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High temperature affects behavior, physiology, survival, and the expression of

related genes in adult honeybees. Apis mellifera is the common pollinator in

greenhouse and is susceptible to high temperature stress. To further explore the

molecular basis related to heat stress, we compared the transcriptome profiles of

adult worker bees at 25 and 45◦C, and detected the expression patterns of some

differentially expressed genes (DEGs) in different tissues by q RT-PCR. Differential

expression analysis showed that 277 DEGs were identified, including 167 genes

upregulated and 110 genes downregulated after heat stress exposure in adult

worker bees. In GO enrichment analysis, DEGs were mostly enriched for protein

folding, unfold protein binding, and heme binding terms. Protein processing in

endoplasmic reticulum and longevity regulating pathway-multiple species were

significantly enriched in KEGG. The expression levels of 16 DEGs were consistent

with the transcriptome results. The expression patterns of 9 DEGs in different

tissues revealed high levels in the thorax, which was supposed that the thorax

may be the most important part in the response to heat stress. This study provided

valuable data for exploring the function of heat resistance-related genes.
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1. Introduction

As the most valuable pollinators for modern agriculture and ecological diversity (The
Honeybee Genome Sequencing Consortium, 2006; Klein et al., 2007; Belsky and Joshi, 2019),
the development of honeybee populations is influenced by many factors (Potts et al., 2010;
Belsky and Joshi, 2019; Denlinger and Yocum, 2020), including environmental temperature
(Abou-Shaara et al., 2012, 2017). Environmental temperature can affect the internal and
external activities of honeybee colonies (Tautz et al., 2003; Abou-Shaara et al., 2012, 2017),
such as development (Tautz et al., 2003; Groh et al., 2004; Chuda-Mickiewicz and Samborski,
2015; Medina et al., 2020), phenology (Langowska et al., 2017), learnability (Tautz et al.,
2003), behavioral performance (Tautz et al., 2003; Al-Qarni, 2006; Blazyte-Cereskiene et al.,
2010), and susceptibility to disease (Groh et al., 2004; Conte and Navajas, 2008; Dalmon
et al., 2019). And temperature can affect the biochemical and physiological processes of
honeybees, including survival, tolerance, loss of body water, and the activity of antioxidant
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and detoxification enzymes (Dalmon et al., 2019; Li X. Y. et al.,
2019). At the same time, Honeybees have evolved a series of
measures to cope with temperature stress, such as behavioral
avoidance (Nicolson, 2009; Ohashi et al., 2009; Joshi and Joshi,
2010), morphological changes (Langowska et al., 2017), life
histories, adjusting metabolism and nutrient supply, adjusting
protein synthesis or decomposition, and increasing the content of
protective substances, so as to slow down or repair the damage
caused by temperature stress (Ahamed et al., 2010; Li X. Y. et al.,
2019; Xu et al., 2022).

The foraging behavior of honeybees usually occurs within
the temperature range of 10–40◦C and is inhibited by high
temperatures (Joshi and Joshi, 2010). 20∼25◦C is the optimal
temperature range for the flight of forager bees (Zeng, 2007;
Rameshwor and Resham Bahadur, 2014; Cui et al., 2022). When
the external temperature exceeds 40◦C, worker bees stop foraging
(Joshi and Joshi, 2010) and low the hive temperature by collecting
water and rapidly fanning their wings (Nicolson, 2009; Ohashi
et al., 2009). Further, heat stress triggers the expression of heat-
related genes, which are involved in a series of biological processes
such as cell metabolism, protein folding, and degradation (Koo
et al., 2015). At present, among the many thermal-resistance genes,
the heat shock proteins (HSPs) gene family plays an extremely
important role (Jerbi-Elayed et al., 2015; Bhattacharyya et al., 2019;
Shih et al., 2021). In addition to HSPs, there are zinc finger proteins
(ZFPs), serine/threonine protein kinases (STKs) (Ma et al., 2019),
antimicrobial peptide genes and endocrine regulatory genes (Li
et al., 2022a,b).

