
Frontiers in Ecology and Evolution 01 frontiersin.org

Scaling of ant colony interaction 
networks
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In social insect colonies, individuals are physically independent but 

functionally integrated by interaction networks which provide a foundation for 

communication and drive the emergence of collective behaviors, including 

nest architecture, division of labor, and potentially also the social regulation 

of metabolic rates. To investigate the relationship between interactions, 

metabolism, and colony size, we varied group size for harvester ant colonies 

(Pogonomyrmex californicus) and assessed their communication networks 

based on direct antennal contacts and compared these results with proximity 

networks and a random movement simulation. We  found support for the 

hypothesis of social regulation; individuals did not interact with each other 

randomly but exhibited restraint. Connectivity scaled hypometrically with 

colony size, per-capita interaction rate was scale-invariant, and smaller 

colonies exhibited higher measures of closeness centrality and edge density, 

correlating with higher per-capita metabolic rates. Although the immediate 

energetic cost for two ants to interact is insignificant, the downstream 

effects of receiving and integrating social information can have metabolic 

consequences. Our results indicate that individuals in larger colonies are 

relatively more insulated from each other, a factor that may reduce or filter 

noisy stimuli and contribute to the hypometric scaling of their metabolic rates, 

and perhaps more generally, the evolution of larger colony sizes.
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Introduction

Scaling laws are pervasive in biology, succinctly describing how numerous aspects of 
the nature of life depends on size. These scaling patterns are often represented in a form as 
simple as a power law with a coefficient and an exponent such as y = axb (LaBarbera, 1986; 
Bonner, 2006). That there is anything about the great diversity of life in all its splendor and 
forms which can be distilled into a relatively simple equation is remarkable, but nevertheless, 
support structures including tree trunks and vertebrate bones typically have diameters that 
scale with lengths3/2, vertebrate lifespans typically scale with mass1/4, and organismal 
metabolic rates from the smallest to the largest species typically scale with mass3/4 (Spence, 
2009). Although many models have been proposed, there is no consensus about why 
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metabolic rates scale with mass3/4 (Glazier, 2005; Del Rio, 2008). 
Though the precise value of the exponent can vary, it is generally 
hypometric (0 < b < 1) and is often robust to comparisons across 
development, among mature individuals of a single species, 
between species, and it has been demonstrated for collective 
animal groups including colonies of marine zooids (Nakaya et al., 
2003, 2005) and social insects (Southwick, 1982; Southwick, 1985; 
Hou et al., 2010; Shik, 2010; Waters et al., 2010).

The striking commonality of this scaling across the diversity 
of life suggests that the underlying mechanisms driving metabolic 
use with size could be  similarly universal. Increased size is 
necessarily associated with size-based scaling of the networks that 
sustain and maintain connectedness, whether for collections of 
cells within an organism or ants within a colony (Barabási and 
Oltvai, 2004; Moses et  al., 2008). As with any organizational 
property, the communication networks used by organisms and 
complex social groups can be costly to construct and maintain; as 
such, the ways in which they are regulated with network size may 
provide important insights into allometric patterns of metabolic 
scaling with size.

Networks within organisms that can affect their metabolic 
rates include cardiovascular systems, cell signaling patterns, 
connections of the nervous system, endocrine feedback 
mechanisms, and gene regulatory networks. In social insect 
colonies, networks generally operate as non-hierarchical systems 
without direct leadership or central control (Wilson and 
Hölldobler, 1988; Bonabeau, 1998). Information transfer within a 
colony takes many forms, including antennation, dance, 
pheromonal communication, and other forms of indirect or direct 
contact (Gordon, 2007; Greene and Gordon, 2007). The spatial 
organization of individuals within colonies can influence the 
patterns of communication among workers (Boi et  al., 1999; 
Mersch et al., 2013; Pinter-Wollman et al., 2013a; Baltiansky et al., 
2021) and the resulting interaction networks provide the pathways 
thought to be responsible not only for the emergence and self-
organization of complex patterns in foraging, nutritional 
regulation, house-hunting, and the division of labor, but 
potentially also how these patterns scale with colony size 
(Bonabeau et  al., 1997; Beekman et  al., 2001; Fewell, 2003; 
Dussutour and Simpson, 2009; Dornhaus et al., 2012; Donaldson-
Matasci et al., 2013; Greenwald et al., 2018).

