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Microplastic pollution is ubiquitous, with textiles being a major source of one of 
the dominant microplastic types—microfibres. Microfibres have been discovered 
in the aquatic environment and marine biota, demonstrating direct infiltration 
in the environment. However, the impact of non-plastic microfibres has been 
overlooked until recently despite their prevalence and the ecotoxicological risk 
posed by chemical dyes and finishes used during processing. During an expedition 
from Lamu to Zanzibar (East Africa), a citizen science strategy was employed 
to innovate, educate and influence microfibre pollution reform through the 
Flipflopi project, a circular economy effort to stop the use of single-use plastic. 
Simple sampling methods were developed to replace costly equipment, which 
local citizens could use to partake in the collection and sampling of surface 
water samples from the previously understudied Kenyan and Tanzanian coast. 
To maintain the reliability of samples and to minimise contamination, a forensic 
science strategy was embedded throughout the methodology of the study, 
collection and analysis of the samples. A total of 2,403 microfibres from 37 sites 
were recovered and fully characterised with 55% found to be of natural origin, 
8% regenerated cellulosic and 37% synthetic microfibres. Natural microfibres 
were in higher abundance in 33 of the 37 sampled sites. Congruent with recent 
studies, these findings further support the need for greater understanding of the 
anthropogenic impact of natural microfibres.
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1. Introduction

The ubiquitous nature of microplastics in the form of microfibres is widely acknowledged, 
with textiles being a major source (Pirc et al., 2016; Barrows et al., 2018; De Falco et al., 2019, 
2020; Acharya et al., 2021). Microfibres refer to natural (e.g. cotton), synthetic (e.g. polyester) 
and regenerated cellulose (e.g. viscose) fibrous materials having a diameter less than 50 μm, 
length ranging from 1 μm to 5 mm and length-to-diameter ratio of more than 100 (Liu et al., 
2019). They are ubiquitous in both aquatic and terrestrial environments and have been found 
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to be  more abundant than other forms of microparticles such as 
fragments, films, pellets, spheres or foams (Acharya et  al., 2021; 
Kashiwabara et al., 2021; Li et al., 2021). The ubiquity of microfibres 
stems from the fact that they shed easily from textiles (De Wael et al., 
2010; Skokan et al., 2020) and that global textile fibre production has 
skyrocketed over time. A 2021 report showed that in the last two 
decades, global fibre production has increased from 58 million tonnes 
in 2000 to 109 million tonnes in 2020 (Textile Exchange, 2021). 
Microfibres are released from clothing during laundering (De Falco 
et al., 2019, 2020; Lant et al., 2020), drying (Kapp and Miller, 2020; 
Lant et al., 2022) and normal wear (De Falco et al., 2020; Sheridan 
et al., 2020). These eventually end up in the air (Dris et al., 2017), on 
land (Zubris and Richards, 2005) and in aquatic environments mainly 
through wastewater treatment plants, run offs and atmospheric 
deposition (Browne, 2015).

Forensic scientists have used textile fibres (microfibres) to solve 
crimes for decades (Frank and Sobol, 1990) as garments shed their 
fibres easily on to other surfaces (Pounds and Smalldon, 1975). In 
addition to being readily shed from garments, individual fibres are 
mobile in the air (Moore et al., 1986; Sheridan et al., 2020). As a result, 
they can be used to link people, objects and environments (Grieve, 
2002). Due to the invaluable role they play in criminal investigations, 
the process of sampling, recovery, examination and analysis are 
thoroughly scrutinised to ensure that any fibre evidence presented in 
a court of law is robust and reliable (Grieve, 2000; Robertson et al., 
2017). Thus, central to forensic fibre examinations is the adoption of 
strict examination protocols geared towards preserving the integrity 
of the evidence and minimising contamination. Indeed, across the 
world, laboratories are expected to be  accredited to international 
standards, e.g. ISO and ASTM (ISO, 2017; ASTM E2228-19, 2019) 
before they can undertake forensic fibre examinations. The fibre 
examination process includes the use of appropriate PPE, cleaning 
and/or ‘blanking’ of workstations prior to and after use, the use of 
stereomicroscopes when recovering fibres to minimise contamination 
and/or loss, and the use of unique identification systems for tracking 
individual recovered fibres pending further analysis. In addition to 
preserving evidence in the state it was discovered, reliable classification 
and identification of both the fibre itself and their dyes stuffs is crucial 
to discriminate between sometimes 1000’s of seemingly similar fibres. 
Relatively simple, non-destructive techniques (microscopic) are 
prioritised over more complex and/or destructive methods (e.g. FTIR, 
SEM, py-GC–MS). Natural or regenerated cellulosic fibres are 
accurately and quickly identified using a rigorous identification 
procedure primarily using microscopic techniques. Synthetic fibres 
are classified using specialist microscopy techniques (Polarising Light 
Microscopy) with mFTIR used only to determine exact polymer 
information (e.g. Nylon 6 v Nylon 6,6). Thus, applying well-
established, purpose-built forensic science processes to environmental 
studies involving microfibres will yield fast, accurate and reliable 
results by (1) minimising contamination and (2) ensuring the accurate 
classification/identification of all fibre types (Woodall et al., 2015; 
Gwinnett and Miller, 2021).

