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Accurate mapping of rice-growing areas is essential to ascertain the spatial 
distribution of rice fields, and ensure food security. It is a challenging task to timely 
and accurate identify rice under the complex terrain due to its diversified land 
cover, small- or middle-sized rice fields with fragmented distribution. In this paper, 
the time series VV and VH backscatter coefficient datasets were first constructed 
based on 411 sentinel-1 synthetic aperture radar (SAR) images in Chongqing city 
with complex terrain. Then, the rice multi-characteristic parameters, including 
SAR backscatter features, composite features, rice phenological parameters, 
texture features and topographic features, were generated. On this basis, the 
homogeneous image objects were produced. Furthermore, a rice identification 
algorithm combining multi-characteristic parameters and homogeneous objects 
based on time series dual-polarization SAR (MPHO-DPSAR) was established. The 
research demonstrated that the MPHO-DPSAR algorithm can achieve accurate 
mapping of small and medium-sized and fragmented rice fields in regions under 
complex terrain according to the accuracy evaluation at three levels and the 
comparison with other three classical rice identification methods. The suitability 
and limitations of proposed MPHO-DPSAR algorithm were also discussed from 
the aspects of SAR data temporal and spatial resolution, rice phenology, and 
surface landscape complexity.
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1. Introduction

Rice is one of the most important food crops for mankind and the staple food for nearly 
half of the world’s population, especially in East Asian countries with large populations and 
limited arable land per capita (Corcione et al., 2016; Xie and Chen, 2019; Han et al., 2022). 
Sufficient food supply is the foundation of human survival, social stability and economic 
development (Zheng et al., 2016). Meantime, rice is an important source of agricultural 
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carbon emissions, which releases carbon in the form of greenhouse 
gases such as CO2, CH4, and N2O during its growth (Chen and Pan, 
2022; Lin et al., 2022). The development of low-carbon agriculture 
is an important measure to achieve the goal of comprehensive 
energy conservation and emission reduction (Lin et  al., 2022). 
Therefore, monitoring the rice planting area is the basis for the 
government to accelerate the construction of a modern, low-carbon 
rice industry system, and to promote the continuous increase of 
farmers’ income and the sustainable development of the rice 
industry. Timely and accurate mapping of paddy fields is of great 
significance for assisting in formulating food policies, ensuring food 
supply, promoting carbon emission reduction and developing 
smart agriculture.

Compared with the traditional rice identification methods based 
on field investigation, the application of optical remote sensing 
technology in agricultural monitoring is becoming increasingly 
mature (Yin et  al., 2019; Zhu et  al., 2022). Optical spectral 
reflectance, vegetation indices and rice phenological parameters can 
be used to map rice fields. The optical spectral reflectance of rice 
fluctuates with the rice nutrient conditions and canopy structure 
change (He et al., 2021). The spectral indices constructed based on 
spectral reflectance data can highlight the physical and chemical 
parameters and growth conditions of rice. Among them, vegetation 
indices are indicators that reflect rice growth status and canopy 
coverage, such as the Normalized Difference Vegetation Index 
(NDVI; Belgiu and Csillik, 2018; Belgiu et al., 2021), and Enhanced 
Vegetation Index (EVI; Cao et  al., 2020). Rice phenological 
parameters can reflect the growth rhythm of rice that is different 
from other crops (Zhang and Lin, 2019; Ni et al., 2021). Previous 
researches have released global land cover datasets based on spectral 
reflectance and spectral indices using MODIS, Envisat and 
Sentinel-2 data. Representative datasets are MCD12Q1 (Sulla-
Menashe et  al., 2019), GlobCover (Arino et  al., 2008) and 
FROM-GLC (Gong et al., 2012), all contain farmland distribution 
information. However, the spatial resolution of the MCD12Q1 and 
GlobCover datasets is only 500 m and 300 m, respectively. And none 
of the three datasets distinguish specific crop types. In addition, the 
MCD12Q1, GlobCover and FROM-GLC datasets were updated to 
2019, 2009, and 2017, respectively. Eventually, optical remote sensing 
is easily affected by weather conditions, cannot obtain information 
on objects occluded by clouds and cloud shadows, and cannot 
ensure that satellite data is obtained in the best phenological stage 
for rice identification, which makes it difficult to reconstruct the 
optical remote sensing time series curve, and affects the accuracy of 
rice identification.

In contrast to optical remote sensing, synthetic aperture radar 
(SAR) has proven to be an attractive alternative for rice monitoring 
and mapping due to the independence of SAR signals from the cloud 
and solar radiation (Torbick et al., 2017; Pan et al., 2021). Many 
studies have used single-temporal SAR backscatter characteristics to 
monitor rice (Gao et al., 2019), whereas single-temporal SAR data 
usually results in low identification accuracy due to missing key 
phenological stage information (Lopez-Sanchez et al., 2012; Li et al., 
2014). Compared with single-temporal SAR data, multi-temporal or 
time-series SAR data can capture phenological information about 
rice in the whole growth cycle, thereby contributing to improving 
rice identification accuracy (Yang et al., 2017, 2018; Csorba et al., 

2019; Chandra Paul et al., 2020; Pang et al., 2021; Zhan et al., 2021). 
At present, most studies on rice identification using SAR have 
focused on the flat terrain areas where rice fields are concentrated 
and large-sized, such as the Mekong Delta (Bouvet and Le Toan, 
2011; Clauss et  al., 2018), Bangladesh (Panigrahy et  al., 2012), 
Vijayawada in India (Mandal et al., 2020), and Northeast China and 
the Middle and Lower Yangtze Valley Plain (Zhan et  al., 2021). 
However, in the mountainous and hilly areas represented by 
Chongqing, timely and accurate paddy rice identification based on 
remote sensing faces many difficulties and challenges for the 
following reasons: (1) Chongqing city is located in the transition 
zone between the rice growing area in southwest China and the rice 
growing area in the middle and lower reaches of the Yangtze River 
(Lisan, 1993), and the terrain is mainly mountainous and hilly. 
Therefore, the fields in Chongqing are small and scattered. In most 
cases, a pixel contains multiple land types, forming a mixed pixel. 
(2) Mountain topography and great altitude differences lead to large 
differences in water and heat conditions in various regions, 
inconsistent rice planting times, and inconsistent rice phenology. 
Therefore, the best time to identify rice varies from region to region. 
(3) Chongqing is located in the subtropical monsoon humid climate 
zone. Under the combined effect of climate, topography and water 
vapor from the Yangtze River, the annual average foggy days in 
Chongqing are as high as 104 days. Therefore, it is difficult to obtain 
high-quality optical remote sensing images. Due to these challenges, 
few researchers have conducted satellite-based rice monitoring 
in Chongqing.

