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To explore the adaptation strategies of the aboveground and underground functional 
traits of alpine plants along an altitudinal gradient, a typical stand of primitive dark 
coniferous forests (Abies georgei var. smithii.) in southeastern Tibet was taken as the 
research object in the present study. PCA and correlation analyses were carried out 
for different organ functional traits (19 key indicators in total), then RDA analysis was 
done in conjunction with 12 environmental factors. The variation characteristics of 
the functional traits of leaves, current-year twigs, trunks and fine roots in 6 continuous 
altitude gradients and the relationships between functional traits and environmental 
factors were explored. The results showed that soil organic carbon (SOC) may exert 
a positive effect on the construction of plant defense tissue via changes in functional 
traits, altitude (Alt) represents the primary influencing factor of wood density (WD) 
variation, particulate organic carbon (POC) content mainly affected fine root dry 
matter (RDWC) content and specific root length (SRL), and total potassium (TK) 
content was the main factor that affected fine root tissue density (RTD). Leaves , 
current-year twigs, and fine roots exhibited high production or nutrient acquisition 
capacity at an altitude of 4,000m and showed strong defense and relatively stable 
water and nutrient transport capacity. In conclusion, the ecological strategy of Abies 
georgei var. smithii. in Sejila Mountain was more conservative, and the optimal survival 
area of Abies georgei var. smithii. was located at 4, 000m on the shady slope of 
Sejila Mountain. It is of paramount significance for exploring the essence of terrestrial 
ecosystems and their functional processes in extremely high-altitude environments.
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1. Introduction

Based on mutual adaptability and coevolution with their habitats, plant functional traits 
can reflect the ability of plants to acquire, utilize and preserve resources but also closely link 
the environment, plant individuals and ecosystem structure, process and function (Eller et al., 
2020). Plants are construction organisms composed of many complex modules, such as leaves, 
current-year twigs, stems, and fine roots, which can function independently as a complete unit 
of plant growth. Additionally, it enjoys a certain degree of regional component autonomy 
(Yang et al., 2021). Single traits and the combination of multiple traits in the same organ of 
plants can directly reflect the adaptation and response of plants to the environment and play 
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a key role in indicating environmental changes (Perez-Harguindeguy 
et al., 2013). In contrast, the combination of functional traits in 
different plant organs can further describe the trade-off strategy of 
plant acquisition and utilization of resources (Tonin et al., 2019), 
which can better display the life history strategies of plants in 
different environments. As environmental stress has become 
increasingly serious and obvious, plants tend to support less total 
leaf area for a given twig cross section (Sun et al., 2006). In terms of 
light-loving species, the lower wood density was conducive to the 
rapid elevation of canopy height to receive light. In terms of shade-
tolerant species, a higher wood density helps to maintain a higher 
survival rate under shade conditions (Ramananantoandro et  al., 
2016). According to the study of Liu et  al. (2022), several tree 
species in karst areas developed a conservative survival strategy 
with coordinated functional traits such as low SLA, high dry matter 
content of organs such as leaves, roots and branches, and high 
tissue density.

Altitude, as a comprehensive reflection of most environmental 
factors, is the main factor affecting the variation in plant functional 
traits. Previous studies have shown that the dry matter content, 
thickness and dry mass of leaves are positively correlated with 
altitude (Rajsnerová et al., 2015; Thakur et al., 2019); low-altitude 
species have a larger leaf area but less leaf emergence intensity than 
high-altitude species (Yang et al., 2012). With increasing altitude, 
longer and finer roots were produced (Alvarez-Uria and Koerner, 
2011), while the tissue density of sequential roots decreased with 
increasing altitude. Currently, the patterns of functional trait 
covariation in different organs and how they respond to changes in 
environmental conditions (e.g., altitude) are still poorly understood 
at the intraspecies scale (Carvalho et  al., 2020). A thorough 
understanding of the responses of plant adaptation strategies to 
altitudinal gradients and their correlation with environmental 
factors can provide theoretical support for the study of the optimal 
survival zones for specific plants, the development and utilization 
of plants for soil and water conservation, and the protection of rare 
and endangered plants. It is, collectively, of great significance for the 
entire ecological environment and ecological security (Kraft 
et al., 2015).

Abies georgei var. smithii, a genus of Pinaceae, is an endemic and 
vulnerable tree species in China and plays an important role in soil 
and water conservation and regional ecological stability in the 
Qinghai-Tibet Plateau (Shen et al., 2016). The research achievements 
related to the functional traits of Abies georgei var. smithii in 
southeast Tibet has mainly focused on its seedlings (Guo and 
Zhang, 2015; Zhang et al., 2022), and there are few comprehensive 
studies on the functional traits of adult trees and their response to 
their habitats in different altitudinal gradients. Additionally, Abies 
georgei var. smithii has been listed on the Red List of Species in China 
as a result of the decrease in distribution area or the decline in 
habitat quality. Therefore, it is critical to understand the adaptation 
mechanism of this species in the alpine environment and explore 
the reasons for the obvious decline in the population. In summary, 
the main objectives of the present study are as follows: (i) to explore 
the distribution characteristics of leaves, current-year twigs, trunks 
and fine root functional traits of Abies georgei var. smithii in seljira 
mountains along altitudinal gradients; (ii) to investigate the 
trade-off relationship between functional traits of different organs; 
and (iii) to analyze the response of functional traits of different 
organs to environmental factors.

2. Materials and methods

2.1. Study area

The study site is located in Sejila National Forest Park, Bayi District, 
Nyingchi City, Tibet Autonomous Region (E93°12′–95°35′, N29°10′–
30°15′). Sejila Mountain belongs to the remnant of Nianqing Tanggula 
Mountain. Connecting with the Himalayan mountains, it is located in 
the southeastern Qinghai-Tibet Plateau in the middle reaches of the 
Yarlung Zangbo River. In addition, it is one of the important forest areas 
of primary forest in southeast Tibet (Meng et al., 2018). The overall 
mountain range follows a northeast–southwest trend with an elevation 
difference of 3,000 m (2,100–5,300 m) and an area of 2,300 km2. This 
study is located on the northeast slope of Sejila Mountain, with an 
altitude of 3,800 ~ 4,300 m and an average slope of approximately 35°. 
The region is a subalpine cold temperate subhumid zone due to the 
water–air passage of the Brahmaputra River under the influence of the 
Indian Ocean warm and wet monsoon. The average annual temperature 
was 0.73°C below zero. The average temperature of the warmest month 
(July) was 9.8°C, and the average temperature of the coldest month 
(January) was 13.8°C below zero. The average annual precipitation, 
evaporation and relative humidity are 1,134 mm, 554 mm and 78%, 
respectively (Luo et al., 2021). The region is dominated by mountain 
brown soil and acid brown soil. The main forest vegetation type is dark 
coniferous forest in the mountainous temperate zone. Abies georgei var. 
smithii is the established group species and the dominant species in the 
timberline. There are also Picea likiangensis var. linzhiensis forest, Abies 
georgei var. smithii-Picea likiangensis var. linzhiensis mixed forest and 
Abies georgei var. smithii-Sabina saltuaria mixed forest (Han et al., 2014; 
Zhou et  al., 2015). The research area and locations of the seedling 
sampling sites are shown in Figure 1.