Ambient temperature has a negative effect on foraging behavior
(Al-Qarni, 2006; Blazyte-Cereskiene et al., 2010), further affecting
pollinator decisions and crop pollination effects. The internal
environment of facility agriculture is different from the natural
environment, and there will be some problems such as large
temperature differences and high temperatures (Su et al., 2017).
In the greenhouse, honeybee colonies are prone to adult dysplasia
and colony decline, which is unfavorable to reproducing honeybee
colonies (Nguyen et al., 2013; Ma et al., 2020). Transcriptome
technology has played an increasingly important role in various
aspects of honeybee research, including studies of behavioral
classification, oxidative stress (Southwick and Heldmaier, 1987),
immune responses (Mao et al., 2013), and growth and development
(Santos et al., 2021). Therefore, we compared the transcriptome
of Apis mellifera workers in control groups (25◦C) and in
high temperature groups (45◦C) were examined using RNA-
seq technology and detected the expression patterns of some
differentially expressed genes (DEGs) in different tissues by q RT-
PCR. Our results provided basic data to better understand the
regulatory molecular mechanisms of honeybee adaptation to high
temperature.

2. Materials and methods

2.1. Experimental insects

Three healthy colonies (A. mellifera) were obtained from
the experimental apiary of Shanxi Agricultural University (Taigu,
China). Two capped brood combs were selected from each colony

(two combs × three colonies), then put in an incubator at
34 ± 0.5◦C and 75 ± 5% relative humidity (RH) to hatch. The
hatched bees were marked on their backs with a non-toxic dye,
recorded as 1 day old (1 d), and released back to their original
colony. The marked bees were collected as samples at 20 d. The
marked bees were collected as samples at 20 days old (20 d). The
20 d old worker bees were used as foragers.

According to the temperature data reached over 40◦C from the
greenhouse in summer and previous experiments on temperature
gradients of 25, 30, 35, 40, and 45◦C (Li X. Y. et al., 2019).
Two treatments were designed: normal temperature, as control
(CK: 25◦C, 30% RH), and high temperature (HT: 45◦C, 30%
RH). All samples were put in a 15 mL diameter container and
were maintained at 30% RH for 2 h at different temperatures
(25 and 45◦C). After treatment, 60 bees (10 × two temperature-
treatment× three replicates) were randomly selected for RNA-seq,
540 bees (80 × two temperature-treatment × three replicates) for
expression patterns of DEGs in different tissues, and then these
samples were immediately frozen in liquid nitrogen and stored at
−80◦C. The head, thorax, abdomen, legs, and wings were dissected
(all operations were performed on ice).

2.2. RNA-seq experiment

2.2.1. Library construction and sequencing
Total RNA was extracted using Trizol Reagent according to the

manufacturer’s instructions (Ambion, Foster City, CA, USA). The
concentration of total RNA was assessed using an RNA NanoDrop
ND-2000 spectrophotometer (NanoDrop Inc., Wilmington, DE,
USA). Non-denaturing agarose gel electrophoresis and the Agilent
2100 LabChip GX (Agilent, Santa Clara, CA, USA) were
used to determine the integrity of extracted nucleic acids for
quality control.

Three individuals were used for each biological replicate for
transcriptomic analysis. Six individual cDNA libraries from the
25◦C (T01, T02, and T03) and 45◦C (T04, T05, and T06) groups
were constructed. The mRNA was fragmented and randomized
hexamer primers were used to copy the full-length mRNA; reverse
transcriptase was used as a template for first strand cDNA synthesis.
After purification, the cDNA was connected with adenine and
sequencing splitter at the 3′-ends and amplified using PCR to
establish a cDNA library. The Illumina NovaSeq 4000 platform
(Illumina, San Diego, CA, USA) was used for sequencing. Raw
data were stored as FASTQ files and all raw sequence data were
deposited in the NCBI Sequence Read Archive (SRA) under
Submission ID: SUB12053792, BioProject ID: PRJNA880001.