Studies carried out over the years in the forensic field have 
consistently found natural fibres to be more prevalent in the 
environment e.g. on outdoor surfaces (Grieve and Biermann, 1997), 
in human hair (Palmer and Oliver, 2004) and more recently on 
parapets (Eng and Koh, 2022). Studies elsewhere evidence the 
abundance of anthropogenic natural microfibres. For example, a 

study of soiled consumer wash loads from 79 households in the 
United Kingdom, released an average of 114 ± 66.8 mg microfibres 
per kg fabric with microfibres of natural origin being dominant 
(Lant et al., 2020). A more recent study comparing the release of 
microfibres from the same number of cotton and polyester T-shirts 
laundered under the same conditions showed that the release of 
cotton microfibres was significantly higher both down the drain and 
into the air through tumble dryers (Lant et al., 2022). Nonetheless, 
until recently (Stanton et al., 2019), limited attention had been given 
to the presence of natural microfibres in environmental pollution 
studies despite an increasing number (Miller et al., 2017) resulting 
in likely underestimation of microfibres and invariably, their impact 
(De Falco et al., 2020). The focus on synthetic microfibres is in part 
a result of the broader plastic pollution conversation and often cited 
as the inherent threat they pose due to their inability to degrade 
easily (Rebelein et al., 2021). The recovery of a cotton waistcoat after 
133 years of deep ocean ship wreck (Chen and Jakes, 2001) may 
be  an indication that natural microfibres are not as readily 
biodegradable as has been suggested, although preservation may 
be due to the high pressure and low temperature conditions.

The Indian Ocean is the third largest of the five oceans of the 
world and makes up about 20% of the Earth’s water surface. 
Knowledge about anthropogenic microfibres contained therein 
would therefore be  relevant in understanding global microfibre 
pollution. So far, several studies have been carried out at different 
regions that make up this ocean’s capacity. Extrapolation of data 
from a study of seamount sediments of its Southwestern region 
estimates that 4 billion fibres per km2 was present in the ocean 
(Woodall et al., 2014). Within its Eastern region, an atmospheric 
deposition study showed the abundance of natural fibres with 
cotton occurring the most (Wang et al., 2020). However, there is a 
paucity of studies regarding anthropogenic microfibres in the 
African region of the Indian Ocean. A recent review noted that only 
three studies were found that had investigated anthropogenic 
microfibres on the African continent making it the least studied 
continent on the planet (Athey and Erdle, 2021). Despite data 
showing the prevalence of microfibres in creeks, lakes and 
zooplankton (Kosore et  al., 2018; Kerubo et  al., 2020, 2021; 
Jeevanandam et  al., 2022), these studies have concentrated on 
methodologies that do not account for the presence of natural 
microfibres, which serves only to further widen the knowledge gap 
and misunderstanding.