In addition, given the inherent speckle noise of SAR images, the 
mixed pixels and pixel heterogeneity at the edge of rice fields, the 
recognition accuracy of rice still needs to be  further improved. 
Previous studies showed that spatial domain filtering can reduce the 
influence of speckle noise in SAR data, and time series smoothing 
methods [Gaussian fitting (Bazzi et  al., 2019), Savitzky–Golay 
filtering (Krishnan and Seelamantula, 2013), double logistic 
regression (Zheng et al., 2016), etc] can be used to reconstruct time 
series SAR data (Zeng et al., 2020). Both are beneficial to improving 
rice identification accuracy. Moreover, compared with the pixel-
based method, the object-based classification method can avoid a 
large number of broken patches in the classification results and can 
obtain more accurate mapping results in the application of crop 
classification (Peña-Barragán et al., 2011; Belgiu and Csillik, 2018). 
Therefore, this paper focuses on solving the difficulties of high-
precision rice identification in Chongqing due to factors such as 
cloudy and foggy weather (annual average of 104 days of cloudy and 
foggy weather), fragmented and small- and middle-sized rice fields, 
large fluctuations in terrain, significant differences in precipitation 
and temperature within the region, and large changes in rice 
phenological information.

The main research objectives of this study are to: (1) reconstruct 
the Sentinel-1 SAR time-series backscatter data, and suppress 
inherent speckle noise in SAR data, (2) calculate multi-characteristic 
parameters and analyze the separability of rice and other land cover 
types in each feature image, (3) propose a rice identification 
algorithm combining multi-characteristic parameters and 
homogeneous objects based on time series dual-polarization SAR 
(MPHO-DPSAR), (4) generate an annual map of rice fields in 
Chongqing in 2020.
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2. Materials and methods

2.1. Study area and data

2.1.1. Study area
Chongqing is located in the southwest of China, in the upper 

reaches of the Yangtze River, between 105°11′E ~ 110°11′E and 
28°10’N ~ 32°13’N, and has an area of 82,400 km2. The elevation span 
is large (73.1–2796.8 m) and the terrain is strongly undulating. So, the 
landforms are various, mainly mountains, hills, tablelands, and 
flatlands. Specifically, in Chongqing, 38.61% of the areas are below 500 
m, 25.41% are between 500 and 800 m, 20.42% are between 800 and 
1,200 m, and 15.56% are over 1,200 m (Figure 1).

In terms of climate, Chongqing has a humid subtropical monsoon 
climate, with an annual average sunshine duration of 1,000–1,400 h, 
which is one of the areas with the least annual sunshine in China. The 
annual average temperature, annual precipitation, and annual 
sunshine duration vary greatly within the study area (Table  1). 
Affected by the topography and climate, the annual average foggy day 
in Chongqing is 104 days a year, so it is known as the “Fog City.”

The main crops in Chongqing are rice, corn, and wheat, of which 
the distribution area of rice is 655,000 hm2, accounting for 32.9% of 
the planting area of all grain crops (Chongqing Statistics Bureau, 
2020). In recent decades, many cultivated lands have been converted 
into construction land due to urbanization or returned to forest or 
grasslands due to ecological restoration, resulting in a rapid decline in 
the rice field area. From 2000 to 2020, the rice fields area in Chongqing 
dropped from 780,000 hm2 to 660,000 hm2 (Chongqing Statistics 
Bureau, 2020). The crop phenology data measured by the Chongqing 
Institute of Meteorological Sciences showed that the rice is single-
season rice. The sowing and transplanting stage of rice is from March 
to mid-May, the growth stage is from mid-May to mid-August. 
Specifically, the growth stage includes five specific stages: the tillering 

stage, jointing stage, booting stage, heading stage and milk-ripe stage. 
The mature harvest stage is from mid-August to late September. As for 
corn, the sowing stage is from mid-March to late May, the growth 
stage is from June to early August, and the harvest is from late August 
to early September. For wheat, the sowing stage is in November and 
the harvest stage is in April of the following year.

2.1.2. Data and pre-processing

2.1.2.1. Sentinel-1 synthetic aperture radar image data
Sentinel-1A SAR is a C-band radar imaging system developed by 

the European Commission (EC) and the European Space Agency 
(ESA) and launched in 2014. The Sentinel-1A SAR has four imaging 
modes and can produce dual-polarization data. A total of 411 scenes 
Level-1 Ground range detected image of Interferometric Wide Swath 
(IW) SAR with dual-polarization (VV and VH) in 2020, covering 
Chongqing were applied, a spatial resolution of 10 m and a temporal 
resolution of 12 days. The temporal resolution of overlapping regions 
of adjacent images is less than 12 days (Figure 1).

2.1.2.2. Sentinel-1 synthetic aperture radar image 
preprocessing

Sentinel-1 SAR image data preprocessing included four main 
steps. (1) The SAR image pixel values were converted into the 
backscatter coefficient δ0 by radiometric calibration. (2) Correction of 
SAR image distortion caused by terrain changes and sensor tilt was 
performed through range Doppler terrain correction. (3) A 3 × 3 mean 
filter was used to smooth the SAR image to reduce noise and improve 
the quality of the SAR image. (4) Backscatters to dB (Eq.  1) is a 
logarithmic transformation of the backscatter coefficient, so that the 
SAR image histogram approximates a Gaussian distribution, and the 
number of data storage bits becomes smaller, which is also conducive 
to data analysis and visualization.