2.2. Plot setting

Samples were collected according to the standardized measurement 
manual of plant functional traits (Cornelissen et  al., 2003; Perez-
Harguindeguy et  al., 2013; Moretti et  al., 2017). At the end of the 
growing season for alpine plants on the Tibetan Plateau in October 
2020, we established 6 sample plots (50 m × 50 m) in mature forests at 
intervals of 100 m in the continuous gradient range from 3,800 to 
4,300 m above sea level (Figure 1). The general information of each 
sample plot along the altitude gradient is shown in Table  1. Three 
20 m × 20 m quadrats were built at each plot, 18 quadrats in total, and all 
samples were collected in the quadrats.

2.3. Sampling collection

The standard tree (approx. 30 cm DBH, 18 m height) was selected 
based on the average of the background survey data, and for special 
elevations, it was ensured that either the DBH or the height of the tree 
met one of the above conditions as much as possible. The specific 
sample collection method and sample quantity are as follows: (i) Three 
standard trees of Abies georgei var. smithii were selected in each quadrat, 
and one complete branch was collected from four directions of the 
middle of the crown by the combination of artificial climbing and high 
branch shearing. Three mature leaves without obvious damage and one 
current-year twig were randomly selected from branches in each 
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direction, for a total of 648 mature leaves and 216 current-year twigs. 
(ii) In each quadrat, three Abies georgei var. smithii with DBH and 
height basically the same as the standard wood were selected. One 
immaculate increment core from the bark to the pulp center was drilled 
with a growth cone at the height of the chest, ensuring at least one corn 
in four directions, totaling 216 increment core samples. (iii) Three 
standard trees were explored and excavated along the thick roots in 
four directions. One complete root with a diameter less than 2 mm was 
selected by Vernier calipers and stored under sterile low temperature 
until root scanning. In total, 216 fine root samples were collected. (iv) 
Three sampling points were randomly selected from each quadrat. After 
careful removal of the litter decomposition layer and humus layer, 
0–20 cm soil samples were collected and cryopreserved in sterile 
ziplocked bags (incubator + ice pack) and transported back to the 
laboratory. A total of 18 soil samples were collected.

2.4. Measurement of functional traits

2.4.1. Measurement of leaf traits
The fresh mass (LFW, g) of leaf samples was weighed by an electronic 

balance (accuracy of 0.001 g) after surface dust was cleaned; leaf 
thickness (LT, cm) was measured with electronic digital Vernier calipers 
(accuracy of 0.01 mm); leaf area (LA, cm2) was scanned on a leaf area 
meter (am-350, ADC BioScientific Ltd., United  Kingdom); and the 
relative content of chlorophyll (RCC, %) was measured with a 
chlorophyll metre (SPAD-502, Konica Minolta Holdings, Japan). After 
that, the collected leaves were soaked in distilled water to a constant 
weight and then removed and wiped dry. The saturated fresh weight 
(SW, g) was measured with an electronic balance (accuracy of 0.001 g). 
Finally, we placed the leaves in the oven at 80°C to dry weight (LDW, g). 
According to Cornelissen et al. (2003) and Perez-Harguindeguy et al. 

FIGURE 1

Identification map of sampling point in Sejila Mountain.

TABLE 1 Basic information of sample plots at different altitudes.

Altitude/m Location DBH/cm Height/m Stand density/
plants·hm−2

Canopy density/%

3,800 E94.714° N29.641° 36.53 ± 27.06 19.70 ± 8.08 138.89 ± 70.71 55

3,900 E94.711° N29.641° 32.53 ± 21.06 17.85 ± 9.60 311.11 ± 156.61 75

4,000 E94.709° N29.639° 60.35 ± 19.43 26.70 ± 6.47 94.44 ± 39.28 50

4,100 E94.716° N29.636° 13.65 ± 4.06 24.39 ± 4.90 185.19 ± 32.08 55

4,200 E94.707° N29.635° 26.73 ± 15.32 11.99 ± 5.44 200.00 ± 31.43 65

4,300 E94.706° N29.632° 27.14 ± 12.12 8.37 ± 2.61 248.15 ± 72.29 60

DBH, diameter at breast height.
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(2013), leaf volume (LV, cm3), specific leaf area (SLA, cm2.g−1), leaf dry 
matter content (LDMC, g), leaf tissue density (LTD, g.cm−3), and leaf 
relative water content (RWC, %) were calculated as follows:

LV = LA × LT; SLA = LA/LDW; SLA = LA/LDW; LTD = LDW/LV; 
RWC = (LFW-LDW)/(SW-LDW) × 100%. All the abbreviations of leaf 
functional traits are defined in Table 2.

2.4.2. Measurement of functional traits of 
current-year twigs

The number of leaves on each current-year twig (NL, piece) was 
recorded, every leaf area (ILA, cm2) was scanned by an LI-3000A leaf 
area analyzer (am-350, ADC BioScientific Ltd., United Kingdom), and 
then the total leaf area (TLA, cm2) on each twig was calculated. The 
length (TL, cm) and diameter (TD, cm) of the twigs were measured with 
Vernier calipers (accuracy of 0.01 mm), and the cross-sectional area 
(CA, cm2) and volume (TV, cm3) of the current-year twigs were 
calculated. Finally, all twig samples were placed in an 80°C oven and 
dried to constant weight to weigh the dry mass (TDW, g). The study of 
Sellin et al. (2012) showed that the total leaf area (TLA), leafing intensity 
based on twig mass (LI, piece·g−1), leafing intensity based on twig length 
(DLN, pieces·cm−1), twig tissue density (TTD, g·cm−3) and Huber value 
(HV) were calculated as follows: TLA = NL × ILA; LI = NL/TDW; 
DLN = NL/TL; TTD = TDW/TV; HV = CA/TLA.

Note that all the abbreviations of the functional traits of current-
year twigs are defined in Table 2.