In Africa, education and awareness (Khan et al., 2018; Migwi 
et al., 2020) are critical if the global microplastic pollution challenge 
is to be resolved. In 2019, The Flipflopi was built; the world’s first 
recycled plastic sailing dhow. The Flipflopi’s sailing expeditions across 
regions in East Africa (The Flipflopi Project, 2019) raises awareness of 
plastic pollution through the training and education of local citizens. 
A recent review (Alimi et al., 2021) recommended that collaborations 
be made between researchers in Africa and international laboratories 
to address the issue of robust research methodology bearing in mind 
the high cost of laboratory instruments. Their data showed that more 
than 50% of the published studies in microplastic pollution relied on 
visual identification of microplastic particles. However, most studies 
in this field rely on sophisticated, and often expensive sampling 
equipment (Hidalgo-Ruz et  al., 2012; Campanale et  al., 2020) 
conducted by skilled, trained scientists. To overcome this, simple and 
easy to use instrumentation could be developed in the absence of 
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more sophisticated instrumentation and /or to involve citizen 
scientists who lack the skills to operate such instrumentation. The 
added benefits of involving local citizens in sample collection includes 
increased awareness, faster data collection and coverage of a wider 
geographical area in a relatively short time.

In the present study, samples from 37 different locations were 
collected from 24th January 2019 through to 6th February 2019 
during the Flipflopi’s sailing expedition across 500 km of the Indian 
Ocean from Lamu to Zanzibar (Figure 1). Details of the sampled 
locations can be accessed via the link provided https://tinyurl.com/
flipflopimap and the summary table in the Supplementary Table S1. 
The extent of microfibre pollution on surface waters was investigated 
by applying forensic science principles and involving local citizens. A 
systematic approach was taken to objectively identify all microfibres 
using microscopy and/or spectroscopy addressing one of the 
challenges earlier noted.

2. Materials and methods

2.1. Development of a water sampling 
device

A bespoke, simple, inexpensive and easy to operate sampling 
device for the filtering of collected water was constructed from a coffee 
AeroPress® bought online. To ensure any microfibres present in the 

sampled water were collected, nylon filters replaced the regular paper 
filters usually used. The nylon filters were made from a 50 μm nylon 
mesh sheet (Plastok Associates Ltd., United Kingdom) that were laser 
cut into 50 mm diameter discs using a laser (Epilog Laser Legend 
36EXT, United Kingdom). The nylon filter was placed on top of the 
AeroPress® metal filter. The AeroPress® was then connected to a  
1,000 mm flexible High-Density Polyethylene (HDPE) plastic tube  
(80 Ø mm) with an aperture held open by rigid wide plastic tube to 
facilitate easy transfer of ocean water (Figure 2).

2.2. Sample collection

At each sampling site, a 2 L plastic jug was used to draw ocean 
water from the surface down to a maximum depth of 100 mm 
below the surface. The water was then poured through the tube 
and passed through the filter back into the ocean. This process 
was repeated three times sampling a total of 6 L of water. Once all 
the water had been filtered through the AeroPress® sampler, the 
nylon mesh filter containing any collected debris was removed 
from the device using tweezers and placed into a sealed zip lock 
labelled bag ready for transfer back to the United Kingdom. To 
sample at the next site, the sampling device was rinsed with 
bottled water that was stored onboard and a new filter inserted 
ready for collection. This process was repeated for each of the 37 
sampling sites.

FIGURE 1

Map showing snapshot of 37 sampling locations from Lamu (Kenya) to Zanzibar (Tanzania) with arrow showing direction of expedition.
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2.3. Microfibre recovery and preparation

All samples (remaining within their sealed plastic bags) were 
returned to the United  Kingdom where they were allowed to 
thoroughly dry in a fume cupboard. Once dry, each filter was 
removed from its plastic bag and transferred to a clean Petri dish 
(with lid) to prevent contamination from airborne fibres. The Petri 
dishes containing the filters were examined under a low power 
microscope (10x–40x, Leica S6E, Germany) to confirm the presence 
of microfibres before further sampling was conducted. Due to the 
difficulty of locating colourless microfibres, only coloured 
microfibres were recovered. Microfibres were observed in 
all samples.

The Petri dish lid was then removed and microfibres were 
individually removed with forceps and transferred to a glass slide 
loaded with Phytohistol mountant made in Northumbria University 
Forensic lab (see Supplementary Information for details) and covered 
with a glass coverslip. The entire process was conducted whilst under 
the microscope. This fibre recovery procedure, designed to minimise 
the possibility of contamination, is a standard accredited procedure 
used by forensic scientists worldwide (ASTM E2228-19, 2019). Using 
an Olympus CX22 microscope coupled with Euromex camera with 

Image Focus 4.0 software (J.B Microscopes Limited, 
United Kingdom), images of the recovered microfibres on the slides 
were taken. These images were electronically stitched together and 
printed on A3 sheet, providing a clear overview of each fibre’s 
location. Each recovered fibre was individually, and consecutively, 
numbered by site and sample number such that each individual 
microfibre could be  traced back to the location from which it 
was obtained.