FIGURE 1

Topography of the study area, spatial range of SAR observations and spatial distribution of sample points.
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 δ δ= ∗10 10 0log  (1)

where δ0 is the original backscatter coefficient, δ is the backscatter 
coefficient after backscatters to dB.

2.1.2.3. Other auxiliary data
Other auxiliary data include DEM data, multispectral images, 

field survey data, Google Earth high-resolution imagery, and 
agricultural statistics.

The DEM data was collected by the advanced land observing 
satellite (ALOS) L-band SAR with a horizontal and vertical 
accuracy of 12.5 meters. Multispectral images from an unmanned 
aerial vehicle (UAV) and field survey data were acquired from July 
30 to August 3, 2020. The UAV equipment is a DJI Phantom 4Pro, 
and the obtained multispectral images include blue, green, red, red 
edge, and near-infrared bands. The sample point collection device 
is a handheld GPS locator, with a positioning accuracy of about 
1 m, and a total of 400 sample points were collected (Figure 1). 
Google Earth high-resolution imagery was used as an auxiliary 
data source for 2060 sample points selection through visual 
interpretation (Figure 1). Among them, the training and validation 
samples of rice are 600 and 500, respectively. Non-rice includes 4 
sub-categories (build, forest, and grasslands, water bodies, dry land 
(wheat/corn)). Each sub-category has 200 training samples, a total 
of 800, and 140 validation samples, a total of 560. The agricultural 
statistics refer to the area of rice fields in all districts and counties 
in Chongqing in 2020, obtained from the statistical yearbook, and 
used for subsequent evaluation of rice identification accuracy at 
the district/county level.

2.2. Methods

The rice field map was generated based on the Sentinel-1 dual-
polarization SAR backscatter time series and ALOS-12.5 m 
DEM. We first performed SG filtering on the preprocessed SAR 
image to construct smooth VH backscatter time-series. We first 
performed SG filter to reconstruct the time series Sentinel-1 image 
to construct a smooth VV and VH backscatter coefficient time 
series data set, and analyzed the unique temporal backscatter 
characteristics of rice. Further, the MPHO-DPSAR algorithm 
combining multi-feature parameters and homogeneous objects was 
established for mapping rice fields. The accuracy evaluation of the 
rice fields map was carried out on three levels, namely district/
county level, object level, and rice field level. The technical route is 
shown in Figure 2.

2.2.1. Reconstruction of the sentinel-1 synthetic 
aperture radar time-series backscatter data

Although the mean filter had been applied in the SAR image to 
reduce speckle noise, some noises still existed in the backscatter 
coefficient image due to the influence of the coherent superposition of 
scattering from multiple targets. At the transplanting stage and early 
growth stage of rice, the backscatter intensity of shallow water and land 
areas with high water content is similar to that of rice fields, which 
increases the difficulty of rice identification (Nguyen et al., 2015; Son 
et  al., 2021). In addition, rainfall will reduce the radar backscatter 
intensity, which will disturb the rice time-series curve of the backscatter 
intensity in different polarizations SAR, resulting in an inaccurate 
change rule of the SAR backscatter coefficient of rice growth (Yu et al., 
2020). Therefore, in order to make the SAR backscatter information 
more accurately reflect the rice growth rhythm and minimize the 
influence of noise and other environmental factors, we reconstructed 
the Sentinel-1 SAR time-series backscatter data.

The method of combining mean value compositing and the 
Savitzky–Golay (SG) filtering algorithm was used for the reconstruction 
of the sentinel-1 SAR time-series backscatter data. We first performed 
a 12-day mean value compositing of the backscatter coefficient to 
alleviate the fluctuation. Secondly, SG filtering (Krishnan and 
Seelamantula, 2013, Gir et al., 2015) was used to obtain the variation 
trend of the SAR backscatter coefficient time series. The length of the 
SG filter fitting window and the polynomial fitting times were set to 3 
and 3 respectively, which can ensure that the noise of the time series 
data was effectively suppressed, and the various characteristics of the 
time series backscatter coefficient can be preserved to the maximum 
extent. Figure 3 showed the reconstruction results of the time-series 
SAR VH backscatter coefficients of rice. Compared with the original 
VH backscatter profile, noise and outliers caused by environmental 
factors were weakened, and the reconstructed backscatter coefficient 
time series curve can more clearly reflect the intensity-changing trend 
with rice growth.

2.2.2. Temporal backscatter characteristics of rice 
and other land types

The varying backscatter signature of rice were presented 
throughout the whole growth cycle. The overall performance was a 
trend of first falling, then rising and then falling (Figure 4). Specifically, 
the sowing stage of rice begins in early March (DOY 61), rice fields are 
submerged for land preparation, field topography leveling and 
weeding to provide a suitable environment for rice planting. At this 
stage, the humidity of the rice fields gradually increases, the roughness 
gradually decreases. The specular reflection is the main backscatter 
mechanism, which makes the SAR backscatter coefficient drop rapidly 
from −19 dB to −24 dB (the lowest value). At the stage of rice 

TABLE 1 The annual average temperature, annual precipitation, and annual average sunshine duration in Chongqing in 2020.