2.2.2. Mapping and transcriptome annotation
Reads with ploy-N (with a ratio of “N” > 10%) and low-quality

(with quality scores < 20) were removed to get the clean reads. The
clean reads were mapped to the reference genome of A. mellifera
using HISAT2 (Li et al., 2014). Based on the selected reference
genome sequence, the mapped reads were spliced using StringTie
(Kim et al., 2015), and the potential novel transcripts were predicted
using Cufflinks (Cole et al., 2012). BLAST was used to compare
the discovered new genes with NR (Deng et al., 2006), Swiss-Prot
(Rolf et al., 2017), Gene Ontology (GO) (Ashburner et al., 2000),
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TABLE 1 Sequencing data analysis.

Samples Clean reads Mapped reads GC Q20 (%) Q30 (%)

T01 112172492 78674895 46.84 98.34 94.67

T02 146644058 93988465 47.35 98.05 94.02

T03 116390296 58994204 47.33 97.84 94.44

T04 108092316 45571288 46.12 97.82 93.89

T05 116522172 71383391 47.37 97.98 94.11

T06 115946897 71060149 47.66 98.00 94.22

FIGURE 1

RNA-seq data analysis. (A) Comparison of the fragments per kilobase of exon model per million (FPKM) density distribution for all samples.
(B) Box-whisker plot of FPKM values for all samples.

Cluster of Orthologous Groups of proteins (COG) (Tatusov et al.,
2000), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2004) databases to obtain annotation information
of the new genes.

2.2.3. Differentially expressed gene analysis
Fragments per kilobase of exon model per million (FPKM) were

estimated as a measure of transcript levels or gene expression (Love
et al., 2014). The density distribution plot and box-whisper plot
of FPKM was presented with R software. Differentially expressed
genes (DEGs) were identified by DESeq2 (Love et al., 2014). The
FDR is the corrected P-value. Genes with | fold change| > 2 and
FDR < 0.05 were considered as DEGs. According to the fold change
in relative expression levels between the two groups, the DEGs
could be classified as upregulated or downregulated. A volcano plot
was generated to visualize the results with R software. A hierarchical
clustering analysis of the DEGs was performed (Yu et al., 2012), and
genes with the same or similar expression patterns were clustered.

2.2.4. Functional enrichment analysis
To determine the functional category, the DEGs were mapped

to the GO database by DAVID (Dennis et al., 2003). The annotation
was refined and enriched by using the top-GO (v2.40.0) package
in R software (Yu et al., 2012). The biological process (BP),

molecular function (MF), and cellular components (CC) were
particularly upregulated or downregulated in DEGs and were
extracted and visualized via DAVID, which is generally referred
to as GO analysis. The KEGG pathway was analyzed by using the
KOBAS (2.0). P-value < 0.05 was the threshold value for significant
enrichment results.

2.2.5. Protein-protein interaction (PPI) analysis
A protein-protein interaction (PPI) network of the DEGs

was constructed by STRING (Franceschini et al., 2013). The
constructed protein interaction network was imported into
Cytoscape (Shannon et al., 2013) for visualization. The PPI
consists of nodes and lines. Network nodes represent proteins,
and the lines between proteins represent interactions. There are
seven protein-protein interactions including neighborhood, co-
occurrence, fusion, co-expression, experiments, databases, and
text mining.

2.3. Quantitative real-time PCR
verification

Quantitative real-time PCR (q RT-PCR) was used to verify the
accuracy of RNA-seq (Livak and Schmittgen, 2001). Sixteen genes
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FIGURE 2

Volcano plot of differentially expressed genes (DEGs) between control (CK) and high temperature (HT).