2.4.3. Measurement of wood density
After the increment cores were removed, the bark was removed with 

a sterile scalpel, and the upper and lower ends were smoothed. The 
wood density was measured by the saturated water content 
determination method. It is shown below. The increment cores were 
immersed in distilled water for 72 h, the surface water was wiped dry, 
and the saturation mass (mm, g) was weighed by an electronic balance 
(accuracy of 0.0001 g). The samples were put into the oven at 
100 ~ 105°C, and when the weight was constant, they were transferred 
to the glass dryer for storage, and the absolute dry mass (mo, g) of the 
core was measured. According to Zhao et al. (2018), the wood density 
of increment core (ρw，g·cm−3) was calculated as follows:

 

WD = =
−







 +

ρ

ρ

w
m o

o cw

m m
m

1

1

where ρcw is the cell wall density, that is, the density of the cell wall 
material, which is generally 1.53 g·cm-3.

2.4.4. Measurement of functional traits of fine 
roots

The fresh weight (RFW, g) of fine roots was measured after washing 
and drying by a root scanner (Perfection V700 Photo, Seiko Epson, 
Japan) combined with a root analysis system (WinRHIZO, Regent 
Instruments Inc). The root length (RL, cm) and volume (RV, cm3) were 
obtained by means of determination and analysis of fine roots. Finally, 
the fine roots were dried at 80°C in an oven until a constant weight was 
obtained to measure the dry weight of the fine roots (RDW, g). 
According to Ning et al. (2021), the dry matter content (RDMC, g.g−1), 
specific root length (SRL, cm.g−1) and root tissue density (RTD, g.cm−3) 
of fine roots were calculated as follows: RDMC = RDW/RFW; SRL = RL/

RDW; RTD = RDW/RV. All the abbreviations of the functional traits of 
fine roots are defined in Table 2.

2.4.5. Measurement of soil properties
After stones and visible plant roots were removed, the soil samples 

(approximately 200 g) were passed through a 0.25 mm screen and stored 
at low temperature (<4°C) to measure the microbial biomass and soil 
active organic carbon and its components within 48 h. The remaining 
soil samples (approximately 500 g) were manually ground after natural 
air drying and passed through a 0.147 mm sieve to determine other soil 
chemical properties. Soil water content (SWC, %) was measured by the 
drying method (Chang et al., 2012). Soil organic carbon (SOC, g.kg−1) 
was measured by the potassium dichromate external heating method; 
particulate organic carbon (POC, g.kg−1) was assayed using the method 
of Garten et al. (1999). Readily oxidized organic carbon (ROC, mg.kg−1) 
was assessed by means of the determination method of Chen et  al. 
(2017). Dissolved organic carbon (DOC, mg.kg−1) was determined using 
the method of Fang et  al. (2014). The microKjeldahl method was 
developed to determine total nitrogen (TN, g.kg−1); soil total phosphorus 
(TP, g.kg−1) was determined by HClO4-H2SO4 digestion combined with the 
molybdenum antimony resistance spectrophotometric method, and soil 
total potassium (TK, g.kg−1) was determined by HF-HClO4 digestion 
combined with the flame spectrum method (Shen et al., 2020). Microbial 
biomass carbon (MBC, mg.kg−1), microbial biomass nitrogen (MBN, 
mg.kg−1) and microbial biomass phosphorus (MBP, mg.kg−1) were 
determined by the chloroform fumigation and leaching method (Manral 
et al., 2022). The statistics of the soil properties of the sample plots at 
each altitude are shown in Table 3.

2.5. Statistical analysis

All statistics were calculated using SPSS software (v.25.0, IBM 
Corp., Armonk, NY, United States), and plotting was performed on 
Origin 2021b (Origin lab, Northampton, MA, United States). A p 
value < 0.05 was considered to indicate significant statistical effects. 
In addition, one-way ANOVA was adopted to analyze the 
significance of the differences in functional traits among altitude 
gradients. PCA was applied to eliminate functional traits with weak 
correlation with principal components before Pearson correlation 
analysis. The relationship between functional traits and soil 
properties was investigated by means of redundancy analysis 
(RDA)-constrained ranking of experimental data by using Canoco 
5.0 (Microcomputer Power, Ithaca, NY, United States). RDA has two 
matrices: species data (functional traits-7 leaf traits: LA, LV, SLA, 
LDMC, LTD, RWC, RCC; 8 current-year twig traits: TL, TD, NL, 
DLN, TLA, TTD, LI, HV; 1 stem functional trait: WD; 3 fine root 
traits: RDMC, SRL, RTD) and environmental data (Alt, TN, TP, TK, 
MBC, MBN, MBP, SOC, POC, DOC, ROC, SWC). The contribution 
rate of each factor was calculated to determine the variation of a 
single indicator and make the Sankey diagram. Prior to performing 
RDA, the significance of the effect of each variable was assessed 
using a Monte Carlo permutation test, and detrended 
correspondence analysis was performed on the functional trait data. 
The results showed that the four ranking axes of the functional traits 
data were all less than 3.0; therefore, the RDA method could 
be applied. In the ordination plot, the length of the vector represents 
the magnitude of the environmental factors relative to the 
explanatory trait. The angle between the two arrows indicates the 
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TABLE 2 The abbreviations of functional traits.

Abbreviations Definition Unit

Leaf functional traits LFW Leaf fresh weight g

LDW Leaf dry weight g

SW Saturated weight g

LT Leaf thickness mm

LA Leaf area cm2

RCC Relative chlorophyll content %

LV Leaf volume: LV = LA × LT cm3

SLA Specific leaf area: SLA = LA/LDW cm2·g−1

LDMC Leaf dry-matter content: LDMC = LDW/SW g·g−1

LTD Leaf tissue density: LTD = LDW/LV g·cm−3

RWC Relative water content: RWC = (LFW–LDW)/(SW–LDW) × 100% %

Current year Twig functional traits NL Number of leaf piece

ILA Individual leaf area cm2

TL Twig length cm

TD Twig diameter cm

CA Cross-section area cm2

TV Twig volume cm3

TDW Twig dry weight g

TLA Total leaf area: TLA = NL × ILA cm2

LI Leafing intensity based on twig mass: LI = NL/TDW piece·g−1

TTD Twig tissue density: TTD = TDW/TV g·cm−3

HV Huber value: HV = CA/TLA cm2·cm2

DLN Leafing intensity based on twig length: DLN = NL/TL piece·cm−1

Stem functional traits WD Wood density g·cm−3

Fine root functional traits RFW Root fresh weight g

RL Root length cm

RV Root volume cm3

RDW Root dry weight g

RDMC Root dry matter content: RDMC = RDW/RFW g·g−1

SRL Specific root length: SRL = RL/RDW cm·g−1

RTD Root tissue density: RTD = RDW/RV g·cm−3

Environmental factors Alt Altitude m

SWC Soil water content %

TN Total nitrogen g·kg−1

TP Total phosphorus g·kg−1

TK Total kalium g·kg−1

SOC Soil organic carbon g·kg−1

POC Particulate organic carbon g·kg−1

DOC Dissolved organic carbon mg·kg−1

ROC Readily oxidizing organic carbon mg·g−1

MBC Microbial biomass carbon mg·kg−1

MBN Microbial biomass nitrogen mg·kg−1

MBP Microbial biomass phosphorus mg·kg−1

SD Stand density plant·hm−2
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relationship between functional traits and soil properties. An angle 
between 0° and 90° showed a positive correlation between these two 
variables, a 90° angle indicated no significant correlation, and an 
angle between 90° and 180° represented a negative correlation.