2.4. Fibre identification

Microfibres, once recovered from the filters and mounted on glass 
slides, were analysed using bright-field microscopy (×100–400) 
(Comparison Microscope, Leica DMR, Germany), followed by, if 
necessary, Polarising Light Microscopy (PLM) (Leica DM2700P, 
Germany). Both are standard, accredited methods for the 
characterisation and identification of textile fibres and have been used 
in forensic fibres studies (Palmer et al., 2015; Eng and Koh, 2022). 
Bright-field microscopy allows fibre discrimination of natural and 
man-made fibres (e.g. cotton, wool and viscose) based on their 
characteristic morphological features, whereas PLM is particularly 
useful for the identification and discrimination of synthetic 
microfibres (e.g. acrylic, nylon and polyester) through the exploitation 
of their optical properties. It is beyond the scope of this paper to 
explain how PLM can be used for the identification of fibre types. For 
those interested, we  would recommend the introductory text by 
Greaves and Saville (1995).

The limited sample preparation, in situ analysis, speed and 
accuracy of microfibre characterisation by microscopic methods 
makes this the preferred sequence for the identification of fibre type. 
When further confirmation was required either due to damage or 
being heavily dyed or features not being clear, further analysis was 
carried out using an mFTIR (Perkin Elmer Frontier connected to 
spotlight 150i Microscope). Measurement was taken in transmittance 
mode with wavelength of 4,000–500 cm−1, resolution of 4 cm−1 and 
accumulation of 32 scans. Spectra of unknown fibres were compared 
with spectra contained in the internal textile fibre spectral libraries. 
The spectral library was created using known, authenticated textile 
fibre collection donated to Northumbria University from The 
Forensic Science Service (United Kingdom). A correlation value of 
>0.5 was considered an acceptable match in addition to visual 
examination of the spectral images. Following analysis, the 
microscopic fibre colour and generic fibre type was determined. Fibre 
classification of microfibre types found in this study is shown in 
Table 1.

2.5. Quality assurance and control

To prevent contamination of the samples from microfibres in the 
environment, strict laboratory protocols were followed during the 
microfibre recovery process. Clean, new, white cotton laboratory 
coats, composed of colourless cotton fibres, were worn since colourless 
fibres were excluded from examination. Post-drying, samples were 
contained within clean, closed, petri dishes. Laboratory benches and 
lab equipment were thoroughly cleaned with Vikron prior to and after 
use, and in between samples. Following cleaning, the benches were 

FIGURE 2

AeroPress® sampling device in use by local citizens.

TABLE 1 Classification of microfibre types found in present study.

Natural 
microfibres

Regenerated 
cellulosic 
microfibres

Synthetic 
microfibres

Cotton Viscose (Rayon) Acrylic

Vegetable Nylon

Wool Polypropylene

Polyester

Polyethylene
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lined with fresh clean brown paper. All fibre observation and recovery 
were performed under a stereomicroscope in order to minimise 
contamination, as any superfluous fibres would be  noted and 
discarded. The samples remained covered anytime the sample was not 
actively being examined.

2.6. Statistical analysis

Kruskal–Wallis Test and Mann–Whitney U tests were used to 
determine statistically significant differences between natural, 
synthetic and regenerated fibres. All statistical calculations and graphs 
were conducted using Microsoft Excel™ for Microsoft 365 
Version 2,205.

3. Results

3.1. Abundance, characterisation and 
identification of fibres across sampled 
locations

A total of 2,403 fibres were recovered across 37 sampled locations 
(Figure 3). Nineteen fibres were either lost or damaged during sample 
preparation, two had very poor-quality spectra and could not 
be identified, resulting in a total of 2,382 fibres being fully identified. 
This translates into an average of 10.73 ± 1.99 fibres L−1 across the 37 
sampled locations. Location 28 (see Supplementary Table S1 details of 
location) had the highest concentration at 58.67 ± 6.23 fibres L−1, 

whilst the location with the least concentration of fibres was location 
31 with 1.33 ± 0.17 fibres L−1.

