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Invasive alien plants (IAPs) pose a significant threat to the ecological

environment and agricultural production in China. Ageratina adenophora is

one of the most aggressive IAPs in China and poses serious ecological and

socioeconomic threats. Estimating the distribution pattern of A. adenophora

in China can provide baseline data for preventing damage by this weed. In the

present study, based on the equilibrium occurrence data of A. adenophora

in China and related environmental variables, we used an ensemble model

to predict the distribution pattern of A. adenophora in China under climate

change. Our findings indicated that true skill statistic (TSS), area under the

receiver operating characteristic (ROC) curve (AUC), and Cohen’s Kappa

(KAPPA) values for the ensemble model were 0.925, 0.993, and 0.936,

respectively. The prediction results of the ensemble model were more

accurate than those of the single models. Temperature variables had

a significant impact on the potential geographical distribution (PGD) of

A. adenophora in China. The total, high, and moderate suitability habitat

areas of A. adenophora in China were 153.82 × 104, 92.13 × 104, and

21.04 × 104 km2, respectively, accounting for 16.02, 9.60, and 2.19% of the

Chinese mainland area, respectively. The PGD of A. adenophora in China

under the current climate is mainly located in southwestern and southeastern

China, which are located in the tropical and subtropical zone. The high-

suitability habitat areas of A. adenophora decreased under the future climate

scenarios, mainly by changing to moderately suitable habitats in Southwest

China. The geographical distribution of A. adenophora in southwestern

China is currently saturated and will spread to southeastern China under

Frontiers in Ecology and Evolution 01 frontiersin.org

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.973371
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.973371&domain=pdf&date_stamp=2022-08-04
https://doi.org/10.3389/fevo.2022.973371
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2022.973371/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-973371 July 30, 2022 Time: 18:55 # 2

Xian et al. 10.3389/fevo.2022.973371

climate change in the future. More attention should be paid to early warning

and monitoring of A. adenophora in southeastern China to prevent its

further spread.

KEYWORDS

invasive alien plants, climate change, Ageratina adenophora, potential geographical
distribution, ensemble model

Introduction

Invasive alien plants (IAPs) substantially affect natural
ecosystems worldwide and are independently or jointly
influenced by multiple factors, such as climate warming,
enhanced human activities, and global trade integration (Pyšek
et al., 2010; Chapman et al., 2016; Petitpierre et al., 2016).
Climate warming shifts the distribution pattern of IAPs and
promotes plant invasions by increasing the survival rate and
providing unoccupied ecological niches (Merow et al., 2017;
Turbelin and Catford, 2021). Climate warming has rendered the
natural environment more vulnerable to IAPs by intensifying
stressors, thereby augmenting the risk of global plant invasions
(Turbelin and Catford, 2021). IAPs pose great harm to the
ecological environment and agricultural production in China
(Weber and Li, 2008; Bai et al., 2013). Among the IAPs,
Ageratina adenophora (Spreng.) R.King & H.Rob. pose a great
threat to farmland, grassland, and forestry ecosystems in China
(Liu et al., 2012; Li et al., 2019). Rapid climate warming has
increased their long-term negative impacts (Tu et al., 2021).
Therefore, the distribution patterns of IAPs under climate
warming conditions must be elucidated to formulate early
warning, prevention, and control strategies in China.

Ageratina adenophora (Asteraceae; synonym: Eupatorium
adenophorum Spreng.; common name: crofton weed), an
aggressive IAP worldwide, is native to Mexico, and widely
distributed in Asia, Oceania, Africa, and Europe (Poudel
et al., 2019). Ageratina adenophora was as an ornamental
plant introduced to the United Kingdom (Europe) in 1826
(Auld and Martin, 1975). Each plant produces more than
10,000 seeds, which can disperse rapidly by wind or water,
and also get mixed in with agricultural products intended
for export (Wang et al., 2011). Ageratina adenophora can
grow up to a height of 2 m, and produced apomictically
without fertilization (Parsons and Cuthbertson, 2001). It was
suitable for roadsides, railway embankments, banks of water
bodies, crop fields, grasslands, plantations and forests (Liu
et al., 2007; Baral et al., 2017). In the 1940s, A. adenophora
successfully invaded southwestern China (Yunnan Province)
(Yan et al., 2000). Currently, this plant is widely distributed
in Yunnan, Sichuan, Chongqing, Guizhou, and Guangxi (Sang
et al., 2010), and has reduced the local biodiversity (Lu et al.,