3. Results

3.1. Altitudinal distribution of leaf functional 
traits

Figure 2 shows the changes in leaf functional traits along the 
altitudinal gradient of Abies georgei var. smithii. SLA decreased with 
increasing altitude, while the change trend of LDMC was the 
opposite. The response trends of RWC and RCC were similar, both 
showed double valley curves, and the minimum values appeared at 
3,900 and 4,200 m. The altitudinal distribution patterns of LA and 
LTD were opposite, with double peak and double valley values at 
4,000 and 4,200 m, respectively. LV was the maximum at 4,000 m 
above sea level, and there was no significant linear trend along 
the altitude.

3.2. Altitudinal distribution of functional 
traits of current-year twigs

The altitudinal distribution of functional traits of current-year 
twigs of Abies georgei var. smithii is shown in Figure 3. TLA, TL, NL and 
TTD all reached maximum values at 4,000 m and then decreased with 
altitude, and each index at 4,000 m was significantly higher than that at 
the other five gradients (p < 0.05). The variation trends of HV and DLN 
on the vertical gradient were similar, decreasing first and then 
increasing with altitude, and the minimum value was at an altitude of 
4,000 m. LI decreased first and then tended to be flat at altitudes of 
3,800 ~ 4,300 m. TD rose with altitude.

3.3. Altitudinal distribution of wood density

The wood density of Abies georgei var. smithii showed a bimodal 
curve along the altitudinal gradient (Figure 4) and peaked at 3,900 and 
4,200 m above sea level, respectively. The wood density of Abies georgei 
var. smithii in the 4,000 m plot was significantly lower than that in the 
other five altitudes (p < 0.05).

3.4. Altitudinal distribution of functional 
traits of fine roots

Figure 5 shows the distribution characteristics of fine root functional 
traits along the altitudinal gradient of Abies georgei var. smithii. RDMC 
showed an upwards trend along the altitudinal gradient, and the overall 
distribution was more concentrated. SRL showed a downwards opening 
parabola (p < 0.01) over the altitude of the study area by polynomial 
fitting (p < 0.01). It dropped first and then rose gradually with increasing 
altitude and reached the maximum value at approximately 
4,000 ~ 4,100 m. Except for the minimum value at 3,900 m above sea 
level, RTD showed little difference but strong variation at the other 
5 elevations.

3.5. Trade-offs between functional traits in 
different organs

After PCA of all functional traits, RCC, RWC, NL, TTD, WD and 
RTD, which contributed less to principal component Axis 1, were 
excluded (Figure 6), and the remaining traits were used for correlation 
analysis (Figure 7). We observed strong trade-offs between functional 
traits in different organs of Abies georgei var. smithii. There were 
significant correlations between the functional traits of current-year 
twigs and those of leaves and fine roots. TL was positively correlated 
with LA (r = 0.64, p < 0.01) and LV (r = 0.74, p < 0.01) and negatively 
correlated with LTD (r = −0.65, p < 0.001). TD was negatively 

TABLE 3 Statistics of soil properties at different altitudes.

Altitude/m TN /(g·kg−1) TP/(g·kg−1) TK/(g·kg−1) MBC/(mg·kg−1) MBN/(mg·kg−1) MBP/(mg·kg−1)

3,800 2.19 ± 1.04 0.64 ± 0.06 7.88 ± 1.32 408.19 ± 240.57 53.33 ± 58.82 2.52 ± 2.05

3,900 1.99 ± 0.55 0.39 ± 0.14 6.33 ± 0.26 205.46 ± 12.38 20.69 ± 6.10 3.26 ± 2.30

4,000 3.89 ± 0.57 0.57 ± 0.04 7.63 ± 0.30 452.09 ± 79.54 49.81 ± 6.00 98.12 ± 153.04

4,100 3.20 ± 0.54 0.55 ± 0.04 7.56 ± 0.97 314.98 ± 43.33 28.39 ± 13.15 12.63 ± 2.31

4,200 4.20 ± 1.51 0.58 ± 0.05 7.54 ± 0.85 616.33 ± 287.79 49.70 ± 10.01 13.60 ± 10.79

4,300 3.13 ± 1.16 0.41 ± 0.09 7.99 ± 0.45 413.98 ± 75.89 31.81 ± 3.31 14.15 ± 3.17

Altitude/m SOC/(g·kg−1) POC/(g·kg−1) DOC/(mg·kg−1) ROC/(mg·g−1) SWC/%

3,800 47.14 ± 15.78 13.25 ± 12.56 163.08 ± 56.95 16.48 ± 6.97 36.35 ± 7.63

3,900 59.56 ± 7.84 14.01 ± 8.10 130.16 ± 5.65 17.09 ± 4.25 32.83 ± 1.52

4,000 64.84 ± 9.32 35.21 ± 15.81 166.11 ± 81.51 20.42 ± 2.22 43.62 ± 1.83

4,100 63.90 ± 6.27 26.66 ± 6.29 158.26 ± 32.44 25.16 ± 2.80 44.51 ± 10.03

4,200 76.31 ± 25.52 64.13 ± 42.17 147.47 ± 10.59 32.22 ± 12.79 40.64 ± 1.32

4,300 54.34 ± 14.39 40.61 ± 19.17 168.15 ± 34.64 23.97 ± 8.63 40.75 ± 8.78

TN, Soil total nitrogen; TP, Soil total phosphorus; TK, Soil total potassium; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; MBP, Microbial biomass phosphorus; SOC, Soil 
organic carbon; POC, Particulate organic carbon; ROC, Readily oxidizing organic carbon; DOC, Dissolved organic carbon; SWC, Soil water content.
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correlated with SLA (r = −0.59, p < 0.05) but positively correlated with 
LDMC (r = 0.65, p < 0.01). There were significantly positive 
relationships between TLA and LA (r = 0.72, p < 0.001) and LV 
(r = 0.77, p < 0.001). DLN (leafing density based on twig length) was 

significantly positively correlated with LDMC (r = 0.67, p < 0.001) but 
negatively correlated with LA (r = −0.61, p < 0.001) and SLA 
(r = −0.64, p < 0.001). LI (leafing density based on twig dry matter) 
was significantly negatively correlated with LV (r = −0.51, p < 0.0001). 