The recovered microfibres were first broadly classified into three 
categories namely, natural, synthetic or regenerated cellulosic (semi-
synthetic) using bright-field microscopy, before ‘synthetic’ fibres were 
explicitly identified using PLM. A total of nine different fibre types 
were identified namely acrylic, cotton, nylon, polyester, 
polypropylene, polyethylene, vegetable, viscose and wool (Table 1). 
Of the three broad categories, natural fibres were of greatest 
abundance (55%), followed by synthetic fibres (37%) with the least 
being regenerated cellulosic microfibres (8%) (Figures  4, 5). The 
regenerated cellulosic category was represented by only one type of 
fibre, viscose. Natural fibres had the highest abundance in 33 of the 
37 sampled sites. Using the Kruskal–Wallis test, statistically 
significant differences were found between fibre categories and their 
distribution across the sampled locations (H = 52.82, value of 
p < 0.00001 and α = 0.05). Further analysis using the Mann–Whitney 
Test indicated that natural fibres were statistically significantly more 
abundant than both synthetic and regenerated fibres (Z-Score = 3.346, 
value of p = 0.001 and α = 0.05) and (Z-Score = 6.573, value of 
p < 0.00001 and α = 0.05), respectively. Synthetic fibres were found to 
be  significantly more abundant in distribution compared to 
regenerated fibres (Z-Score = −5.059, value of p < 0.00001 and 
α = 0.05). The natural fibre type with the highest occurrence was 
cotton, with a mean of 5.24 ± 0.95 fibres L−1 (n = 37 locations). 
Polyester was the highest occurring synthetic fibre across the 37 
sampled locations, with a mean of 2.93 ± 0.63 fibres L−1. The least 
occurring fibre overall was polyethylene with a mean concentration 
of 0.01 ± 0.01 fibres L−1 (Figure 6).

FIGURE 3

Concentration of fibre types identified across 37 sampled locations along the Kenyan coast.
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3.2. Fibre distribution by colour

Owing to the difficulty of observing colourless fibres, only 
coloured fibres were recovered and characterised in this study. Blue 
and black/grey were the highest occurring colours at 39.2 and 29.4%, 
respectively, whilst the least abundant colour was purple with a 
percentage composition of 0.5% (Figure 7). Red microfibres were also 
commonly found in 86% of the locations. When combined, blue, 
black/grey and red, made up approximately 78% of the microfibres 
recovered in each location. Blue fibres occurred highest in location 18 
(67%), whilst black/grey was the highest in location 5 (68%). It was 
observed that some colours were more associated with certain fibre 
groups especially with respect to the relatively rarer colours. For 
example, yellow fibres were composed of approximately 79% natural, 
14% synthetic and 7% regenerated fibres, whereas orange is composed 
of approximately 67% synthetic, 19% natural and 14% regenerated, 
compared with blue microfibres composed of approximately 40% 
natural, 56% a synthetic and 5% regenerated microfibres.

3.3. Fibre concentration versus human 
population and distance of sample location 
from land

The sampling sites were grouped according to geographic 
regions and their human population sizes (Table 2). The relationship 
between fibre concentration and population size was explored. No 
clear trend was observed, supported by the absence of any statistical 
significance (p = 0.067 and α = 0.05). Attempt was also made to 
determine whether there was a relationship between fibre 
concentration and the distance of sampled locations from land. See 
supplementary information for more detail. A negative correlation 
was observed between fibre concentration and distance from land, 
with fibre concentration being high closer to land. However, this 
relationship was not found to be statistically significant (p = 0.32 and 
α = 0.05) and (p = 0.18 and α = 0.05) either when data were untreated 
or log-transformed, respectively. The correlation of concentration of 
specific fibre types to the distance of the sampled location to nearest 
land showed similar results between polyester and wool (see 
Supplementary Document).

4. Discussion

4.1. Microfibre distribution

Microfibre concentration found in this study ranged from 
1.33 ± 0.17 fibres L−1 to 58.67 ± 6.23 fibres L−1, generally increasing as 
the sampling location was closer to land. A mean concentration of 
10.73 ± 1.99 fibres L−1 was found across all locations. These data are 
comparable with results obtained in a 2017 expedition involving 617 
locations across 6 oceanic basins including the Indian Ocean (Suaria 
et al., 2020). However, a previous study on the Indian Ocean reported 
a lower average (4.2 ± 1.2 particles L−1) (Barrows et  al., 2018). In 
contrast to this present study, their work included quantification of 
fragments other than microfibres, although 91% were identified as 
microfibres including those that were clear/transparent. In the absence 
of a direct comparison study, it is difficult to understand the exact 

FIGURE 4

Percentage composition of fibres recovered across the 37 sampled 
locations.