Weather station Altitude (m) Annual precipitation 
(mm)

Annual average 
temperature (°C)

Annual sunshine 
duration (h)

Jiangjin 261.4 1319.6 18.9 1070.0

Hechuan 364.5 1085.2 18.0 1055.9

Changshou 377.6 1280.3 18.1 962.9

Dazu 541.0 1002.9 17.1 1128.8

Qianjiang 786.9 1808.6 14.7 819.1
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transplanting in mid-to-late April (DOY 110), the rice seedlings are 
relatively short and their distribution is very sparse. Also, the water 
content of the rice fields is high, which triggers the backscatter 
mechanism to be dominated by specular reflection with less volume 
scattering and double scattering. Accordingly, the backscatter 
coefficient begins to gradually increase. At the stage of rice jointing 
period in mid-June (DOY 160), rice grows taller rapidly with the 
number of leaves, biomass and roughness of rice fields gradually 
increasing. The main backscatter mechanisms transform to volume 
scattering from the rice canopy, double scattering between the rice 
stem and the underlying surface of the rice field, and specular 
reflection from the water body in the rice field (Torbick et al., 2017; 
Son et al., 2021). The VH backscatter coefficient accordingly increased 
from −24 dB to about −18 dB. In late July (DOY 200), rice began to 
head, with higher plant height and more leaves. The leaves almost 
completely cover the water body of the rice fields. Double scattering 
is reduced and the backscatter mechanism is mainly volume scatter. 

The backscatter intensity of rice fields continued to increase, reaching 
about −17 dB. Rice matures in mid-to-late August, the backscatter 
intensity accordingly reaches the maximum (−15 dB). Then as the rice 
ears drop and the leaves turn yellow, the backscatter intensity of the 
rice fields correspondingly decreases. After the rice harvest, the 
backscatter intensity of rice fields continues to decrease. If its water 
content is high, the backscattering coefficient will be lower, close to 
that of water.

The variation characteristics of SAR backscatter coefficient curves 
of rice and other land cover types are different (Figure 4). Because 
double scattering occurs primarily in built-up areas, the backscatter 
coefficient was correspondingly high and remained stable at around 
−9 dB throughout the year. Specular reflection occurs mostly in water 
bodies, the backscatter coefficient was correspondingly less than 
−25 dB. The interaction between electromagnetic waves and forest/
grasslands mainly produces volume scattering, thus the backscatter 
coefficient fluctuated around −15 dB. As for the corn at the stage of 

FIGURE 2

Schematic flow of MPHO-DPSAR method, T, J, H, and M denote the rice transplanting, jointing, heading, and mature stage, respectively.
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sowing and jointing (DOY70-150), its backscatter mechanism is 
mainly rough surface scattering and double scattering between corn 
stem and underlying surface. The backscatter coefficient varied slowly 
between −16 and -17 dB. At the stage of jointing to mature (DOY 
150–200), the backscatter mechanism mainly transforms to volume 
scattering from corn canopy. The backscatter coefficient 
correspondingly increased to about -14 dB. Then the backscatter 
coefficient began to decrease after harvest. As for the wheat, the 
backscatter coefficient in its phenological period (DOY330-DOY130 in 
the following year) was basically between −19.5 and −16.5 dB.

In terms of the difference in temporal backscattering 
characteristics between rice and other land types, it gradually 
increased before the rice transplanting stage. From the rice 
transplanting stage to the mature stage, it gradually decreased. 
Specifically, in the middle and late August when rice entered the 
mature stage, the backscatter coefficients of forest/grasslands, corn 

and wheat were basically the same as those of rice, but the separability 
of rice and water was the highest.

2.2.3. Multi-characteristic parameters extraction
Considering the special phenological characteristics of rice, the 

complex topographic conditions and surface landscape of Chongqing, 
multi-characteristic parameters were extracted (Table 2), including 
SAR backscatter features, composite features, rice phenological 
parameters, texture features, and a topographic feature.

The composite features included mean composite (MeanVH, 
MeanVV) and standard deviation composite (SDVH, SDVV) based on all 
Sentinel-1 VV and VH images throughout the rice growing season.

Considering the phenological characteristics of the whole life cycle 
of rice, we extracted five rice phenological parameters based on the 
backscatter coefficients of VH and VV time series (Figure  5), 
respectively, which are the transplanting date (TD), rice agronomy 

FIGURE 3

Rice fields status at key phenological stages and reconstruction of the sentinel-1 SAR time-series backscatter characteristics.
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flooding decline speed (Speed (RST)), mature date (MD), green-up speed 
(Speed (RTM)) and growing season length (GSL). The rice transplanting 
date (TD) was defined as 5 days after the day of year (DOY) of the SAR 
backscatter reaches the local annual minima. The rice agronomy 
flooding decline speed (Speed (RST)) was defined as the ratio of the SAR 
backscatter changes over the number of days from rice field submerged 
date (SD) to TD. The rice mature date (MD) was defined as DOY when 
the SAR backscatter reaches the maximum. The green-up speed (Speed 
(RTM)) was defined as the ratio of the SAR backscatter changes over the 
number of days from rice TD to MD. The growing season length (GSL) 
was defined as the length from rice TD to MD (Wang et al., 2022).

SAR images have significant advantages in displaying texture 
features (Peña-Barragán et al., 2011; Li et al., 2022). Considering data 
redundancy and computational efficiency, three texture parameters 
(SAVG/sum average, VAR/variance and CONT/contrast) were 
selected for rice identification according to the feature importance 
calculated by the random forest algorithm (Table 3).

The complex topographical conditions lead to the rice fields being 
fragmented and dominated by small- and medium-sized. Therefore, 
topographic slope information (Slope) was also considered.

2.2.4. Homogeneous objects and identification 
algorithm

The multi-resolution segmentation algorithm merges pixels or 
objects level by level from bottom to top (Dragut et al., 2014). The 

algorithm can effectively fuse spectral and spatial features of pixels or 
objects, locally minimize the average heterogeneity and maximize the 
internal homogeneity of objects. Thus, it is suitable for the Chongqing 
area with highly complex surface landscapes.