A B

C D
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F

FIGURE 2

Altitudinal distribution of leaf functional traits of Abies georgei var. smithii. in southeast Tibet. (A) Leaf area (LA); (B) Specific leaf area (SLA); (C) Leaf tissue 
density (LTD); (D) Relative water content (RWC); (E) Leaf volume (LV); (F) Leaf dry matter content (LDMC); (G) Relative chlorophyll content (RCC). Different 
lowercase letters in the figure indicate significant differences (p < 0.05).
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RDMC had significantly positive relationships with TD (r = 0.56, 
p < 0.0001) and HV (r = 0.49, p < 0.0001). SRL was significantly 
negatively correlated with DLN (r = −0.58, p < 0.0001) and HV 
(r = −0.59, p < 0.0001) but had significantly positive relationships with 
TL (r = 0.47, p < 0.0001).

3.6. Relationships between functional traits 
and environmental factors

The results of redundancy analysis showed that the explanatory rates 
of environmental factors for leaf, current-year twig, trunk and fine root 

A B

C D
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I

FIGURE 3

Altitudinal distribution of functional traits of current-year twigs of Abies georgei var. smithii. in southeast Tibet. (A) Leafing intensity (LI); (B) Huber value (HV); 
(C) Total leaf area (TLA); (D) Individual leaf area (ILA); (E) Twig length (TL); (F) Twig diameter (TD); (G) Twig tissue density (TTD); (H) Density of leaf number 
(DLN); (I) Leaf number in a twig (NL). Different lowercase letters in the figure indicate significant differences (p < 0.05).
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functional traits were 59.5, 92.7, 81.5, and 48.1%, respectively. Therefore, 
we can conclude that there was a high correlation between functional 
traits and environmental factors, which could clearly reflect the degree 
of influence of dominant factors on the functional traits of leaves, 
current shoots, trunks and fine roots. The soil factors that highly 
contributed to leaf functional traits were POC (27.4%), TK (11.2%), TP 
(10.9%), and MBP (10.5%), among which POC had a significant effect 
on leaf traits (p = 0.004; Supplementary Table S1). According to the angle 
of the vectors in Figure 8A, SLA, LA, and LV were positively correlated 
with SOC, MBC, MBN, and MBP but negatively correlated with Alt, TK, 
DOC, and SWC. LDMC, RWC, and RCC were positively correlated with 
Alt, TK, DOC, SWC, and TP but negatively correlated with SOC, POC, 

MBC, and MBP. TN (22.3%, p = 0.026), SOC (12.8%, p = 0.03), and MBN 
(34.7%, p = 0.04) contributed most to the functional traits of current-
year twigs (Supplementary Table S2). TLA, TL, and NL were positively 
correlated with MBP and SWC but negatively correlated with MBC, 
MBN, DOC, POC, TP, and Alt (Figure  8B). WD was positively 
correlated with Alt (r = 0.559, p < 0.05) and SOC (r = 0.304, p < 0.05) and 
negatively correlated with soil total phosphorus content (r = −0.066, 
p < 0.05; Table 4). The variation in WD was significantly correlated with 
Alt, SOC and TP (p < 0.05). The contribution rates were 38.3, 17.9 and 
20.1%, respectively (Supplementary Table S3). SRL was positively 
correlated with TP and SOC according to the angle between rays in 
Figure 8C. RDMC and RTD were positively correlated with TN, MBC, 
MBN and SWC. Additionally, TP and TK were positively correlated with 
RTD. The first contributors to RDMC, SRL and RTD were POC (43.9%, 
p = 0.018), POC (29.4%, p = 0.038), and TK (30.2%, p = 0.04), respectively.

The Sankey diagram (Figure  9) was developed by using the 
contribution rate of each environmental factor to each functional trait 
of Abies georgei var. smithii, directly showing that Alt mainly affected TD 
and HV; TN mainly affected RWC; and RDMC and TTD were mainly 
affected by POC. In conclusion, Alt, TN, TP and MBP had significant 
effects on the functional traits of Abies georgei var. smithii. in 
southeast Tibet.

4. Discussion

4.1. Altitudinal distribution characteristics of 
leaf functional traits

SLA reflects the resource utilization efficiency of plants and the 
nutrient conditions of habitats, and LDMC represents the nutrient 
accumulation ability of plants and is positively correlated with the 
cultivation of resilience (Pichon et al., 2022). In the present study, there 
was a positive correlation between LDMC and altitude (Figure 7), which 
was compared with Pinus tabuliformis in Songshan Mountain of Beijing 

FIGURE 4

Altitudinal distribution of wood density of Abies georgei var. smithii. in 
southeast Tibet. Different lowercase letters in the figure indicate 
significant differences (p < 0.05).

A B C

FIGURE 5

Altitudinal distribution of functional traits of fine roots of Abies georgei var. smithii. in southeast Tibet. (A) Root dry matter content (RDMC); (B) Specific root 
length (SRL); (C) Root tissue density (RTD).
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and the middle part of the Qinling Mountains (Liu et al., 2021; Tian 
et al., 2021), the LDMC of Abies georgei var. smithii. was generally at a 
high level (Figure 2F); compared with the leaf traits of Norway spruce 
(Picea abies Karst.; Konôpka et  al., 2016), the mean value of SLA 
(66.81 cm2.g−1) of Abies georgei var. smithii. was generally at a low level 
(Figure 2B). The small SLA indicated that the photosynthetic efficiency, 
nutrient cycling capacity, and regression rate of Abies georgei var. smithii. 
in Sejila Mountain were at a low level. It is worth noting that studying 
leaf functional traits without considering leaf age in this study would 
bias SLA to be larger. According to the C-S-R theory, the application of 
soil nutrients by leaves focuses on the “stress tolerance” (C) strategy 
rather than the “competition for access” (S) and “direction interference” 
(R) strategies to maintain population development (Yu et al., 2022). The 
reason why Abies georgei var. smithii. became the top community in 
Sejila Mountain was the high LDMC, indicating that the nutrients 
obtained from Abies georgei var. smithii. were more used in the internal 
tissue building input of the leaves, and a high “defense” was constructed 
to resist the high altitude restriction. Additionally, the high LDMC also 

reflected the strong stress resistance of this species, minimizing the 
nutrient loss to adapt to the barren alpine environment and further 
validating the judgment of the above resource conservation strategy. 
Previous studies have shown that leaf RWC is significantly correlated 
with the physiological and metabolic functions of plants and adaptability 
to drought (Abdalla and Rafudeen, 2012) and can reflect the water and 
heat conditions in the habitat. The high RWC and RCC in the present 
study indicated that Abies georgei var. smithii. has strong drought 
resistance in Sejila Mountain to a certain extent. LTD reflected the size 
of plant leaf carrying capacity and was closely related to the 
concentration of internal secondary metabolites and cell wall density, 
thus affecting leaf turnover and growth rate (Marron et al., 2003). In the 
present study, LTD was significantly negatively correlated with LA 
(p < 0.001; Figure 7), and double valley values and double peak values 
were obtained at altitudes of 4,000 and 4,200 m at the same time 
(Figure 2C), indicating that Abies georgei var. smithii. utilized their large 
LA to maximize light uptake for photosynthesis at these two altitudes. 
In addition, the configuration of the combination of small LTD and high 
LDMC indicates that Abies georgei var. smithii. can create as much 
energy as possible for growth and limit nutrient loss. This ability to 
covary is the result of a trade-off between biomass production and 
resource storage in a restricted environment (Volaire, 2008).