In a previous study using colonies of the California seed-
harvester ant, Pogonomyrmex californicus, an experimental 
manipulation was designed to test whether the relationship 
between colony size and metabolic rate was simply a correlation 
(e.g., with another factor such as growth rate) or whether they 
were mechanistically linked (Waters et  al., 2017). When the 
colonies were reduced to half their size, their mass-specific 
metabolic rates increased exactly as predicted by the power law of 
metabolic allometry, confirming that colony size was a causal 
driver of the effect, effectively and dynamically reducing the 
per-capita work expenditure of ants in larger colonies and 
increasing the same for ants in relatively smaller colonies 
(Supplementary Figure S1). An analysis of walking speeds among 

the ants in the colonies before and after the size-manipulation did 
not fully support the hypothesis that differences in metabolic rates 
were due to corresponding changes in movement, suggesting that 
other metabolically relevant aspects of social organization are 
involved. In this study we investigate the scaling of the interaction 
networks in these colonies, how they varied with total colony size, 
and how they changed following the experimental manipulation.

One of the most common and most easily measured forms of 
information transfer in an ant colony is antennal contact, where 
individuals place their antennae on other ants to receive chemical 
information. Previous studies have demonstrated that direct 
interactions such as antennation can drive changes in ant behavior, 
spatial fidelity, and disrupt homeostasis (Lenoir, 1982; Cabe et al., 
2006; Pinter-Wollman et  al., 2013a; Ulrich et  al., 2018). 
Considering how these behaviors may change with colony size, 
we hypothesize that features of the ant colony social network that 
increase interactions at the individual scale and connectedness at 
the colony scale should be inversely correlated with metabolic rate 
and colony size. Furthermore, if aspects of the colony network are 
associated with the causal drivers of metabolic allometry, 
we  expect them to scale in the same way. One caveat to this 
approach is that we  would not necessarily know whether the 
scaling of network properties that we can quantify from our real-
world observations was expected or not based simply on the 
increases or decreases in the group sizes and how network 
properties should theoretically scale with size.

Identifying novel functionality and investigating how network 
structures scale with size requires a relevant null model for 
comparison (Newman et al., 2002; Alon, 2007; Pinter-Wollman 
et  al., 2013b; Davidson and Gordon, 2017). It should not 
be sufficient, for example, to say that anything is important about 
the result that a calculated metric such as average path length 
scales with a certain exponent unless that exponent is similar to 
or different from a predicted one. In many theoretical contexts, 
random graphs can offer a convenient and analytical baseline, but 
other network models such as hierarchical, small-world, or scale-
free can be also generated (Newman, 2003). In our analysis of 
social insect interactions however, many of these theoretical or 
generative models are unrealistic because they do not consider the 
real constraints of the spatial dimension in which ants live 
(Barthélemy, 2011). If a model was not spatially based, it might 
predict that two ants on opposite sides of an arena would interact 
when this is not possible, at least not without accounting for their 
transit time. To test for the presence of any biologically unique or 
meaningful patterns in the scaling of real-world social insect 
interaction networks, we developed a spatially explicit random 
interaction simulation. The goal of this model was not to simulate 
in a detailed fashion the dynamic behavior of ants, but rather to 
generate first-order predictions for how spatially explicit random 
networks scale with size. By simulating random movements of 
virtual ants in groups of varying sizes, with parameters informed 
by our experimental design, we can generate hypothetical network 
data to offer a rigorous way to test for biological relevance by 
determining which, if any, of the features of our observed 
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networks deviate from the predictions of randomly moving and 
interacting ants in the simulations.