FIGURE 5

Concentrations of natural, synthetic and regenerated cellulosic fibres 
distributed across the 37 sampled locations. *Statistically significant 
difference at α = 0.05.

FIGURE 6

Mean fibre concentration of fibre types recovered across sampled 
locations.
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reasons for such differences. Differences in recorded quantities could 
have been due to differing methodologies (Athey and Erdle, 2021). 
Variability in data has been stated as a possibility when a relatively 
small volume of water is used for sampling (Barrows et al., 2018), as 
was the case in Barrows et al. study when a smaller 1 L grab was used 
as opposed to the 6 L used in this study.

The reported samples with a lower microfibre concentration 
(Barrows et al., 2018) were collected 6 years prior to those in this study 
and 4 years prior to the research published in 2020 (Suaria et al., 2020). 
Between 2013 and 2019, textile production has increased. Given it is 
widely accepted that textiles are a major source of anthropogenic 
microfibres found in the aquatic environment, higher productions of 
textiles will invariably translate to higher release of anthropogenic 
microfibres. This may be particularly true for regions of Africa due to 
inadequate or lack of waste control (Alimi et al., 2021).

Of the microfibres found in this study, only 37% of them were 
synthetic, and almost half of all natural identified as cotton fibres. 

This finding substantiates recent evidence (Stanton et al., 2019), 
speculations (Ladewig et al., 2015) and laundry experiments (Lant 
et al., 2020, 2022) that natural microfibres are more prevalent in the 
aquatic environment than their synthetic and regenerated cellulosic 
counterparts. Moreover, forensic science studies that aim to 
determine the frequency of occurrence of different fibre types in 
terrestrial environments, have consistently shown that natural 
fibres, and particularly cotton, are more prevalent compared to 
other fibre types (Grieve and Biermann, 1997; Cantrell et al., 2001; 
Eng and Koh, 2022). The findings of this and other recent 
environmental studies are thus congruent with that of forensic 
science studies; terrestrial and aquatic environments appear to 
be dominated by natural fibre types.

4.2. Colour distribution

Black/grey and blue microfibres were the highest occurring 
colours, followed by red, and were present in all locations. In fact, 
when combined, black/grey, blue and red colours accounted for the 
majority of microfibres found. The recurring abundance of these 
three colours in almost all locations is in line with that of other 
anthropogenic studies (Nel and Froneman, 2015; Suaria et al., 2020; 
Li et  al., 2021; Jeevanandam et  al., 2022). Forensic studies of 
microfibres prevalence on various surfaces where textile fibres are 
shed such as seats (Cantrell et al., 2001), head hair (Palmer and 
Oliver, 2004) and on skin (Palmer and Burch, 2009) have also 
shown the high prevalence of these colours. These findings are 
unsurprising given black, blue and red clothing are a common 
choice of colour of textile (Fornazarič and Toroš, 2018; Sanad, 2018; 
Sidhu et al., 2021).

FIGURE 7

Percentage colour distribution across 37 sampled locations.

TABLE 2 Population of geographic regions of sampled locations.

Sites Geographic 
regions

Population Average 
microfibre 

concentration 
(Fibre−L)

1–2 Lamu County 143,920 27.59

3–5 Tana River County 315,943 7.50

6–18 Kilifi County 1,453,787 12.33

19–24 Kwale County 866,820 7.72

25–37 Zanzibar 

Archipelago

1,300,000 8.67

Population data source: Kenya National Bureau of Statistics (2019) and BBC NEWS (2018).
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Worryingly, studies have indicated that certain aquatic organisms, 
such as the omnivore Amberstripe scad (Decapterus muroadsi, Ory 
et al., 2017 and Girella laevifrons, Mizraji et al., 2017), tend to ingest 
blue and red fibres, respectively, as these have the same colour as their 
natural diets. Research into how other forms of colourful diets such as 
red and green algae which are found in the Kenyan coast (Bolton et al., 
2007) may also be mistaken with red and green microfibres ought to 
be carried out. The implication being that the more information that is 
available on the prevalence of various microfibre colours in different 
regions, a better prediction could be made on which organisms are at 
a higher risk as they have the tendency of mistaking these fibres with 
their diet. Evidence from both field and laboratory studies has shown 
that ingesting microfibres is hazardous (Athey and Erdle, 2021)  
especially because these microfibres serve as a habitat for pathogens 
(First Sentier MUFG and Sustainable Investment Institute, 2022).