were randomly selected for verification. Nine DEGs verified were
further quantified in different tissues (i.e., head, thorax, abdomen,
legs, and wings). According to the CDS region of selected genes,
specific primers were designed using Primer 5 (Supplementary
Table 1). The primers were synthesized by Shanghai Sangon Co.,
Ltd (Shanghai, China). First-strand cDNA was synthesized from
total RNA using the PrimeScript RT Reagent Kit with gDNA Eraser
(TaKaRa, Kusatsu, Japan), according to the manufacturer protocol.
The 15 µL reaction consisted of 100 ng/µL diluted cDNA (6.3 µL
of double distilled water dilution), 7.5 µL of SYBR

R©

Premix Ex
Taq II (TaKaRa, Japan), and 0.6 µL of each primer. The q RT-PCR
thermal cycle procedure was: 95◦C predefined for 30 s, 45 cycles
of denaturation at 95◦C for 5 s, annealing at 60◦C, and extension
for 30 s. The fold changes for RNA-seq were estimated as base 2
logarithms of the FPKM ratio, and the fold changes for q RT-PCR
were based on 11Cq.

2.4. Expression patterns of DEGs

Nine DEGs verified were further quantified in different tissues
(i.e., head, thorax, abdomen, legs, and wings) by q RT-PCR. The
reaction system was consistent with the q RT-PCR verification.
The mRNA quantification was conducted following the 2−11Cq

method (Livak and Schmittgen, 2001). The one-way Anova test and

Duncan’s multiple range test (SPSS 17.0) were used for significance
analysis. Data were shown mean ± SEM. The results were plotted
using GraphPad Prism 8.0.

3. Results

3.1. RNA-sequencing analysis

3.1.1. Reference genome alignment results
The sequencing data of the RNA-seq samples were shown in

Table 1. Among six samples, 109.52 Gb of clean data in total was
obtained, 15.89 Gb per sample with Q30 values of 93.89% and
above. Filtering to remove low-quality reads, there were an average
of 134,316,160 and 113,520,461 clean reads in CK and HT (Table 1).
The clean reads for each sample were compared with the specified
reference genome. The length distribution of single genes was also
determined and most of the genes were > 3000 bp (Supplementary
Figure 2). A total of 1,743 new genes were discovered, 148 of which
were functionally annotated (Supplementary Table 2).

3.1.2. Differential expression gene analysis
Fragments per kilobase of exon model per million values

spanned six orders of magnitude from 10−2 to 103 (Figure 1A). The
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FIGURE 3

Cluster analysis of DEGs. Columns represent samples and rows
represent different genes. The color represents the expression level
of the gene in the sample determined by log10 (FPKM + 0.000001).

distribution of the six samples was basically the same (Figure 1B).
277 DEGs were identified between CK and HT using DESeq (| log2
FC| ≤ 2, FDR ≤ 0.05). Of these, there were 167 upregulated DEGs
and 110 downregulated DEGs (Figure 2). Cluster analysis showed
the expression profiles of CK and HT (Figure 3). In the upregulated
DEGs, the most enriched and expressive DEGs were the HSPs
(HSC70-4, HSC70-5, HSP70-Ab, HSP70-Cb, HSP90, HSP40, and
L (2) efl), fatty acid synthase (FAS), BAG domain-containing
protein Samui (BAG), as well as several transcripts of unknown
function. In the downregulated DEGs, the most enriched DEGs
were E3 ubiquitin-protein ligase RNF8 (UbE3), and insulin-like
growth factor 2 mRNA-binding protein 1 (IGF2BP1). Identification
and annotation information for all DEGs were provided in the
Supplementary Table 3.

3.1.3. Enrichment analysis
We performed GO and KEGG enrichment analysis of DEGs

(Figures 4, 5). In a GO enrichment analysis of 277 DEGs, 143
genes were annotated, including 25 process categories at P < 0.05
(Table 2). In response to heat stress, DEGs were enriched for
various terms in the BP, CC, and MF categories (Figure 4).
DEGs were classified into three GO categories: biological processes

(33.5%), cellular components (24.1%), and molecular functions
(41.15%). DEGs were mostly enriched for protein folding, unfold
protein binding, and heme binding terms. The DEGs coregulated
under heat stress according to GO categorization were biological
process [signal transduction, response to stress, and metabolic
process (of cellular amino acid, lipid, and protein)], cellular process
(nucleus, cell membrane, and transcription factor complex), and
molecular function (ATP binding, unfolding binding, activities of
gate channels, and kinases). DEGs were mainly concentrated in the
nucleus and cell membrane and were involved in protein folding,
response to stress, and some signaling pathways.