Materials and methods

Ant colonies and experimental design

Whole colonies of California seed-harvester ants 
(P. californicus) were reared in the lab for this study 
(Supplementary Figure S1; Supplementary Table S1). This species 
has previously been shown to exhibit colony-level metabolic 
allometry (Waters et al., 2010) and has been studied for its division 
of labor (Smith et  al., 2009; Holbrook et  al., 2011, 2013) and 
communication network structure (Waters and Fewell, 2012). 
Recently mated P. californicus queens were collected in July 2011 
from a location in Pine Valley, San Diego County, California 
(32°49′20″ N, 116°31′43″ W, 1136 m elevation) where the 
population is known to be pleometrotic, with multiple queens 
excavating new nests together. In the laboratory, where the room 
temperature was maintained at 30°C–32°C, queens were initially 
housed in groups of three within cotton-plugged water tubes and 
once workers were present, individuals were transferred into and 
housed within artificial nests constructed from a thin, square 
plastic enclosure (625 cm2) containing water reservoirs and area 
for foraging and construction of waste piles. All colonies 
consistently used nest spaces in this way and could be identified 
as relatively well acclimated based on observing clear brood piles, 
a retinue of workers tending to the queens, stationary workers, 
individuals foraging, and not many workers walking in circles 
around the outer edge of the enclosure. Colonies were fed with ad 
libitum Kentucky blue grass seeds, diluted honey water, and frozen 
adult Drosophila as protein sources. Colonies were reared in the 
lab for a year prior to the experiments, which were conducted 
from July to September in 2012. Additional information about the 
colonies used in this study and the original experimental design, 
including how metabolic rates were measured and the protocols 
for counting and weighing ants have been previously published 
(Waters et al., 2017).

To test for the effects of group size on the emergent patterns 
of connectivity within colonies, we studied two paired groups 
of ants: same-aged colonies that exhibited a natural range in 
their sizes after a year of growth and these colonies after they 
had experimentally reduced to half of their prior size. The size 
manipulation involved removing half of the prior number of 
workers, larvae, and pupae from across their enclosures. For all 
of these colonies, we  assessed their interaction network 
structure by aggregating observed patterns of contact between 
individuals tracked using video recordings of the whole colonies 
in their artificial enclosures acquired while simultaneously 
measuring their metabolic rates using flow-through indirect 
calorimetry (Waters et al., 2017). Antennal contact networks 
were evaluated once at the colony’s original size (N = 5 colonies, 
ranging in size 86–324 ants), and a second time following a 

reduction to half of the colony’s size (N = 5 colonies; 43–164 
ants) (Waters et al., 2017). Workers were removed and added 
back to colonies before the first analysis to control for 
disturbance effects.

For network analyses, video of the colony enclosures was 
recorded at 15 frames per second and at 1,224 × 1,224 pixel 
resolution, offering sufficient clarity to observe individual workers 
(305 +/− 14 pixels each, SE, N = 25), their antennae, and their 
interaction behavior. Recordings were made during the 
simultaneous measurement of their metabolic rates; the colonies 
were inside their artificial nest enclosures (the same ones they had 
continuously been reared within) and those nest enclosures were 
gently placed and secured within an aluminum metabolic 
respirometry chamber with a clear lid to allow filming of the 
colony. The recordings were able to capture the entire nest 
enclosures and one segment of video with 30-s duration was saved 
for each measurement, used in a previous study (Waters et al., 
2017) to quantify walking speeds and in this study to assess 
interactions and connectivity.

