the dark color region.

When we first used STR methods to build the resistance
surface, each pixel on this surface contained information about
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FIGURE 7

Genetic connectivity map using the FST full set. The red triangle shows the collection sites for S. empoasca (genetic data).

the environment and genetic data. When we constructed
the LCP using the STR-based resistance surface, each pixel
in the map represented a comprehensive result of 19
bioclimatic factors and was used for subsequent analysis. Annual
precipitation is considered the critical factor, given that it has
the highest importance score in both two models. The effect
of precipitation on genetic differentiation has been frequently
detected in plant and virus species (Avolio et al., 2013; Palinski
et al., 2021) but seldom in arthropods (Du et al., 2009;
Wellenreuther et al., 2011; French et al., 2022). This could
be attributed to some reasons. For example, the precipitation
variance across different seasons may be inconsistent with the
life cycle of S. empoasca.

On the other hand, precipitation in the warmest quarter
(bio_18) contains similar information to that of minimum
precipitation in the driest quarter and month (bio_17 and
bio_14) but deeper. As we know, higher temperatures
always accompany lower precipitation amounts. Moreover,
temperature seasonality was also implied in bio_18 and bio_6
in the LCP model; this could indicate that temperature
seasonality across a year affects genetic differentiation, but
lower temperature contributes more. Some other factors,

such as wind speed (sfcwind), mean temperature of the
wettest quarter (bio_8), the max temperature of the warmest
month (bio_5), and others show less contribution to genetic
differentiation, therefore can be seen as irrelevant factors.
Regarding minimum temperature, many studies have shown
that temperature, especially cold weather (Chen Y. et al.,
2021), has a significant effect on the genetic differentiation
and evolution process of living species (Lamb, 1992; Sinclair
et al., 2003; Soderberg, 2021), and our results further confirmed
this relationship. In contrast to the connectivity map and the
original map, in the LCP model, areas with higher coverage
of evergreen/deciduous needleleaf trees always occur with a
lower genetic connectivity value. Previous studies on other
species have shown a positive relationship between elevation
and population genetic differentiation (Bowman et al., 2018;
Mushegian et al., 2021). Our results showed that elevation
has a marginal effect on the S. empoasca population’s genetic
differentiation, although it is not a decisive factor.

Furthermore, genetic diversity indexes and most
landscape metrics were not significantly associated—only
a few landscape metrics, for example, the cohesion of
cropland, significantly negatively affected the S. empoasca
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FIGURE 8

Maps of the top four environmental variables. (A) Minimum temperature of the coldest month. (B) Annual precipitation. (C)
Evergreen/deciduous needleleaf trees. (D) Precipitation in the warmest quarter.

population’s genetic diversity. This could be attributed
to anthropogenic factors, such as pesticide utilization
and farming practices, which may decrease the genetic
diversity in S. empoasca (Dong et al., 2018; Mushegian et al.,
2021).

Conclusion and implications for
conservation

Our study indicated that annual precipitation, minimum
precipitation in the warmest quarter, and minimum
temperature in the coldest quarter are key climate factors
in shaping the genetic differentiation of S. empoasca; moreover,
evergreen/deciduous needleleaf tree land cover is the only key
landscape factor that was related to the genetic differentiation
of S. empoasca. The genetic connectivity map showed that

S. empoasca populations in our sampling regions are genetically
isolated. Therefore, the increasing occurrence of extreme
weather events is unfavorable for the growth and development
of S. empoasca populations, particularly those with a slight
pattern of IBD. Our analyses also demonstrated a significant
pattern of isolation by geographical distance in S. empoasca and
a significantly negative effect of cropland on its population’s
genetic diversity. These findings indicate that reductions
in anthropogenic activities may be one of the strategies
to ensure better conservation strategies for S. empoasca
populations. Further, to better promote the natural control
of S. empoasca on the tea green leafhopper, a relatively
stable environment should be considered when managing tea
plantations, with lower temperature variation and appropriate
precipitation. Besides, our study demonstrated that the XGBoost
algorithm could be helpful in mapping genetic connectivity
and identifying key environmental factors at fine spatial scales
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for living species. From a broader perspective, we believe that the
proposed method can be applied to other species at any scale.

To the best of our knowledge, this study is the first to
practically explore the landscape genetics of a member of the
Mymaridae family. We believe that the findings of this work
may facilitate the development of more efficacious strategies
for employing these natural enemies in biological control.
Future studies could focus on expanding the study scale of
landscape genetics.
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