2006), destroyed the ecological community structure (Fu et al.,
2018), and impeded the development of agriculture, forestry,
and animal husbandry in southwestern China (Poudel et al.,
2019). Therefore, it was listed as a key management IAP
under the administration of the Ministry of Agriculture and
Rural Affairs, Ministry of Natural Resources, and Ministry of
Ecology and Environment. Clarifying the distribution pattern of
A. adenophora using equilibrium occurrence data under climate
change can accurately illustrate the dynamics of its potential
geographical distribution (PGD) and guide its prevention and
control in China.

Species distribution models (SDMs), including the
maximum entropy model (Maxent), CLIMEX, generalized
linear model (GLM), genetic algorithm for rule-set prediction
(GARP), multiple adaptive regression spline (MARS) model,
surface range envelope (SRE), flexible discriminant analysis
(FDA), categorical regression tree analysis (CTA), gradient
boosting model (GBM), random forest (RF), and artificial
neural network (ANN) (Lantschner et al., 2019), are powerful
tools for identifying the PGD of IAPs under current and future
climate change (Bazzichetto et al., 2018; McMahon et al., 2021).
The Biomod platform, developed in 2003, is generally used
to improve the accuracy of the prediction results of SDMs
(Thuiller et al., 2003). Numerous studies have identified the
PGD of IAPs using a single SDM or ensemble model (EM) in
the current biomod2 platform (César de Sá et al., 2019; Fang
et al., 2021). Previous studies frequently used a single model,
such as the Maxent or GARP, for predicting the PGD of IAPs
(Qin et al., 2015; Thapa et al., 2018). In subsequent studies, the
EM gained increasing interest for predicting the PGD of IAPs as
it provided more reliable results than the single models (Gong
et al., 2020; Lázaro-Lobo et al., 2021).

The present study used eight single models and the EM to
predict the PGD of A. adenophora in China under current and
future climate change. We formulate the hypothesis that the
PGD of A. adenophora in southwestern China was saturated,
and will shift to higher latitude areas in the future. Therefore,
we (1) selected SDM as the optimal model, which showed high
precision following a simulation test; (2) analyzed the significant
environmental variables affecting the PGD of A. adenophora; (3)
predicted the PGD of A. adenophora under the current climate
and four future climate change scenarios in the 2050s and 2070s
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using the optimal model; and (4) analyzed the changes in the
PGD and distributional centroids of the high-suitability habitat
of A. adenophora between the current and the 2050s and 2070s
climate conditions. Our results can help identify prevention and
control strategies for A. adenophora infestation in China.

Materials and methods

The occurrence data of Ageratina
adenophora

The 20 occurrences of A. adenophora were obtained from
the Global Biodiversity Information Facility (GBIF, http://www.
gbif.org/), the 56 occurrences of A. adenophora were obtained
from Chinese Virtual Herbarium (CVH, http://www.cvh.ac.
cn), the 80 occurrences of A. adenophora were obtained from
National Specimen Information Infrastructure (NSII, http://
www.nsii.org.cn), and the 2620 occurrences of A. adenophora
were obtained from our field survey data. Finally, the total of
2776 occurrences of A. adenophora in China were obtained
from online databases and our field survey data in China.We
thereafter selected the occurrence data in the database since
1940, andremoved the occurrence data that did not have detailed
geographic information. ENMTools was used to screen the
occurrence data so that only one distribution point was retained
within each 5 km × 5 km raster (Warren et al., 2010). Finally, we
obtained 2,484 occurrences of A. adenophora for modeling the
PGD in China using SDMs (Figure 1).