To review video and quantify the social behavior of the ants, 
recorded movies were opened in ImageJ (Rasband, 1997), and all 
ants labeled across the sequential frames using the MTrackJ plugin 
(Meijering et  al., 2012). The video was played backwards and 
forwards frame by frame to follow each ant and separately record 
the sequences of their contacts with each other as edge-list tab 
separated text files. Individual instances of antennal contacts were 
scored as interactions based on identifying which ant’s antennae 
were making contact with another ant and recording their 
identities. Both unidirectional and mutual interactions were 
observed. Observers were not blind to the size of colonies or their 
experimental state (whole-colony or size-reduced), but without 
specific a priori predictions about how the nature of interactions 
would change with colony size, we do not believe unconscious bias 
could have consistently influenced the scoring. Although 
automated tracking methods have potential utility, especially with 
respect to screening longer durations of behavior, since a prior 
study had demonstrated the heterogenous nature and highly 
skewed degree distribution of P. californicus interaction networks 
(Waters and Fewell, 2012), our goal was to capture a complete and 
accurate snapshot of the connectivity activity within these 
colonies, requiring the manual tracking of individuals and their 
behaviors across the N = 691,650 frames of video.

Simulating spatially explicit random 
interaction networks

The null model for this investigation consisted of a simulated 
grid-based enclosure in which ants, modeled as particles, move 
randomly through the space with the potential to interact with 
each other based on proximity. The simulations were run across a 
range of colony sizes to capture the range of worker numbers in 
the experimental colonies. The size of the simulation enclosure 
remained constant to match the experimental design with the real 
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colonies; the overall density increased with colony size in both the 
experiments and the simulations.

At the start of the simulations, ants are placed randomly in 
the virtual space. We ran the model for a fixed amount of time 
(100 time steps) so that the number of interactions in a 
simulated colony was similar to the number of interactions of 
our average sized colony. Individual ants were identified with 
a number and occupied a grid cell within the colony space. For 
each time step of the simulation, each ant moved one grid cell 
in a random direction. If a movement would take an ant outside 
of the spatial bounds, a different direction was selected. An 
interaction was logged when an ant moved to a cell adjacent to 
another ant. Interactions did not influence the subsequent 
movement direction of the ant, with the exception that multiple 
ants are not able to occupy the same grid cell. Pairs of ants may 
log multiple interactions with each other, but only if both ants 
have interacted with other ants since their last interaction 
together. The simulation was written in R and produces output 
as two text files, one recording each ant’s trajectories (x, y, t) 
and a second recording the time-stamped edge list for the 
virtual interactions. The code is available in our online 
supplement and all code and data are also accessible on a 
Github repository.1

Inferring interactions based on spatial 
proximity

To more precisely understand the role of spatial organization 
on interaction patterns, we used the individual tracking data 
from our colonies to generate a set of networks based on 
proximity. In contrast to the method previously described, 
relying on manually observing direct antennal contacts, these 
networks were based solely on individuals being within a set 
proximity of each other. The tracking data included individual 
labels and their coordinates.

In order to infer proximity based interactions, we replayed the 
trajectories recorded from real ants, and at each time step 
calculated the distances between each pair of ants. Interactions 
were logged whenever two ants entered a minimum interaction 
distance to each other. We recorded interactions when the tracked 
center points of individuals were separated by less than either 20 
or 30 pixels. These values were based on the size of ants in our 
video and observing that antennal contacts were often made 
between ants one body length (30 pixels) away from each other. 
The closer value was selected to generate networks with a higher 
threshold for interactions and results closer in size to the ones 
based on antennal contacts. In both cases, we maintained the 
requirement from the Brownian motion simulations for 
non-sequential duplicate interactions.

1 https://github.com/waterslab/ant-networks

Social network analysis and statistical 
comparisons

Social network analysis comparing the size-dependence of 
network properties between real-world and simulated networks 
was performed in R v4.0.4 (Team RC, 2021) with functions from 
the following packages: igraph (Csardi and Nepusz, 2006), 
tidyverse (Wickham et  al., 2019), ggraph (Pedersen, 2021), 
tidygraph (Pedersen, 2020), and patchwork (Pedersen, 2019).

Since it is possible that an individual was present but did not 
interact with any other individuals, the number of inactive 
individuals was calculated as the difference between the number 
of ants in the colony and the number of nodes in the network. The 
per-capita interaction rate was calculated at the ratio of the 
number of edges to the total number of individuals present. 
We  report centrality based on taking the mean of closeness 
centrality calculated using closeness() across all nodes within a 
network, and clustering coefficient was calculated using 
transitivity(). The largest connected component (LCC) was 
calculated by using clusters() to count connected components and 
record the size of the largest one. Modularity, an indicator of the 
degree to which interactions take place within subgraph 
communities rather than across the network, was calculated using 
Newman’s leading eigenvector method (Newman, 2006) as 
implemented by the cluster_leading_eigen() function.