4.2. Altitudinal distribution characteristics of 
current-year twig traits

Studies of the leaf size-number relationship showed that to 
maximize resource returns, plants either allocate more small leaves per 
unit twig or select fewer large leaves per unit twig (Westoby et al., 2002; 
Yan et al., 2013). Longer twigs are beneficial to increase light acquisition 
and reproductive effectiveness and reduce mutual occlusion between 
leaves (Feldpausch et al., 2011). The present study showed that ILA on 
the twig was positively correlated with NL (Figure 7), especially at an 
altitude of 4,000 m, where both of these traits were the largest 
(Figures 3D,I), and TL also reached the maximum. It reduced the leafing 
intensity based on twig length (DLN) and reached a minimum 
(Figure 3H). This result indicated that Abies georgei var. smithii. had the 
strongest light capture capacity and the highest photosynthetic rate at an 
altitude of 4,000 m. This requires a stable transportation ability for water 
and photosynthetic products in twigs (Niinemets et al., 2006). Therefore, 
there was no significant difference in TTD among altitudes (Figure 3G). 
However, TTD reached a maximum at an altitude of 4,000 m to enhance 
its ability to resist interference to form strong protection organization 
and biomechanical stability (Huang et al., 2016).

Kleiman and Aarssen (2007) proposed the concept of leaf intensity, 
which is the number of leaves per unit twig length. Yang et al. (2008) 
studied the trade-off between leaf area and quantity of woody plants in 
Gongga Mountain, Southwest China, using two leafing intensities 
(based on twig mass and length) and found that leaf intensity based on 
mass could explain more than 99% of the variation in leaf mass. The 
traditional “dominance hypothesis of leafing intensity” proposes that 
there is a negative correlation between leafing intensity and leaf area in 
woody plants, and natural selection favors high leafing intensity 
(Kleiman and Aarssen, 2007). In the present study, we chose a leafing 
intensity based on mass, and the results support the argument in this 
hypothesis. However, the test results of Milla (2009) challenged the 
argument in this hypothesis, contending that the advantage of leaves 
with higher leafing intensity was lower quality than expected, which was 

FIGURE 6

PCA analysis of functional traits of different organs of Abies georgei var. 
smithii. in southeast Tibet.

FIGURE 7

Correlation analysis of functional traits in different organs of Abies 
georgei var. smithii. in southeast Tibet (Pearson). *p <= 0.05; 
**p <= 0.01; ***p< = 0.01.

https://doi.org/10.3389/fevo.2023.1055195
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2023.1055195

Frontiers in Ecology and Evolution 11 frontiersin.org

not conducive to improving leaf traits. Therefore, the lowest value of LI 
at 4,000 m above sea level in the present study does not mean that leaves 
at this altitude do not have competitive advantages, but the result is 
likely to be quite the opposite (Figure 3A). This study may provide 
evidence to support the proposal that current-year twigs tend to 
decrease LI during evolution as a response to an increase in LA, and vice 
versa (Milla, 2009). Huber values (HV) are the xylem cross-sectional 
area (CA) of the twig divided by the total leaf area (TLA) supported by 
the twig, indicating the ability to supply water to the leaves via the twig 
sapwood cross section (Sellin et  al., 2012). In this study, the HV at 
4,000 m elevation was the lowest (Figure 3B), which reflected the weak 
water transport capacity of the twigs at this altitude. The HV of twigs 
also increased (Figure 7) with increasing twig diameter (TD). It is vital 
for plants under water stress (Wang et al., 2014). The relatively high soil 

water content (SWC) in the 4,000 m sample plot does not cause adverse 
environmental pressure (Table 3), which may be one of the reasons why 
the HV was the minimum value at this altitude.

4.3. Altitudinal distribution characteristics of 
wood density

Wood density (WD) is an important functional trait of woody 
plants and has an important impact on ecosystem processes such as 
biomass carbon storage and wood decomposition (Chave et al., 2009). 
In general, wood density was negatively correlated with soil fertility, tree 
mortality and relative growth rate. Climax species with longer tree ages 
have higher wood densities, while pioneer species have lower wood 
densities (Muller-Landau, 2004). High-density wood has higher 
structural strength, as the construction cost and mechanical strength of 
wood are proportional to the wood density. Nevertheless, it requires 
more construction cost; in particular, the slower growth rate determines 
the longer time investment (Fajardo, 2022). However, the farther the 
wood fibers are from the central axis of the trunk, the greater the 
mechanical strength of the trunk can be  increased (Larjavaara and 
Muller-Landau, 2010). In other words, a thick low-density wood trunk 
has higher mechanical strength and lower construction cost than a thin 

A B
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FIGURE 8

Redundancy analysis of the association of environmental factors with functional traits of leaf (A), current-year twig (B), and fine roots (C).

TABLE 4 Correlation analysis between wood density and environmental 
factors (Pearson).

Altitude TN TP TK SOC SD

WD 0.559* 0.189 −0.066* −0.110 0.304* 0.444

WD, wood density; TN, Soil total nitrogen; TP, Soil total phosphorus; TK, Soil total potassium; 
SOC, Soil organic carbon; SD, Stand density; * indicates a significant correlation between the 
two corresponding indicators (p < 0.05).
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high-density wood trunk. Based upon this reasoning, Abies georgei var. 
smithii. at 4,000 m elevation in the present study had the largest average 
DBH (60.35 ± 19.43 cm; Table 1) and the smallest WD (0.34 ± 0.04 g.
cm−3; Figure 4), which is the result of the comprehensive trade-off of 
habitat resources, growth rate, structural strength, and time cost in the 
alpine environment. The average WD (0.40 ± 0.05 g.cm−3) of Abies 
georgei var. smithii. was higher than that of Cryptomeria japonica (0.35 g.
cm−3) and was similar to that of Chamaecyparis obtusa (0.40 g.cm−3) 
(Kijidani et al., 2021), indicating that Abies georgei var. smithii. in the 
study area had higher wood density, lower growth rate, longer tree life 
and lower mortality. Additionally, as the supporting effect of tree trunks 
is closely related to their mechanical safety, the WD at high altitudes 
(4,100 ~ 4,300 m) is higher than that at low altitudes (3,800 ~ 4,000 m; 
Figure 4). In the harsh environment of high altitude, plant stems must 
maintain a high tissue density to resist the instability of climate and 
strong external interference. The relapse of wood density at the highest 
elevations may be strongly related to habitat constraints near the forest 
line (Hagedorn et al., 2014).