Obtaining the environmental variables

We obtained the current climate data from the PaleoClim
database (http://www.paleoclim.org) with a resolution of
2.5’(Brown et al., 2018). The dataset of parameters based
on high-resolution monthly temperature and precipitation
values for 1979-2013 is broadly used in ecological applications
worldwide. Future climate data, and altitude data were
downloaded from the WorldClim database version 1.4 (http:
//www.worldclim.org) (Hijmans et al., 2005). The current and
future climate data included 19 bioclimatic variables (Table
S1). The future climate data with the Community Climate
System Model (CCSM) 4.0 for the 2050s and the 2070s
included two representative concentration pathways (RCP2.6
and RCP8.5). Multicollinearity between the bioclimatic and
altitude variables can result in model overfitting. Therefore,
we used ENMTools to calculate the correlation coefficients
of bioclimatic and altitude variables (Warren et al., 2010).
For two environmental variables with a correlation coefficient
greater than 0.8 (| r| > 0.8), the more meaningful
one was retained (Supplementary Figure 1). Finally, eight
environmental variables were retained: mean diurnal range

(bio2), isothermality (bio3), minimum temperature of the
coldest month (bio6), temperature annual range (bio7), mean
temperature of the warmest quarter (bio10), precipitation
seasonality (coefficient of variation) (bio15), precipitation of the
coldest quarter (bio19), and altitude.

Construction of species distribution
models

In the present study, based on the occurrence data and
environmental variables, we modeled the PGD of A. adenophora
under climate change using eight different algorithms (GLM,
GBM, CTA, ANN, SRE, FDA, RF, and MaxEnt) in the
biomod2 package (Thuiller et al., 2016) in R Studio 4.1.3.
For each modeling process, 75% of the distribution records
were randomly selected as the training dataset while the
remaining 25% were used as the testing dataset. The division
of the training and testing data was repeated five times. In
addition, 1,000 pseudoabsence points were randomly selected;
this process was repeated three times. Finally, 120 models were
obtained. After assessing the accuracy of the eight models, we
selected four individual models with average values exceeding
0.9 to construct an EM. We then predicted the PGD of
A. adenophora under various climate change conditions using
the constructed EM.

Evaluation of the accuracy of the
species distribution models

In general, the true skill statistic (TSS), area under
the receiver operating characteristic (ROC) curve (AUC),
and Cohen’s Kappa (KAPPA) values are used to evaluate
model accuracy. TSS considers the missing average error
and is unaffected by the size of the verification dataset
(Allouche et al., 2006). The ROC curve is an acceptance curve,
with the horizontal coordinate indicating the false-positive
rate (1-specificity) and the vertical coordinate indicating
the true-positive rate (1-omission rate) (Peterson et al.,
2008). KAPPA is affected by the incidence of occurrence
data and thresholds, and determines the accuracy of
predictions relative to random occurrences (Monserud
and Leemans, 1992). Generally, the higher the values of these
three indicators, the higher is the accuracy of the species
distribution model results.

From the results of the EM, the ASCII raster layer was
generated based on the probability (P) of the presence of
A. adenophora, which ranged from 0 to 1,000. Finally, the PGD
of A. adenophora was classified into four types using ArcGIS:
high-suitability habitat (500 ≤ P ≤ 1000), moderate-suitability
habitat (300 ≤ P < 500), low-suitability habitat (100 ≤ P < 300),
and unsuitable habitat (0 ≤ P < 100).
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FIGURE 1

Occurrence data of Ageratina adenophora in China, comprehensively obtained from online databases and field surveys. I: cool temperate zone;
II: middle temperate zone; III: warm temperate zone; IV: north subtropical zone; V: middle subtropical zone; VI: south subtropical zone; VII:
edge of tropical zone; IX: equatorial tropical zone; HI: subfrigid zone of plateau; HII: temperate zone of plateau.