The exponents of scaling equations were calculated by log10 
transforming the data, fitting a linear regression model, and 
testing for a slope that was significantly different than zero. To 
compare the network structure of observed networks before and 
after the size manipulation, and because the sample sizes were 
relatively small (only five data points for each of two groups), 
we used the nonparametric Wilcoxon rank sum exact test.

Results

We quantified patterns in the scaling of social insect 
interaction networks for five colonies in each of two states (whole 
colonies and colonies reduced to 50% of their numbers of workers, 
larvae, and pupae) and compared these results to the networks 
generated by our spatially-explicit random interaction simulation 
model and also to networks inferred from proximity in real ant 
spatial trajectory data (Supplementary Figures S2–S4; 
Supplementary Table S2). The numbers of workers in the colony 
groups ranged from 40 to 292, the number of nodes in their 
networks ranged from 18 to 168, and the number of interactions 
based on antennal contacts ranged from 23 to 562 (Figure 1A). 
The degree distributions were right-skewed (Figure 1B), with a 
minority of ants engaging in a disproportionately high number of 
interactions while the majority of ants interacted relatively 
less often.

Following the experimental size reduction, the number of 
nodes and edges both decreased, but surprisingly, many aspects of 
the colony network structure remained unchanged 
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(Supplementary Figure S5). Aspects that were not significantly 
(p > 0.05) affected by the manipulation included the average 
degree (4.17 +/− 0.34), average path length (3.78 +/− 0.21), 
clustering coefficient (0.18 +/− 0.03), diameter (9.7 +/− 0.7), the 
number of inactive individuals (71.3 +/− 17.4), modularity (0.58 
+/− 0.03), and the average per-capita interactions (1.22 +/− 0.2, 

or expressed as a rate, 2.44 per minute). The largest connected 
component was significantly reduced following the manipulation 
(p = 0.01), as was the number of nodes and number of edges, but 
these were all likely direct results of there being fewer ants 
available to connect. Following the size-reduction, closeness 
centrality significantly increased from 0.0007 to 0.002 (p = 0.02) 

A B

FIGURE 1

Social networks of P. californicus colonies. (A) These graphs show the 10 networks summarizing the interactions between workers in five colonies. 
The graphs in the column on the left were based on interactions in the whole-colonies prior to their manipulation, the graphs on the right are 
based on interactions in the same colonies, but after a manipulation in which 50% of the workers, brood, and pupae had been removed. 
(B) Degree distributions are plotted corresponding with the respective networks shown in (A) as determined by observing antennal contacts.
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and graph density significantly increased from 0.02 to 0.05 
(p = 0.007). The changes in centrality and density with decreasing 
colony size correlated significantly with the increases in mass-
specific metabolic rates of these colonies (Figure 2).

Four classes of scaling patterns were identified by pooling the 
available data on antennal-contact based P. californicus interaction 
networks and estimating the scaling exponents, b, for how these 
properties changed depending on colony size 
(Supplementary Figures S6, S7). We note that these results are 
based on measurements from a total of 10 networks with two each 
derived from five source colonies, one with the entire colony and 
another with half of the numbers of workers, larvae, and pupae 
removed. The different group sizes of the two measurements from 
each source colony motivates their consideration as independent 
points in a regression analysis, and this was further confirmed by 
testing for a significant effect of source colony. For all of the scaling 
analysis considered (Supplementary Table S3), including source 
colony as a co-variate did not significantly improve the quality of 
the fit (ANOVA p-values ranged from 0.11–0.93), and as such the 
data were pooled. The number of unconnected or socially inactive 
individuals exhibited a hypermetric allometry, increasing at a rate 
faster than proportionality (b = 1.41 +/− 0.39, F1,8 = 12.6, R2 = 0.61, 
p = 0.007). The number of edges and the size of the largest 
connected components both scaled proportionally with the 
number of workers. Two hypometric allometries, in which the 
network variable increases at a slower rate than increases in 
worker number included average path length (b = 0.21 +/− 0.08, 
F1,8 = 7.3, R2 = 0.48, p = 0.03) and the number of nodes in the 
networks (b = 0.85 +/− 0.2, F1,8 = 17.5, R2 = 0.69, p = 0.003). The 
hypometric scaling for the number of nodes is likely a 
complementary observation to the hypermetric scaling of 