The segmentation scale determines the object size, which directly 
affects the accuracy of rice identification (Figure 6). Therefore, it is 
necessary to determine the optimal segmentation scale. The change 
rate of the image local variance under different segmentation scales 
(Figure 6) was calculated to determine the optimal segmentation scale 
(Drǎguţ et al., 2010). Here, the optimal segmentation scale, the local 
peak, was 5. In addition, the spectral weight of the backscattering 
coefficient ( wcolor ) is set to 0.9, and the shape weight ( wshape ) is 
0.1 in the segmentation algorithm (Eq. 2). The weight of spatial shape 
parameter ( hshape ) was further divided (Eq. 3) by the compactness 
( hcpt ) of 0.8, and the smoothness ( hsmooth ) of 0.2 (Drǎguţ et al., 
2010; Dragut et al., 2014).

 
homogeneous object w h hcolor color color shape w= ∗ + −( ) ∗1

 
(2)

 
h w h w hshape cpt cpt cpt smooth= ∗ + −( ) ∗1

 
(3)

where wcolor  is the weight of color and wcpt  is the weight 
of compactness.

FIGURE 4

Main crop cropping calendar and temporal characteristics of VH backscatter for rice and other land types. I, II, III, IV, and V denote the tillering stage, 
jointing stage, booting stage, heading stage and milk-ripe stage of rice, respectively.
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Random forest integrates many classification and regression trees 
(CARTs) together to form an integrated classifier through the idea of 
ensemble learning. It has the advantages of flexibility and high 

precision, which is suitable for high-dimensional data. In the paper, 
the bootstrap method was firstly used to randomly select a certain 
proportion of samples as the training sample set. Secondly, when 
splitting the nodes of the CART, features from the abovementioned 
multi-characteristic parameters were extracted, and the nodes were 
split according to the principle of the smallest Gini coefficient. 
Repeating the above operation to establish 50 CARTs, and then form 
a random forest classifier, the results were decided by the votes of 
all CARTs.

3. Results

3.1. Separability of rice and other land 
cover types in each feature image

The separability of rice and other land types in multi-
characteristic parameters was further evaluated (Figure 7). For SAR 
backscatter features, the value of δVH-transplanting (−28 to −20 dB), δVH-

jointing (−20 to −16 dB) are higher than that of water bodies, lower 
than that of other land types. The value of δVH-heading (−19 to -14 dB), 

TABLE 2 Multi-characteristic parameters, including five types of features in this study.

Feature types Features Description

VH polarization VV polarization

SAR backscatter features δVH-transplanting δVV-transplanting VH and VV backscatter coefficients at 

four key rice phenological stagesδVH-jointing δVV-jointing

δVH-heading δVV-heading

δVH-mature δVV-mature

Composite features MeanVH MeanVV Mean and standard deviation of all SAR 

backscatter coefficients during the whole 

rice growth
SDVH SDVV

Rice phenological parameters TDVH TDVV Rice phenological parameters extracted 

based on VH and VV time series, 

respectively
Speed (RST-VH) Speed (RST-VV)

MDVH MDVV

Speed (RTM-VH) Speed (RST-VV)

GSLVH GSLVV

Texture features SAVGVH-transplanting SAVGVV-transplanting Three texture features (SAVG/sum 

average, VAR/variance and CONT/

contrast) based on VH and VV 

backscatter coefficients at four key rice 

phenological stages

SAVGVH-joining SAVGVV--joining

SAVGVH-heading SAVGVV-heading

SAVGVH-mature SAVGVV-mature

VARVH-transplanting VARVV-transplanting

VARVH-joining VARVV-joining

VARVH-heading VARVV-heading

VARVH-mature VARVV-mature

CONTVH-transplanting CONTVV-transplanting

CONTVH-joining CONTVV-joining

CONTVH-heading CONTVV-heading

CONTVH-mature CONTVV-mature

Topographic feature Slope Topographic slope information

The SAR backscatter coefficients at four key phenological stages of rice (transplanting, jointing, heading and mature stages) under VH and VV polarization modes were represented as δVH-

transplanting, δVH-jointing, δVH-heading, δVH-mature, δVV-transplanting, δVV-jointing, δVV-heading, δVV-mature, respectively.

FIGURE 5

An VH backscatter profile of the rice field and schematic diagram of 
rice phenological parameters.
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TABLE 3 Feature importance of texture features calculated by the random forest algorithm. The three texture features of highest importance were 
selected for this study (shown in bold).

Transplanting stage Jointing stage Heading stage Mature stage

Texture features Feature importance Feature importance Feature importance Feature importance

VV VH VV VH VV VH VV VH

Sum Average/SAVG 43.32 41.68 44.75 37.88 34.94 36.93 26.37 32.71

Variance/VAR 9.38 5.62 12.53 8.28 9.88 6.16 10.80 9.33

Contrast/CONT 7.49 5.67 7.10 4.53 5.53 8.67 9.98 7.84

Correlation/CORR 4.95 4.60 4.39 4.90 5.17 5.30 7.12 7.58

Information measure 

of Corr/IMCORR

3.76 3.20 2.64 3.82 3.27 3.51 3.70 6.29

Entropy/ENT 0.00 0.36 0.00 0.73 1.09 1.04 1.33 0.00

Sum entropy/SENT 0.66 0.87 0.98 0.00 0.50 0.91 1.05 0.35

Angular second 

Moment/ASM

0.21 0.48 0.18 0.20 1.15 1.17 0.48 0.00

FIGURE 6

Multiresolution segmentation results with different segmentation parameters and rate of change (ROC) of the local variance.
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δVH-mature (−17 to -12 dB) are lower than those of build, corn, forest, 
and grasslands. The VV backscatter coefficients of rice and other 
land types in the four key phenological stages are higher than VH 
backscattering coefficients. Especially in the transplanting stage, the 
separability of rice and corn in δVV-transplanting is higher thanδVH-

transplanting. Therefore, the SAR backscatter coefficients at VH and VV 

polarizations are key indicators for identifying rice fields. However, 
only using SAR backscatter features cannot achieve the purpose of 
identifying rice well, because the SAR backscatter features of rice 
partially coincide with those of other land types. In particular, the 
recognition effect is not good in the mountainous area due to the 
heterogeneity of the land cover.