The shifts in the distributional
centroids

The shifts in the distributional centroids of highly suitable
habitat were used the species distribution model tool (SDM
tool, http://www.sdmtoolbox.org) to detect between current and
future climate. SDM tool can be integrated into ArcGIS software
for calculating, which can analyze the shifts in the distributional
centroids under different climate scenarios (Brown, 2014). The
threshold of distributional centroids was the threshold of high-
suitability habitat.

Results

Species distribution model accuracy
evaluation

In the present study, we calculated the evaluation accuracy
of various species distribution models, including GLM, GBM,
CTA, ANN, SRE, FDA, RF, MaxEnt, and EM. ForA. adenophora,
our results indicated that GLM, GBM, FDA, and RF were more
accurate than CTA, ANN, SRE, and MaxEnt (Figure 2). The
mean TSS values for GLM, GBM, FDA, and RF were 0.891,

0.892, 0.886, and 0.895, respectively. The mean AUC values
for GLM, GBM, FDA, and RF were 0.961, 0.963, 0.950, and
0.961, respectively. The mean KAPPA values for GLM, GBM,
FDA, and RF were 0.926, 0.925, 0.921, and 0.927, respectively.
Therefore, we selected these four models to construct the
ensemble model (EM). The mean TSS, AUC, and KAPPA values
for the EM were 0.925, 0.993, and 0.936, respectively. Our results
indicated that the EM improved fitting accuracy and reduced
fitting uncertainty. In other words, the PGD of A. adenophora
predicted using EM was more reliable than that predicted using
the single models.

The significance of environmental
variables

We estimated the contribution values of each environmental
variable using GLM, GBM, FDA, and RF, and analyzed the
variables that significantly affected the PGD of A. adenophora.
Our results indicated that the top three environmental variables
with the highest mean contribution values were the temperature
annual range (bio7, 0.449), mean diurnal range (bio2, 0.302),
and minimum temperature of the coldest month (bio6, 0.297)
in the GLM, Fugure 3A; the temperature annual range (bio7,
0.522), minimum temperature of the coldest month (bio6,
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FIGURE 2

True skill statistics (TSS), area under the receiver operating characteristic curve (AUC), and Cohen’s Kappa (KAPPA) values of the species
distribution models.

0.061), and precipitation of the coldest quarter (bio19, 0.042)
in the GBM, Fugure 3B; the minimum temperature of the
coldest month (bio6, 0.501), temperature annual range (bio7,
0.321), and precipitation of the coldest quarter (bio19, 0.072)
in the FDA, Fugure 3C; and the temperature annual range
(bio7, 0.320), minimum temperature of the coldest month
(bio6, 0.138), and mean diurnal range (bio2, 0.034) in the
RF (Fugure 3D). In summary, the significant environmental
variables affecting the PGD of A. adenophora were the
mean diurnal range (bio2), minimum temperature of the
coldest month (bio6), temperature annual range (bio7), and
precipitation of the coldest quarter (bio19).

The potential geographical distribution
under the current climate

We predicted the PGD of A. adenophora in China under
the current climate based on nine SDMs in biomod2 (Figure 4).
Our results indicated that the PGD of A. adenophora predicted
using the GLM, GBM, FDA, RF, and EM was more consistent
with the actual geographic distribution than that predicted

using the other SDMs. The accuracy of the EM based on TSS,
AUC, and KAPPA was higher than that of GLM, GBM, FDA,
and RF. Therefore, we selected the PGD of A. adenophora
predicted using the EM to analyze its PGD in China under the
current climate (Figure 4I). The PGD of A. adenophora under
the current climate was mainly distributed in southwestern
and southeastern China under different climate zones, such
as the tropical edge, north subtropical, middle subtropical,
and south subtropical zones. The total, high, and moderate
suitability habitat areas of A. adenophora in China were
153.82 × 104, 92.13 × 104, and 21.04 × 104 km2, respectively,
accounting for 16.02, 9.60, and 2.19% of the Chinese mainland
area, respectively.