4.4. Altitudinal distribution characteristics of 
functional traits of fine roots

In the present study, with increasing altitude, the SRL of Abies 
georgei var. smithii. increased first and then decreased gradually and 
reached the highest value at approximately 4,000 ~ 4,100 m above sea 
level (Figure 5B), indicating that the roots of Abies georgei var. smithii. 
at these two altitudes could obtain resources to promote plant growth 
with maximum efficiency (Cardou et al., 2022). According to resource 
economics theory, poor soils generally choose species with low SRL to 
retain the scarce resources obtained (i.e., conservative strategy), while 
resource-rich soils choose species with higher SRL to acquire soil 
resources efficiently and rapidly (i.e., acquisition strategy; Reich, 2014). 
The results of the present study were in line with this theory. Compared 
with other gradients, soil nutrient elements, such as MBC, MBN, MBP, 
and TOC, were at relatively high levels at the two altitudes (Table 3). This 
result was consistent with the results of studies on fine root traits of 
Pinus Taiwanensis (Zhou et al., 2019).

The high RTD of Abies georgei var. smithii. indicated that the root 
extension and defense ability were relatively strong (Craine et al., 2001). 
Some studies have shown that root tissue density is less affected by tree 
competition (Hajek et al., 2014). According to most studies, however, 

isolated precipitation treatment could reduce the root tissue density of 
plant fine roots (Sandrin et al., 1995). The SWC and RTD values were 
both the lowest at 3,900 m in the study area (Table 3 and Figure 5). 
Therefore, it was concluded that SWC was the main influencing factor 
for the RTD of Abies georgei var. smithii. at 3,900 m, rather than 
intraspecific competition caused by stand density and canopy density.

Fine root length is closely related to resource acquisition strategies, 
and RDMC combined with RTD reflects resource conservation 
strategies such as plant physical defense and anti-interference ability (Hu 
et al., 2021). In the present study, the coefficient of variation of RDMC 
was small, and the overall value was large on the 6 elevation gradients 
(Figure 5A), which was the requirement to maintain high transport 
capacity and stability (Poorter and Ryser, 2015). Currently, most studies 
have combined RDMC and RTD to comprehensively reflect the fine root 
respiration rate and soil resource availability. It can be coordinated with 
aboveground functional traits and used in other whole-plant economic 
spectrum tests (Laughlin et al., 2017).

4.5. Relationships between functional traits 
of different organs

After PCA was performed (Figure 6), 6 traits, TTD, RCC and RTD, 
were screened out, including WD, which was the only stem trait. The 
correlation between WD and other functional traits was weak in the 
present study, which was consistent with the results of Kotowska et al. 
(2015). They proved that WD should be treated separately in the study 
of plant adaptation strategies. In contrast, the study of Pietsch et al. 
(2014) demonstrated a potentially independent trade-off between WD 
and leaf traits. Correlation analysis of functional traits among different 
organs (Figure 7) showed that TD was positively correlated with LDMC 
(p < 0.01) and RDMC (p < 0.05). Additionally, LDMC showed a linear 
upwards trend along the altitude gradient (Figure 2F). Abies georgei var. 
smithii. growing at high altitudes have larger LDMC, TD and RTD. This 
means that it adopted a conservative strategy of prolonging the life of 
expensive organs (needles, fine roots) in the restrictive environment of 
high radiation and low temperature (Carvalho et al., 2020). Additionally, 
the results showed that DLN was significantly negatively correlated with 
SLA and significantly negatively correlated with SRL; TL was positively 
correlated with LA, LV, and SRL (Figure  7). For example, DLN at 
4,000 m altitude was the minimum, and SLA and SRL were both larger. 
TL reached the maximum at 4,000 m, and LA and LV also reached the 
maximum. In other words, the leaf productivity and nutrient absorption 
capacity of fine roots were stronger at this altitude, indicating that Abies 
georgei var. smithii. made use of an ecological strategy of active 
acquisition and resource conservation at 4,000 m (Poorter and 
Ryser, 2015).

4.6. Environmental interpretation of plant 
functional traits

Carbon is a fundamental element in building biological tissues, and 
approximately 50% of the dry matter of plant organisms is carbon, 
making it different from other nutrient elements. The highest 
contribution of POC (27.4%) (Supplementary Table S1) in this study 
was positively correlated with SLA, LA and LV and negatively correlated 
with RCC, RWC and LTD (Figure 8A). In addition, the carbon pool-
related indicators explained 35.4% of the variation in leaf functional 

FIGURE 9

The contribution of each environmental factor to the functional traits.
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traits (Supplementary Table S1), suggesting that soil carbon is strongly 
associated with and has a wide range of effects on each leaf functional 
trait in Abies georgei var. smithii and that the study by Zhao et al. (2016) 
also showed that carbon content did not vary significantly in plant roots, 
stems and leaves but was significantly associated with different 
components. TK was positively correlated with LTD and LDMC and 
contributed more to the variation in leaf traits, as an increase in TK 
resulted in greater biomass in the plant leaves (Shen et  al., 2022), 
resulting in an increase in LDMC and a corresponding increase in 
LTD. The total contribution of TP and MBP to leaf trait variation was 
21.4% (Supplementary Table S1), which was positively correlated with 
LV and negatively correlated with LTD (Figure 8A). LTD is the ratio of 
leaf dry mass to LV. In this regard, the variation in soil phosphorus 
content mainly determined the change in LV and then exerted an impact 
on LTD. SOC, TN and TP were positively correlated with LA and LV 
(Figure 8A), indicating that the soil elements effectively promoted the 
intercalary growth of leaves, resulting in an expansion of leaf area and 
leaf volume, whereas TK was the opposite in this study.