4.3. Biodegradability of natural fibres

Biodegradability of microfibres may be a factor that determines the 
abundance or scarcity of microfibres, and it is one solution to 
microfibre pollution that many fashion brands and activists are calling 
for. The easier it is for microfibres to biodegrade, the less risk they pose 
to the environment. However, the overwhelming presence of ‘natural’ 
microfibres across all environments, especially cotton and wool, and 
with examples of textiles found intact after 100’s of years, indicates that 
this relationship may be  more complex or much less significant 
compared to other factors contributing to microfibre accumulation. 
Some authors have speculated that the prevalence of cellulosic fibres 
may be because of slow degradation and therefore accumulate over 
time since they are the oldest forms of textile (Suaria et al., 2020). 
However, a study into the biodegradability of cotton showed that the 
time it takes for cotton to biodegrade would in part depend on the 
finishes applied during production (Zambrano et al., 2021) and other 
factors such as level of exposure (Arshad et al., 2014). These finishes 
when released into the aquatic environment may have toxicological 
implications. It is important to note that faster biodegradability may 
translate to quicker release of toxic compounds such as chemical and 
dye components (Ladewig et al., 2015). Furthermore, by the time a 
cotton fibre has been ‘processed’ its chemical structure is no longer in 
its original natural state (Krässig, 1993; Kljun et al., 2011). Cellulosic 
fibres have been found to be more biodegradable compared to wool 
when subjected to similar conditions (Arshad et al., 2014). The medium 
where these microfibres are present apparently affects the duration of 
degradation. For example, a laboratory experiment has shown that 
wool biodegrades easier in soil compared to an aqueous medium 
(Muniyasamy and Patnaik, 2021). This study also showed that the rate 
of degradation slows down following a period of accelerated 
degradation. However, precise and specific laboratory conditions that 
demonstrate fibre biodegradation may not necessarily correlate with 
real life environments, as has been demonstrated here by the sheer 
quantity of natural fibres.

4.4. Impact of land proximity and human 
population

Generally, fibre concentration appeared to decrease as sample 
location was further away from land. However, the data was not found 

to be of statistical significance. This may be in part due to large inter-
sample variance which was not compensated for, by analysing replicate 
samples (Ryan et al., 2020).

Approximately 84% of samples were collected less than 5 km from 
land. To determine whether a relationship does exist, further sampling 
would be required, to increase the precision of the data. On the other 
hand, no apparent relationship was observed between fibre 
concentration and human population. One of the challenges faced in 
the analysis of this relationship was the absence of detailed population 
data for communities closest to the sampled locations. However, these 
authors (Nel et al., 2017) in their study of water and sediment samples 
collected in South Africa found a weak correlation between human 
population and fibre concentration. Moreover, they did find a high 
concentration of microfibres in samples collected from two harbours. 
Nevertheless, there is seemingly contradictory observations of 
relationships between microfibre concentration and distance to land 
and human population. Factors complicating the issue may include 
the manner in which people wash their clothes. Wastewater from 
washing machines has been noted as a major pathway for 
anthropogenic microfibres to the aquatic environment, but just 21% 
of households in Kenya use washing machines (Kunst, 2022). 
According to a 2017 survey, more than half of Nairobi residents wash 
their clothing by hand (Isamado, 2017), and dispose of the wastewater 
straight on the ground. The implication is that a greater proportion of 
the microfibres released may be retained in soil rather than the aquatic 
environment. The proportion that is not retained in the soil may end 
up in the aquatic environment as a result of runoff and wind 
influences. However, regardless of direct anthropogenic activity in the 
environment, the intricate and complicated interaction of water 
circulation (Kerubo et al., 2020) and atmospheric microfibre content 
(Finnegan et  al., 2022) may have a greater impact on fibre 
concentration found in surface water.