Changes in the PGD of A. adenophora
under future climate change

The PGD of A. adenophora under RCP2.6 and RCP8.5 in
the 2050s and the 2070s are presented in Figure 5. The gain,
loss, and stable areas of highly suitable habitat were shown in
Supplementary Figure 2. The PGD of A. adenophora under
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FIGURE 3

Contribution values of the environmental variables in (A) (GLM), (B) (GBM), (C) (FDA), and (D) (RF).

the future climate change scenarios was also distributed in
Southwest and Southeast China. The range of high-suitability
habitats for A. adenophora under the current climate was quite
different from that under the future climate. The highly suitable
habitat in Southwest China, which was distributed at the edge of
the tropical and middle subtropical zones, shifted to moderately
suitable habitat under the future climate change.

The low-suitability habitat areas of A. adenophora for the
2050s and 2070s were 36.57 × 104 and 34.24 × 104 km2,
respectively, under RCP2.6 (accounting for 3.81 and
3.57% of the Chinese mainland area, respectively), and
35.41 × 104 and 40.59 × 104 km2, respectively, under RCP8.5
(accounting for 3.69, and 4.23% of the Chinese mainland
area, respectively). The low-suitability habitat areas showed
a decreasing trend from the current to the 2050s and the
2070s, and decreased significantly under RCP2.6 in the
2070s (Figure 6).

The moderate-suitability habitat areas of A. adenophora for
the 2050s and 2070s were 49.94 × 104 and 52.11 × 104 km2,

respectively, under RCP2.6 (accounting for 5.20 and 5.43% of
the Chinese mainland area, respectively), and 55.87 × 104 and
55.6 × 104 km2, respectively, under RCP8.5 (accounting for
5.82 and 5.79% of the Chinese mainland area, respectively). The
moderate-suitability habitat areas showed an increasing trend
from the current to the 2050s and the 2070s, and increased
significantly under RCP8.5 in the 2050s (Figure 6).

The high-suitability habitat areas of A. adenophora for the
2050s and 2070s were 31.42 × 104 and 31.92 × 104 km2,
respectively, under RCP2.6 (accounting for 3.27 and 3.33% of
the Chinese mainland area, respectively), and 50.4 × 104 and
61.12 × 104 km2, respectively, under RCP8.5 (accounting for
5.25 and 6.37% of the Chinese mainland area, respectively).
The high-suitability habitat areas showed a decreasing trend
from the current to the 2050s and the 2070s, and decreased
significantly under RCP2.6 in the 2050s (Figure 6).

The total-suitability habitat areas of A. adenophora for the
2050s and 2070s were 117.93 × 104 and 118.27 × 104 km2,
respectively, under RCP2.6 (accounting for 12.28 and
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12.32% of the Chinese mainland area, respectively), and
141.68 × 104 and 157.31 × 104 km2, respectively, under
RCP8.5 (accounting for 14.76 and 16.39% of the Chinese
mainland area, respectively). Compared with the current
climate, the total-suitable habitat areas in the 2050s under
RCP2.6 and RCP8.5, and the 2070s under RCP2.6, showed
a decreasing trend, and decreased significantly in the
2050s under RCP2.6. Under RCP8.5, the total suitability
habitat area in the 2070s increased compared to that in the
current climate.

The distributional shifts of the
centroids of high suitability habitat of
A. adenophora under future climate
change

The centroid of the high-suitability habitat was determined
to be located at the point with coordinates 104.35◦E, 26.77◦N
under the current climate. In the 2050s, under RCP2.6
and RCP8.5, the centroid of the high suitability habitat
shifted from its current position to 105.83◦E, 26.95◦N, and
105.85◦E, 27.17◦N, respectively, shifting 144.33 and 24.86 km,
respectively. In the 2070s, under RCP2.6 and RCP8.5, the
centroid of the high suitability habitat shifted from its current
position to the points with coordinates 106.81◦E, 27.23◦N and
107.08◦E, 27.13◦N, respectively, shifting 249.44 and 30.15 km,
respectively. Therefore, the centroid of the highly suitable
habitat of A. adenophora tended to shift to the northeast
and southeast and to higher latitudes under future climate
change (Figure 7).