FIGURE 7

Separability of rice and other land cover types in each feature image based on VH Polarimetric Images. The δVH-transplanting, δVH-jointing, δVH-heading, δVH-mature 
represent SAR backscatter coefficients at four key phenological stages of rice (transplanting, jointing, heading and mature stages), MeanVH and SDVH 
represent the mean and standard deviation calculated based on all Sentinel-1 images throughout the rice growing season, SAVGVH-transplanting, SAVGVH-

joining, SAVGVH-heading, SAVGVH-mature, VARVH-transplanting, VARVH-joining, VARVH-heading, VARVH-mature, CONTVH-transplanting, CONTVH-joining, CONTVH-heading and CONTVH-mature 
represent three types of texture parameters at four key phenological stages of rice, namely sum average, variance and contrast, slope represents 
topographic slope information.
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For composite features, the MeanVH of rice is concentrated between 
−20 and -17 dB, which is larger than water and smaller than that of build, 
forest, and grasslands, corn, and wheat. The SDVH of rice was between 2 
and 4.5, higher than other land types. Compared with the MeanVH and 
SDVH, the overlap of MeanVV and SDVV between rice and other land types 
is less, and the separation is higher. The composite features based on time 
series SAR data reflect the average level and dispersion of the backscatter 
coefficients of rice during the growth period, which can expand the 
distinguishability of rice and other land types.

For rice phenological parameters, the TDVH, MDVH and GSLVH of 
rice are between 70 and 150, 190 and 300, and 80 and 200, respectively. 
The TDVV, MDVV and GSLVV of rice are between 60 and 140, 210 and 
310, and 110 and 210, respectively. The Speed (RST-VH) and Speed (RST-

VV) of rice are lower than that of other land cover types, the Speed 
(RTM-VH) and Speed (RTM-VV) are higher than that of other land types. 
In addition, compared with other land types, the rice phenological 
parameters are more concentrated and rice is more recognizable. 
Therefore, rice phenological parameters can help to better eliminate 
some vegetation that may be  misclassified, such as herbaceous 
vegetation that is seasonally submerged by the summer monsoon.

For texture features, the SAVGVH-transplanting, SAVGVH-joining, SAVGVH-

heading and SAVGVH-mature of rice are between −50 dB to −36 dB, −35 dB 
to -27 dB, −33 dB to -25 dB, and − 27 dB to -22 dB, which are higher 
than that of the water, lower than that of other land types. The 
CONTVH-transplanting, CONTVV-transplanting, VARVH-transplanting and VARVV-

transplanting of rice are higher than those of corn, forest/grasslands, wheat 
at the transplanting stage. The CONTVH-mature, CONTVV-mature, VARVH-

mature and VARVV-mature of rice are lower than those of building, water, 
and forest/grasslands at the mature stage. Therefore, the SAR texture 
features are helpful to better identify rice fields.

Terrain slope information (Slope) is important auxiliary data, 
which is used to cover up forests and grasslands in mountainous areas, 
as well as the shadows caused by high mountains on SAR images, 
which can improve the accuracy of the rice fields map.

3.2. Annual map of rice fields in Chongqing 
in 2020

The spatial distribution of rice fields extracted by the MPHO-
DPSAR algorithm (Figure 8) showed that the area of rice fields in 
Chongqing in 2020 is 632,400 hm2, which were mainly distributed 
in the hilly areas in the mid-west of Chongqing with the terrain 
relatively flat. There also were many rice fields distributed in the 
valleys in the northeast and south of Chongqing. Figures  8B–E 
shows the distribution of rice fields in the four sites (b–e) in 
Figure 8A. That is, the distribution of rice fields is mainly zonal and 
dispersed, which is very different from rice fields distributed in 
succession in plain areas. The main reason is that there are many 
mountains and hills in Chongqing, and paddy fields are mainly 
distributed in the relatively flat strip of narrow area between many 
small hills. Figures  8B’–E’ shows the VH polarization image of 
Sentinel-1 during the transplanting period. The Figure  8F is a 
comparison chart between the mapping results of the algorithm and 
the mapping results of the statistics. For the rice classified area by 
the MPHO-DPSAR algorithm, the rice classified area is 458.92km2 
in Hechuan District, which is the largest. The rice classified area in 
Jiangjin, Yongchuan and Fuling is 397.00 km2, 316.35 km2 and 

363.25 km2, respectively, all of which are more than 300 km2. There 
are less than 20km2 rice fields in Shapingba, Jiulongpo, Chengkou, 
Jiangbei, Nan’an and Dadukou.

4. Discussion

4.1. Accuracy evaluation at three levels

The accuracy evaluation of the rice fields map was carried out on 
three levels, namely district/county level, object level, and rice 
field level.

At the district/county level, the linear regression between the 
MPHO-DPSAR derived results and agricultural statistics data was 
performed. The correlation coefficient of determination (R2) is 0.97. 
And the regression slope is 0.94, close to 1, which presented a 
significant linear correlation between the two datasets, and indicated 
the high precision of the resultant rice fields map (Figure 9).

At the object level, the confusion matrix showed that the user’s 
accuracy (UA), producer’s accuracy (PA), F1 score, overall accuracy 
(OA) and Kappa coefficient were 0.96, 0.93, 0.95, 0.95 and 0.90, 
respectively (Table 4).

At the rice field level, the precise rice fields map based on UAV 
images was used to verify the accuracy of MPHO-DPSAR derived 
results in low-altitude regions in Hechuan District and middle-
altitude regions in Zhongxian County. For rice fields in the two 
regions, the ratio of recognized and unrecognized rice fields of 
different sizes was calculated. The results showed that the proportion 
of recognized paddy fields continued to increase with the size of a 
single paddy field increased. And more than 80% of the rice fields can 
be accurately recognized by the MPHO-DPSAR algorithm when the 
size of a single rice field is larger than 600 m2, corresponding to 6 
pixels (Figure 10). This shows that the MPHO-DPSAR algorithm is 
suitable for identifying small and medium-sized rice fields in 
complex terrain.