4.5. Forensic approach

Anti-contamination procedures adapted from forensic 
examination of fibres were followed during the examination and 
analysis of microfibres in the laboratory. This procedure minimises the 
potential for contamination from atmospheric fibres as fibre recovery 
is controlled by being conducted entirely with the sample in view 
under the microscope (following equipment and bench cleaning 
procedures). Contamination may have been introduced through 
sample collection on board and through the use of bottled water to 
rinse equipment. Although citizen scientists who were involved in 
sample collection were provided with Flipflop branded uniforms made 
from 100% cotton including white face caps, white or blue T-shirts and 
beige cotton shorts, no control materials were collected and thus their 
elimination as contaminants was not possible, as would usually be the 
case in forensic science practice. As a result, there may be  an 
overestimation of the quantity of blue cotton fibres (beige cotton fibres 
will appear colourless under the microscope and thus the shorts can 
therefore be eliminated as a contaminant). Nonetheless, the impact of 
the possible overestimation of the data obtained herein may 
be minimal due to the variability in shades of blue indicating they have 
originated from multiple sources [and therefore source(s) other than 
the blue t-shirts]. Addressing contamination issues during the 
sampling stage have been re-iterated in this study (Torre et al., 2016) 
and more recently by Gwinnett and Miller (2021) who showed that 
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contamination can be  minimised by at least 36.9% during both 
sampling and processing of samples when strict quality assurance and 
controls are followed. Future research would benefit by prioritising this 
issue by providing clothing made with relatively rarer colours such as 
orange, purple and be mindful of the garment’s rate of shedding for 
those involved in sample collection (Gwinnett and Miller, 2021).

4.6. Citizen science and sampling device

Simplicity and repeatability have been outlined as important factors 
to be considered when utilising a citizen science approach in (micro)
plastic pollution studies (Hidalgo-Ruz et al., 2012; Rambonnet et al., 
2019). To ensure the role of the volunteers was not cumbersome and 
complicated, a simple and inexpensive sampling device modified from 
a commercially available AeroPress® was designed. The use of the device 
required little expertise, ensuring the emphasis was placed on the 
experimental procedure to maintain high-quality standards and ensure 
collected data were reliable. The success of this approach is borne out in 
the scientific findings of the study. Microfibres were recovered in all 
samples, falling in line with broad expectations based on other published 
microfibre aquatic studies. The presence of one or two dominant specific 
colour/type(s) of microfibres, e.g. navy blue, round, semi-delustered, 
18 μm ∅, polyester fibre, within and across multiple locations would 
have indicated a contamination source, poor sampling technique and/
or poor methods. This wasn’t the case as the recovered microfibres were 
of a wide and random variety, within and between locations. This 
provided confidence that not only is the sample device suitable for this 
type of study but that it can be correctly operated by citizens with little 
to no prior knowledge or experience. It also demonstrates that citizen 
scientists can execute strict quality assurance protocols to ensure reliable 
and publishable data is collected (Rambonnet et al., 2019).

Moreover, not only did this raise awareness of microfibre pollution 
as the reality was made evident, but a sense of responsibility was 
ignited in  local citizens which will hopefully change attitudes and 
behaviours in the future.

5. Conclusion

In a previously understudied region of Lamu to Zanzibar along the 
Kenyan coastline, anthropogenic microfibres were found in high 
concentration, similar to other regions in the Indian Ocean. Moreover, 
natural microfibres were found to be significantly higher in abundance 
than their synthetic counterparts, challenging the widely held view that 
‘natural’ fibres pose no risk as they biodegrade. Greater focus is 
therefore needed to research factors affecting the rate of biodegradability 
of natural fibres and the risk they may or may not pose to aquatic life.

The methodological approach taken in this study was one adopted 
by well-established practices and procedures routinely used by 
forensic scientists for the collection, recovery, examination and 
analysis of textile fibres. This approach ensured that all microfibres 
were recovered, contamination was kept at a minimum, quantification 
was accurate and all microfibres were correctly classified in the most 
efficient way possible.

We have demonstrated in this study, that a simple, inexpensive 
sampling device can be effectively used by local citizens with no prior 
experience or knowledge in the field, and by following strict protocols 

produce reliable and publishable data. As well as increasing awareness 
though the involvement of local citizens, this approach could open 
up possibilities for researchers who do not have access to expensive 
equipment, resulting in greater and faster data collection from which 
we can all benefit.
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