unconnected individuals previously described. Inverse scaling 
relationships were found for centrality (b = −1.02 +/− 0.28, 
F1,8 = 12.95, R2 = 0.62, p = 007) and density (b = 0.-0.65 +/− 0.17, 
F1,8 = 15.5, R2 = 0.65, p = 0.004). The last class of scaling patterns 
we identified were aspects of colony network structure that appear 
to be scale-invariant, with no significant relationship with colony 
size (p > 0.05). These scale-invariant features included modularity, 
the average node degree, clustering coefficients, diameter, and the 
average per-capita interaction rate.

The spatially explicit random interaction simulation was used 
to generate networks ranging in size from 5 to over 300 virtual 
individuals and served as a null model against which to compare 
our colony network data (Figure 3). The most striking difference 
was that in the simulations, the number of edges and per-capita 
interaction rate increase exponentially with group size, but the 
ants held those features constant. There were relatively few 
unconnected (“inactive”) individuals in the simulations, and this 
number went down with increasing group size while it went up in 
the colonies. While the number of nodes scaled with a hypometric 
allometry in the colonies, it was a hypermetric allometry in the 
simulation data (b = 1.39 +/− 0.01, F1,337 > 100, R2 = 0.97, p < 0.001) 
and these two relationships were significantly different based on 
the 95% confidence intervals of the exponents. Modularity and 
clustering coefficients did not appear to scale with the size of the 
simulated groups, but both were on average higher than the values 
from our colonies, potentially indicating at the global and local 
scale respectively, that individuals in the simulation were more 
likely to interact with their nearest neighbors than ants in colonies. 
While centrality and density both decreased with increasing 
colony size in our antennal-contact based networks, these patterns 
were not predicted by the results of the simulation; although there 

FIGURE 2

Correlations between network attributes and colony metabolic rates. Network centrality and density correlated with metabolic rates in a 
consistent manner both within treatment groups (whole colonies and size-reduced colonies) and between them. In both cases, increasing 
network centrality and density correlated positively with increases in the mass-specific metabolic rates of the colonies.
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are regions of overlap, the ant colony centrality in small colonies 
is especially high and the ant colony density in large colonies was 
relatively low.

We compared the scaling of social network characteristics 
with colony size for two different methods of determining 
interactions from our video recordings: (1) using observations of 
direct antennal contacts between individuals and (2) inferring 
interactions based on pairwise spatial and temporal proximity. 
The number of interactions measured by the proximity networks 
was sensitive to the distance threshold parameter. Although the 

30-pixel distance was selected to match observed distances 
between ants making direct antennal contact, this threshold 
resulted in networks with an average of 7.7 interactions 
per-capita, more than six times the average number observed in 
direct antennal contact networks (1.22). Reducing the threshold 
for scoring interactions to 20-pixels still over-estimated the 
per-capita interaction rate (3.45), but the scaling of network 
properties of the proximity based networks was not significantly 
different than the scaling of network properties based on 
observing direct antennal contacts; the intercepts varied but the 

FIGURE 3

Comparing the scaling of antennation-based ant colony social network structure with the predictions of the spatially explicit random interaction 
simulation. Simulation results are plotted as black dots and P. californicus data are represented as red dots and additionally plotted with a loess 
smoothing curve in red and its associated error as a shaded region. Data are plotted for 324 simulated networks ranging in size from 25 to 357 
individuals and in the number of nodes from 11 to 357.
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95% confidence intervals for the fitted exponents overlapped in 
all cases (Supplementary Figure S8; Supplementary Table S3).