4.2. Comparison with other rice 
identification methods

The study reproduced two classic rice identification methods 
based on remote sensing technology, which were further applied to 
identify rice fields in the complex terrain in Chongqing. The method 
I mainly utilized the “V” shaped feature in the Sentinel-1 SAR VH 
backscatter time series during the rice growth season (Zhan et al., 
2021). The method II applied multi-temporal Landsat spectral 
reflectance and spectral indices to construct a decision tree to identify 
rice (Cao et  al., 2020). In addition, this study also compared the 
decision tree algorithm developed by our team for rice identification 
in Chongqing (marked as method III), which integrated rice 
phenological and topographic features (Wang et al., 2022).

The performance of the four rice identification algorithms 
showed that the proposed MPHO-DPSAR algorithm in this paper 
obtained the best classification accuracy, with all the accuracy 
indicators highest (Table 5). As for the UA, our algorithm achieved 
a recognition accuracy of 0.96, which was much higher than that of 
the method I. The low UA of the method I indicated that a large 
number of non-rice fields (wet grassland and other crops) were 
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identified as rice fields. Because this method only uses the Sentinel-1 
VH polarization image, it does not make full use of the rich 
information provided by the VV polarization image, especially the 
method does not consider the terrain feature parameters. As for the 
PA, the method II obtained the accuracy of 0.69, indicating that 
there were serious omissions. Because this method sets a threshold 
value for the difference image of the EVI (Enhanced Vegetation 
Index) of two fixed dates to identify rice fields after masking other 

FIGURE 9

Correlation between MPHO-DPSAR derived results and the statistics 
of rice fields area.

TABLE 4 Accuracy assessment of rice fields map in 2020.

Land 
cover 
types

UA PA F1 
score

OA Kappa

This 

study

Rice 0.96 0.93 0.95 0.95 0.90

Non-rice 0.94 0.97 0.95

A B B’

C C’

E E’D

F

D’

FIGURE 8

The rice fields map of Chongqing in 2020 based on the MPHO-DPSAR algorithm. Four regions, denoted as b–e in (A), randomly selected for zoom-in 
views shown in (B–E), respectively. The corresponding SAR image in transplanting stage shown in (B’–E’), respectively. The (F) is a comparison chart 
between the mapping results of the algorithm and the mapping results of the statistics.
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land types, it does not consider the inconsistent phenology of rice in 
the study area. The method III achieved the same UA (0.96), but 
other accuracy indicators were lower than those of this study. The 
main reasons are the comprehensive utilization of dual-polarization 
SAR backscatter features, composite features, rice phenological 
parameters, texture features and a topographic feature in this study. 
While the method III only employed VH polarization-based rice 
phenological and topographic features, without considering VV 
polarization-based features and texture features.

The high identification accuracy of our proposed algorithm 
could be attributed to the following reasons. (1) Abundant dual-
polarization Sentinel-1A SAR data has high temporal of 12 days and 
high spatial resolution of 10 m (ENVISAT: 35d/20-500 m, 
RADARSAT-1: 24d/10-100 m, PALSAR-2: 45d/25 m). Therefore, the 
time-series SAR backscatter coefficients could accurately reflect rice 
characteristics at the whole phenological period and meet the needs 
of small- and middle-sized rice fields identification in Chongqing. 
Moreover, the dual-polarization SAR data can reflect the backscatter 
characteristics of rice under different polarization modes, which is 
helpful for the rice identification. (2) Sufficient rice identifiability 
features were extracted. The scattering mechanism of rice, which is 
different from other land types, can be  well reflected in the 
backscatter features of time series SAR. The texture features well 
reflect the structures of rice fields and the connection between the 

rice fields and surrounding objects. The rice phenological parameters 
highlight the unique phenological cycle and growth characteristics. 
The composite features based on time series SAR data display the 
average level and dispersion of the backscatter coefficients of rice 
during the rice whole growth period. The use of the slope 
information is beneficial to obtain a suitable terrain environment for 
rice cultivation, especially in areas with complex terrain. (3) There 
were enough high-quality ground truth samples from field survey 
and UAV observation for algorithm training and accuracy 
verification. (4) The MPHO-DPSAR algorithm can effectively 
integrate the spectral features and spatial features of land cover 
types, locally minimize the average heterogeneity and maximize the 
internal homogeneity of objects, which is suitable for the regions 
with highly complex surface landscapes.

4.3. Sources of errors in rice mapping

It is still a challenging task to produce high-precision rice mapping 
in large spatial areas with complex terrain. The accuracy of rice 
mapping is mainly affected by several factors, including the temporal 
and spatial resolution of SAR images, the complexity of the surface 
landscape, the size of rice fields, the segmentation algorithm and rice 
feature parameters.

The higher the spatial resolution, the higher the ability of the 
image to distinguish the details of the ground target. Although the 
Sentinel-1 SAR image with a spatial resolution of 10 m can meet the 
requirements of accurate rice field mapping in Chongqing. The rice 
fields mapping accuracy will be higher if the SAR image with a higher 
spatial resolution is used. The time-series SAR backscatter coefficients 
can reflect the variety of rice in the different growth states, which is 
important for elucidating the unique phenological characteristics of 
rice. The high temporal resolution of SAR images is beneficial to 
measure the complete phenological parameters characteristics of rice 

A

E

B

F

C

G

D

H

I

FIGURE 10

Accuracy assessment of rice fields map in two pilot regions based on UAV images. (A,E) Sentinel-1 VH images during rice transplanting stage. (B,F) UAV 
images in two pilot regions. (C,G) Real rice fields based on UAV images. (D,H) The recognized and unrecognized parts within each rice field for two 
pilot regions. (I) Proportions of recognized and unrecognized area with the changes of rice field sizes.