The results of the RDA showed that the contribution rate of MBN 
to the total variation in current-year twig traits was the highest (34.7%), 
followed by TN and SOC (22.3 and 12.8%, respectively; 
Supplementary Table S2). The mean value of MBN in the present study 
area (38.96 mg·kg−1) was much lower than that in the Wuyi Mountain 
evergreen broad-leaved forest area (90.42 mg·kg−1), while the TN was 
higher (3.10 g·kg−1; 2.12 g·kg−1; Su et al., 2012). The high contribution of 
MBN indicates that the functional allocation of current-year twigs is 
closely related to soil fertility and activity. In addition, the overall low 
MBN and the significant negative correlation with many twig 
morphological traits (TL, TD, etc.) (Figure  8B) indicated that the 
nitrogen supply capacity of the soil greatly limited the growth of the 
current-year twigs of Abies georgei var. smithii. Plants tend to grow 
robustly when nitrogen supply is sufficient. Leaves will be large and fresh 
green, with a prolonged leaf function period (Báez and Homeier, 2018). 
In this case, in the present study, the highest values of TL, NL and ILA 
at 4,000 m elevation were significantly related to the higher TN and 
MBN at this elevation (Figure  3 and Table  3). Soil organic carbon 
improves soil properties, promotes good soil structure and is a major 
source of nutrients and energy for plants and microorganisms. The RDA 
ranking map showed that SOC was significantly positively correlated 
with functional traits indicating defense construction, such as TTD and 
TD (Figure 8B). From the perspective of plant physiology, Savage et al. 
(2016) found that organic carbon is a powerful weapon against pests and 
diseases in plants. It was proven in this study that SOC plays a positive 
role in promoting the construction of plant defense tissues through 
functional traits.

Nyakuengama et al. (2003) showed a negative correlation between 
wood density and soil fertility in a fertilization experiment on Pinus 
radiata, while more studies on a range of coniferous species have shown 
that wood density is generally lower in widely spaced stands (Jordan 
et al., 2008; Watt et al., 2011). In this study, wood density was positively 
correlated with soil total nitrogen and organic carbon content and 
negatively but not significantly correlated with soil total phosphorus and 
potassium, suggesting that soil fertility has some but not significant 
influence on changes in wood density. We found that WD was positively 
correlated with TN and SOC and negatively correlated with TP and TK, 
but not significantly (Table 4), indicating that soil fertility had a certain 
but not obvious effect on WD. The minimum value of WD at 4,000 m 
elevation was combined with the minimum value of SD and CD at the 
same altitude (Figure 4 and Table 1). Additionally, there was a positive 

correlation between WD and SD, but the correlation between them was 
weak (p > 0.05; Table 4). Therefore, although SD could explain why WD 
was the lowest at 4,000 m, SD was not the main influencing factor of WD 
on the overall altitude gradients. Altitude, the most important 
topographic factor in southeastern Tibet, is the primary contributor to 
WD variation (Supplementary Table S3). Cell wall thickness is a key 
factor affecting wood quality and strength characteristics and is highly 
correlated with WD. Many researchers have described a positive 
correlation between WD and cell wall thickness (TopaloĞlu et al., 2016; 
Bahmani et al., 2020). In the present study, the average value of WD in 
the high altitude range (4,100–4,300 m) is higher because the thickness 
of the fiber cell wall, cellulose, lignin and other contents change with 
increasing altitude (Nazari et al., 2020). In addition, SOC and TP were 
also the main influencing factors that significantly affected WD 
(Table  3). The absolute deficiency of TP in this study area and its 
significant negative correlation with WD, with its relatively high 
contribution (20.1%), suggest that phosphorus may have contributed to 
a greater extent to the metabolism of carbohydrates within the trunk of 
Abies georgei var. smithii, thus limiting the wood structure to become 
more compact (Supplementary Table S3; Crous et al., 2009).

POC demonstrated the highest impact on RDMC (43.9%, p = 0.018) 
and SRL (29.4%, p = 0.038); RTD was the most affected by TK (30.2%, 
p < 0.05; Supplementary Table S4). POC is an organic carbon component 
bound to sand with a particle size of 53–2,000 μm. It was derived from 
the organic carbon pool of plant residues that had not been completely 
decomposed. POC features a low humification degree, high activity, easy 
decomposition and fast turnover (5–20 a). Additionally, POC is more 
sensitive to altitude (Parwada and Van Tol, 2018) and is the main 
influencing factor for changes in RDMC and SRL in this paper. The 
trends in TK and RTD in this study are consistent, with both levels being 
at their lowest at 3,900 m and remaining at almost the same level at other 
altitudes. Therefore, TK in this study area promotes the increase in root 
biomass and is the dominant factor in the variation in RTD in Abies 
georgei var. smithii. In addition, the results showed that SOC was 
generally higher and changed slowly along the elevation gradient. This 
organic matter-rich soil stimulates outwards and downwards root 
elongation. The contribution of TOC to changes in fine root indicators 
was large but not significant to the variation in fine root traits (p > 0.05; 
Table 3). In this regard, it was difficult to interpret the effects of SOC on 
fine root traits at different altitudes. Su et al. (2019) also showed that 
SOC is relatively stable at different stages of vegetation recovery.

5. Conclusion

The effects of altitude on the functional traits of the organs of Abies 
georgei var. smithii. were obvious. The soil phosphorus content mainly 
determined the change in LV and then affected the LTD. Phosphorus 
reduced WD to a greater extent. TK was the dominant factor of RTD 
change; SOC played a positive role in promoting the construction of 
plant defense tissues based on functional traits.

Multiple functional traits of different above-met and below-
ground organs of Abies georgei var. smithii. exhibited the optimal trait 
combination at 4,000 m. (i) RCC, LA and LV all reached the maximum 
value at 4,000 m, indicating that the leaves obtained the maximum 
energy output. In addition, LTD was the smallest, while RWC was the 
largest. Therefore, the leaves had the fastest turnover speed and the 
strongest stress resistance. (ii) The TL was the highest at 4,000 m, 
while the HV was the lowest. The traits indicating photosynthetic 
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capacity (TLA, NL) and physical defense capacity and transmission 
stability (TTD) were the largest. Therefore, current-year twigs were 
able to obtain light and energy products to the greatest extent. 
Although their water and nutrient transport capacity was weak, they 
remained relatively stable at an altitude of 4,000 m. (iii) Abies georgei 
var. smithii. forest at 4,000 m had the largest DBH and the smallest 
WD, indicating that the mechanical strength and construction cost of 
Abies georgei var. smithii. Trunk were optimal. (iv) SRL reached its 
maximum value in the altitude range of 4,000–4,100 m. This reflected 
the relatively strong hydrotrophic acquisition ability of plant fine 
roots in this altitude range. In conclusion, Abies georgei var. smithii. 
has been proven to be able to optimize habitat resources, growth rate, 
structural strength, and time cost through a comprehensive trade-off 
of functional traits at 4,000 m altitude. It was the optimal survival 
area. Finally, the strategy of active acquisition and resource 
conservation was adopted by Abies georgei var. smithii. in high-
altitude habitats in southeast Tibet.
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