Discussion

The scaling of ant colony social networks exhibits some features 
consistent with the predictions of an intentionally simple agent-
based model based on randomly moving and interacting individuals, 
but has other important features that are markedly different. In 
contrast to null expectations from the model and the results of 
proximity-based network detection, individual workers within our 
laboratory colonies often simply refrained from direct antennal 
contact. This included both individuals who were stationary and 
adjacent to each other and others who crossed paths while moving. 
Indeed, this is a common aspect of worker behavior across the 
numerous ant colonies we have observed and may indicate a greater 
selectivity in interactions, a mechanism for avoiding interactions, or 
greater spatial partitioning in larger colonies.

Another striking difference was that the per-capita interaction 
rate increased exponentially with group size in the simulation, but 
was scale-invariant and regulated in the observed networks, as 
previously shown for other ant species (Blonder and Dornhaus, 
2011; Gordon et al., 2012). While the colony per-capita interaction 
rate was relatively constant, in comparison with the simulation 
predictions, it was substantially higher than expected in small 
colonies and lower than expected in large colonies.

While in the simulation, increasing density necessarily 
increased contact probabilities, ants in our laboratory colonies did 
not show the same effect. Ants in the simulation however, were 
distributed randomly and uniformly throughout the arena, but 
real ants do not similarly disperse, at least not when their colony’s 
social milieu is intact and they have had time to acclimate to a nest 
enclosure (Waters et al., 2010; Holbrook et al., 2011). In a similar 
way, groups of workers isolated from the rest of their colony, 
breaking the social context and organization, do not behave the 
same way or exhibit the same metabolic scaling patterns as when 
part of intact colonies; in these cases involving removed fragments, 
their metabolic demands increase proportional to their group size 
instead of exhibiting an allometry (Waters et al., 2010). As reported 
in other studies (Holbrook et  al., 2011; Gordon et  al., 2012), 
workers aggregate spatially around tasks and also cluster while 
resting, maintaining a roughly constant inter-individual spacing.

We compared the scaling of colony social network structure 
based on direct antennal contacts with networks based on inferring 
interaction due to the close proximity of individuals. Based on the 
common observation that adjacent ants may not directly interact 
with each other, we predicted that proximity would not be a faithful 
indicator of an interaction. This was partially confirmed by the 
proximity networks having vastly inflated numbers of interactions 
relative to the directly observed ones; ants in our colonies did not 
always make antennal contact when they were close to each other. 
However, and much to our surprise, the scaling of network 

properties with colony size was not significantly different when 
comparing between these two ways of determining the networks, 
the power-law scaling exponents for 12 metrics of social network 
structure were indistinguishable between these two different ways 
of assessing interactions. These findings support an idea that has 
long been reported in the cellular automata (Miramontes et al., 
1993; Solé et al., 1993) and social insect literature (Boi et al., 1999; 
Sendova-Franks et al., 2010; Mersch et al., 2013; Razin et al., 2013; 
Quevillon et  al., 2015; Richardsonv and Gorochowski, 2015; 
Davidson and Gordon, 2017; Crall et al., 2018; Gordon, 2020), that 
the function of complex systems like social insect colonies is 
strongly dependent on their spatial distributions. Although not yet 
studied in our model system, these changes could be driven either 
by active behavioral regulation or by indirect chemical 
communication potentially involving pheromones that structure 
the spatial organization within the nest enclosures and the resulting 
activity at the colony-level (Heyman et al., 2017).