TABLE 5 The comparison of rice mapping performances of the four 
methods.

Land cover 
types

UA PA F1 
score

OA Kappa

This study Rice 0.96 0.93 0.95 0.95 0.90

Method I Rice 0.64 0.91 0.75 0.71 0.44

Method II Rice 0.8 0.69 0.74 0.77 0.54

Method III Rice 0.96 0.85 0.9 0.88 0.84
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growth, thus improving the rice fields mapping accuracy (Wang 
et al., 2022).

SAR image distortion (foreshortening, layover, and shadow) 
caused by complex mountainous terrain may not be  completely 
corrected by terrain correction in the SAR preprocessing step, which 
will affect the accuracy of rice identification (Wang et al., 2022). The 
foreshortening leads to larger SAR backscatter coefficients of objects 
at high altitudes, while the shadow results in the backscatter coefficient 
smaller, which increases the difficulty of rice identification. Most of 
the existing studies (Son et  al., 2021; Zhan et  al., 2021) on rice 
identification using SAR images were aimed at regions with simple 
topography and large-sized rice fields. In contrast, the terrain of the 
study area in this paper is complex, and the rice fields are small- and 
middle-sized and fragmented. In addition, other land cover types that 
have similar trends to the SAR backscatter curve of rice may 
be  misclassified. For example, the lotus pond in Tuqiao Town, 
Tongliang District, and the grassland that is seasonally submerged due 
to the impoundment and drainage of the Three Gorges Reservoir.

Under the complex terrain, the area and shape of rice are quite 
diversity. Therefore, the optimal segmentation scale of multi-
resolution segmentation algorithm determined in this paper are 
relative. In general, when the segmentation scale is reduced, the 
homogeneity of objects will be improved, the probability of dividing 
different land types into single objects will be  reduced, and the 
accuracy of rice recognition will be improved. However, too small 
segmentation scale will lead to great heterogeneity between objects 
belonging to the same category, which is not conducive to rice 
recognition. Therefore, it is necessary to find a balance between 
segmentation scale and recognition accuracy.

4.4. The applicable conditions and 
potential improvements

The proposed MPHO-DPSAR algorithm for rice identification 
integrates SAR backscatter features, composite features, rice 
phenological parameters, texture features and a topographic feature. 
Therefore, enough SAR acquisitions are required to generate a time 
series dataset. At present, only Sentinel-1A SAR images covering 
Chongqing with a time resolution of 12 days were applied due to no 
Sentinel-1B data available. For the region covered by both Sentinel-1A 
and Sentinel-1B, the temporal resolution of SAR images can reach 
6 days, which can more accurately obtain the phenological information 
of rice, and help to improve the recognition accuracy. In addition, 
other SAR sensor data (e.g., GF-3, RADARSAT) can also 
be  supplemented to generate denser time-series datasets, then to 
obtain rice complete phenological information.

The proposed MPHO-DPSAR algorithm can be applied to rice 
identification in other regions. Firstly, the four key phenological stages 
of rice, including transplanting, jointing, heading and mature stage, 
should be clarified. Rice phenology has little difference in a certain 
spatial range and is relatively stable in different years, so the rice 
phenology data can be used for many years (Dong et al., 2015). Once 
obtaining the rice phenological data, the corresponding multi-
characteristic parameters can be  extracted, and then the MPHO-
DPSAR algorithm can be used for high-precision rice mapping. For 
regions without rice phenology data, the rice phenology can 
be estimated based on air temperature data (Son et al., 2021). Because 

temperature is an important factor affecting plant growth and crop 
phenology (Dong et  al., 2015). A temperature-based phenology 
algorithm was previously proposed to identify rice and achieved an 
overall accuracy higher than 84% (Dong et al., 2015).

There are many clouds and fog in Chongqing, so SAR has 
advantages over optical remote sensing for rice recognition in 
Chongqing. However, in regions with less cloudy and rainy weather, 
compared with using a single type of remote sensing image, multi-
source heterogeneous optical remote sensing image and SAR image 
can be integrated for rice mapping, then to achieve complementary 
advantages of data sources (He et al., 2021).

5. Conclusion

In this study, we reconstructed the Sentinel-1 SAR time-series 
backscatter data, calculated multi-characteristic parameters, including 
SAR backscatter features, composite features, rice phenology 
parameters, texture features, and topographic features, and analyzed 
the separability of rice and other land cover types in each feature image. 
On this basis, a rice identification algorithm combining multi-
characteristic parameters and homogeneous objects based on time 
series dual-polarization SAR (MPHO-DPSAR) for high-precision rice 
fields mapping was proposed. We  tested the performance of the 
algorithm in Chongqing city with complex terrain, fragmentation, 
small and medium-sized paddy fields, and compared its performance 
with three existing methods. Results show that the MPHO-DPSAR was 
able to provide an accurate rice fields map with an overall accuracy of 
95%, which is better than the existing methods. The MPHO-DPSAR 
derived results were in good agreement with the statistics of rice fields 
area in districts and counties, the correlation coefficient of 
determination (R2) was 0.97. The local verification based on UAV 
images shows that more than 80% of the rice fields can be accurately 
identified by the MPHO-DPSAR algorithm when the size of a single 
rice field is larger than 600 m2, corresponding to 6 pixels. In addition, 
MPHO-DPSAR algorithm can be applied to rice recognition based on 
time-series optical remote sensing and SAR data to realize the 
complementary advantages of multi-source heterogeneous data 
sources. It can also be combined with the temperature-based phenology 
algorithm, so that MPHO-DPSAR algorithm can be applied to regions 
where rice phenological data are not released. This study can provide 
new methods and references for satellite-based rice monitoring in 
other regions. In future work, we will test the potential of the MPHO-
DPSAR algorithm on early season rice fields mapping.
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