Discussion

Significance of the predictions using
equilibrium occurrence data

SDMs are frequently being used to predict the PGD of
IAPs; however, prediction results based on non-equilibrium
occurrence data can lead to inaccurate model outputs (Jiménez-
Valverde et al., 2008; Briscoe Runquist et al., 2019). The
quantity and quality of input data are still crucial issues in
terms of the reliability of predictive distributional modeling
efforts (Welk, 2004). The non-equilibrium occurrence data
of IAPs do not include data representative of all climatic
tolerances. When IAPs are still in the process of biological
invasion, the background points cannot be used in any
SDM to classify locations beyond the existing range of the
IAPs as (pseudo) absence data (Václavík and Meentemeyer,
2012). This is because such regions do not represent the
absence of IAPs; rather, the IAPs have yet to occupy

such regions. Therefore, we should use the equilibrium
occurrence data to construct reliable SDMs for predicting
the PGD of IAPs. For example, a study on the PGD of
Lythrum salicaria in North America based on the currently
known occurrence data and the occurrence data recorded
before 1988 indicated that it was unreasonable to predict
the PGD of this species based on the occurrence data
recorded before 1988 (Welk, 2004). In the present study,
we used the equilibrium occurrence data of A. adenophora
(the occurrence data from online databases and our field
survey data until 2021) and the EM constructed using GLM,
GBM, and FDA to predict the PGD of A. adenophora under
climate change in China. The mean TSS, AUC, and KAPPA
values for the EM were 0.925, 0.993, and 0.936, respectively,
indicating that the prediction results of this model were
accurate. Our findings provide a framework for preventing and
controlling the spread of A. adenophora under climate change
conditions in China.

Significant environmental variables

In our study, the PGD of A. adenophora was mainly
distributed in southwestern and southeastern China, which
is also located in the tropical and subtropical zones. The
minimum temperature of the coldest month in the PGD of
A. adenophora is above −3◦C and the annual precipitation is
usually between 800 and 1500 mm (Zhen-Feng et al., 2013).
Our results indicated that temperature variables, such as the
mean diurnal range, minimum temperature of the coldest
month, and annual temperature range, were the most important
variables affecting the PGD of A. adenophora in China, followed
by precipitation (precipitation of the coldest quarter) and
altitude. The successful invasion of A. adenophora can be mainly
attributed to the synergy of temperature, precipitation, and
altitude variables. Suitable environmental variables, including
temperature, precipitation, and light, played key roles in the
survival and growth of A. adenophora in the invasive zones,
and the individuals from invasive populations showed greater
plant height, stem diameter, leaf length, leaf breadth, and
leaf area than those from native populations (Feng et al.,
2009).The epigenetic modifications can lead A. adenophora
to spread into the cooler zones of China (Zhu et al., 2007).
For instance, A. adenophora preferred lower temperatures
in the invasive areas compared with in the native areas
(Tererai and Wood, 2014).

Previous studies have indicated that the winter temperature
and minimum temperature of the coldest month have a
significant impact on the distribution of A. adenophora in
China and Nepal (Poudel et al., 2020; Fang et al., 2021). In
general, A. adenophora prefers to grow in warm temperature
conditions, such as between 10–25◦C (Sun et al., 2004; Tererai
and Wood, 2014). Compared with the native surroundings,
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FIGURE 4

Potential geographical distribution of A. adenophora in China under current climate conditions based on nine species distribution models (A-I).

experimental warming enhanced the biomass output and
canopy of A. adenophora and decreased its mortality (He et al.,
2012). In invasive zones, epigenetic modifications can facilitate
the spread of A. adenophora to cooler regions, such that it
prefers lower temperatures than normal (Huang et al., 2009).
Therefore, temperature changes have a significant effect on
the distribution patterns of A. adenophora. In brief, climate
warming promotes environmental tolerance of A. adenophora
and accelerates its invasion. The findings of these studies
further verify the accuracy of our findings. Our findings
showed that the precipitation of the coldest quarter also

affected the PGD of A. adenophora. Climate change has altered
precipitation patterns globally, while also profoundly affecting
the invasion process of IAPs, such as increasing the invasibility
of the community (Kreyling et al., 2008). Some evidence has
shown that shifts in precipitation patterns attributed to climate
change have accelerated the invasion process of IAPs such
as Bromus hordeaceus in the arid habitats of North America
(Hobbs et al., 2007). In the present study, we selected only
the bioclimatic and altitude variables to predict the PGD of
A. adenophora in China because A. adenophora has strong
adaptability and low requirements for soil conditions. As long as
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FIGURE 5