As demonstrated in our antennal contact networks, restraint is a 
defining regulatory feature in the scaling of interaction networks in 
P. californicus colonies. Ultimately, there are ants that are crossing 
paths or standing adjacent to each other that could in theory interact, 
but do not. To the contrary, interacting ants often showed a form of 
distance attraction, traveling considerably farther between 
interactions than the average pairwise distance between all ants, a key 
finding in recent studies with honeybee colonies (Fard et al., 2020) 
and groups of raider ants (Ulrich et al., 2018), and a likely factor 
depressing the overall colony network modularity relative to the 
simulation results. Bernd Heinrich once proposed that “ultimately, 
the functional unity of a swarm is achieved not by physical 
configurations among the component bees, but by the communication 
among them” (Heinrich, 1981). Notably, highly social insect colonies 
also show lower modularity than other animal social networks, which 
are generally built around maintaining individual alliances with local 
neighbors rather than construction around coordination of work 
(Waters and Fewell, 2012; Nunn et al., 2015).

All behaviors have associated costs, whether the currency is 
time, energy, or risk. One of the differences between topological and 
spatial networks is that there can be costs associated with frequency 
or maintenance of long-distance connectivity in the latter 
(Barthélemy, 2011). In our experimental arenas, the metabolic costs 
of traveling from one side to the other are trivial, but the size and 
three-dimensional architecture of nest spaces in nature could 
impose measurable constraints (Perna and Theraulaz, 2017; 
Tschinkel and Hanley, 2017). In addition to the metabolic costs 
associated with movement, which even in the field may be minimal 
(Fewell, 1988), there are likely indirect costs associated with the 
effects of information exchanged during interactions. There is an 
abundance of support for the role of interactions in changing 
individual behaviors in social insect colonies (Pinter-Wollman et al., 
2013a; Gordon, 2016; Gordon, 2020), and while the direct and 
immediate energetic cost for two ants to interact may be insignificant, 
the downstream effects of receiving and integrating social 
information can have short and long-term metabolic consequences.

https://doi.org/10.3389/fevo.2022.993627
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Toth et al. 10.3389/fevo.2022.993627

Frontiers in Ecology and Evolution 09 frontiersin.org

Consistent with these ideas, the relatively lower graph 
densities and centrality metrics in larger colonies may promote 
energetic savings by optimally minimizing redundant or noisy 
information exchange. If there are metabolic costs associated with 
the downstream effects of interaction between individuals, these 
network characteristics could be among the factors either driving 
metabolic allometry or at least providing the means for regulating 
colony metabolic rates. With workers socially more distant from 
each other in the larger colonies, they may be  less likely to 
frequently switch tasks, respond to ephemeral stimuli, or 
metabolically up-regulate than workers in smaller and more 
modular and densely connected colonies.

One of the major leaps associated with the evolution of complex 
insect societies was a transition away from the group as a means of 
strengthening social bonds and toward a functionally regulated 
collective (Fewell, 2003; Nandi et al., 2014). In many animal social 
networks, it is common to see features such as high clustering, 
feedback loops, and dense modularity; we even see these in our 
simulated random interaction data since they can result from spatial 
correlations. In contrast, the social networks of P. californicus have 
limited feedback and instead exhibit an abundance of regulatory 
elements such as the feed-forward loop subgraph motif (Waters and 
Fewell, 2012). Modularity has been proposed in a few recent 
contexts to help buffer the spread of disease in social groups (Nunn 
et al., 2015; Quevillon et al., 2015; Stroeymeyt et al., 2018), but this 
feature was not prominent in our P. californicus networks and may 
not be as common in contexts in which interactions are constrained 
to the individuals engaged in specific tasks. Especially when the 
downstream consequences of interactions can include energetically 
costly changes associated with task switching or fitness-reducing 
consequences associated with foraging in harsh conditions (Gordon, 
2013), there may have been evolutionary pressure to inhibit the 
types of interaction that could trigger dangerous cascades and 
positive feedback loops within colonies. By regulating their 
interactions and exhibiting restraint, interacting only when 
necessary for updating information, the buffer of individuals not 
engaged in the social network of the colony can serve to filter noise 
and reduce the likelihood of an unintended contagion. If this 
homeostatic effect is associated with metabolic scaling more 
generally, it may also drive the evolution of large colony size and 
potentially larger functionally integrated collective groups in general.
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