Potential geographical distribution of Ageratina adenophora in China under future climate based on the ensemble model.

the temperature and precipitation conditions are suitable, they
flourish (Cao et al., 2004).

The changes in the distribution pattern
of A. adenophora under climate
change

Some studies have indicated that the distribution areas of
the IAPs have expanded or contracted under climate change.
For example, the PGD of 11 IAPs is likely to expand in China
under different climate change scenarios (Guan et al., 2020).
The PGD of 108 IAPs is expected to decrease in Brazil in
the future (Fulgêncio-Lima et al., 2021). In the 2050s and the
2070s, the total suitable habitat of A. adenophora in China is
projected to decrease under RCP 2.6. The total suitable habitat
areas of A. adenophora will increase under RCP 8.5 in the 2070s
compared with that under the current climate. Some studies
have indicated that the PGD of A. adenophora will expand by

45.3% and 2% under RCP 8.5 in India and Nepal, respectively
(Poudel et al., 2020; Chaudhary et al., 2021). Our findings were
consistent with this pattern.

Under climate warming, some IAPs will shift toward higher
altitudes and latitudes (Petitpierre et al., 2016; Shrestha and
Shrestha, 2019). The spread of IAPs is a result of synergy
between abiotic and biotic variables. The interplay of multiple
factors contributing to the rapid spread of A. adenophora in
China has also been mainly attributed to the interaction of
multiple factors. For instance, owing to the small size and
light weight of its seeds, A. adenophora disperses over long
distances through water and wind (Wang et al., 2011). Previous
studies have indicated that flooding facilitates the invasion of
A. adenophora into China. In particular, the great flood in 1998
along the Jinshajiang-Yangtze River significantly increased the
spread rate of A. adenophora in China (Wang et al., 2011;
Horvitz et al., 2014). The mechanism of the synergy of multiple
factors increased the risk of invasion and spread in China.
The findings of the present study indicate that the PGD of
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FIGURE 6

The suitability habitat areas of Ageratina adenophora in China under current and future climate conditions based on the ensemble model.

FIGURE 7

The centroid distribution shifts of Ageratina adenophora under climate change.
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A. adenophora will spread to southeastern China under climate
change conditions. The degree of suitability and invasion
risk in southwestern China will decrease under climate
change. This seems to be due to the saturated geographical
distribution of A. adenophora in southwestern China. The
high-suitability habitat of A. adenophora indicated a trend
of spreading to southeastern China as a result of climate
warming. Therefore, more attention should be paid to prevent
its further spread in southeastern China. Our findings indicate
that early warning and monitoring measures for A. adenophora
in southeastern China should be formulated. In the present
study, we estimated the distribution pattern and invasion
risk areas under future climate scenarios. The results strongly
support the need for developing appropriate and efficient
strategies to prevent or minimize the invasion and spread
potential in China.

Conclusion

The assumption of niche conservatism is the standard
working postulate in SDMs. Therefore, the equilibrium
occurrence data of IAPs are key to studying the prediction
of PGD. Based on the equilibrium occurrence data of
A. adenophora and environmental variables, we used EM to
predict its PGD in China and to determine the significant
environmental variables affecting its PGD. Our findings
showed that the distribution pattern of A. adenophora in
China was a result of synergy between temperature and
precipitation variables; this indicates that temperature variables
played a critical role in its invasion in China. The PGD
of A. adenophora in China under the current climate is
mainly distributed in southwestern China, and will spread
in southeastern China under climate change. Hence, more
attention should be paid to prevent its further spread in
southeastern China.
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