The KEGG enrichment analysis of these DEGs was shown
in Figure 5. In a KEGG enrichment analysis of 277 DEGs,
79 genes were annotated. KEGG results revealed the main
cellular processes (endocytosis and apoptosis), environmental
information processes (Fox O signaling pathway, MAPK signaling
pathway, Wnt signaling pathway, and mTOR signaling pathway),
genetic information processing (protein processing in endoplasmic
reticulum, spliceosome, and Ubiquitin mediated proteolysis),
metabolism (tyrosine, amino sugar and nucleotide, fatty acid,
and amino acid), and organismal systems (longevity regulating
pathway) enriched in A. mellifera under heat stress. KEGG
enrichment analysis showed that DEGs were significantly enriched
in genetic information processing and metabolism, among which
protein processing in endoplasmic reticulum and longevity
regulating pathway were significantly enriched pathways.

3.1.4. PPI analysis
The PPI analysis was conducted by using String database

and visualized using Cytoscape. The result revealed that 18
proteins were involved in heat stress in PPI analysis (Figure 6).
60S Ribosomal protein L7 (ENSBTAG00000020139), Zinc finger
proteins (ENSBTAG00000032003, ENSBTAG 00000025246,
ENSBTAG00000039523), Heat shock 70 kDa protein (ENSBTAG
00000025441), Ankyrin repeat domain-containing protein
(ENSBTAG00000004912), and serine/threonine-protein kinase
(ENSBT AG00000004514) had strong interactions. Moreover, the
PPI network showed that HSPs form a complex molecular network
with other proteins, which promoted protein folding and protected
cellular proteins from heat damage.

3.2. Validation of RNA-seq results

The results of the RNA-seq data showed that hundreds of genes
were differentially expressed after high temperature treatment. We
randomly selected 16 DEGs for q RT-PCR analysis to verify the
results of RNA-seq identification. The results showed that the
expression trend detected by q RT-PCR was consistent with the
RNA-seq (Table 3). This ensured that the RNA-Seq results were
quite reliable for the identification of DEGs.

3.3. Expression patterns of DEGs

The expression levels of 9 heat-related genes in different tissues
of A. mellifera were evaluated (Figures 7A–I). The 9 DEGs were
L (2) elf genes (GB45910, GB45912, GB45913, GB47475), HSP
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FIGURE 4

Gene Ontology (GO) enrichment analysis of DEGs. The X-axis indicates the GO classification, the left side of the Y-axis indicates the percentage of
genes, and the right side shows the number of genes. Bold colors indicate the number of DEGs, and light colors indicate the number of all genes.

FIGURE 5

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The Y-axis indicates the pathway and the X-axis indicates
the number of annotated genes.
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TABLE 2 Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) enriched in BP, CC, and MF.

ID GO term Ontology P Gene ID

GO:0006457 Protein folding BP 0.0013 GB40746; GB40976;
GB42297; GB46774

GO:0006950 Response to stress BP 0.0018 GB40976; GB51727

GO:0007166 Cell surface receptor signaling pathway BP 0.0066 GB47413; GB51612

GO:0042438 Melanin biosynthetic process BP 0.0083 GB48794

GO:0060179 Male mating behavior BP 0.0083 GB48794

GO:0006461 Protein complex assembly BP 0.0166 GB43748

GO:0032781 Positive regulation of ATPase activity BP 0.0166 GB51727

GO:0023051 Regulation of signaling BP 0.0248 GB47413

GO:0043065 Positive regulation of apoptotic process BP 0.0248 GB50136

GO:0032784 Regulation of DNA-templated transcription, elongation BP 0.033 GB45135

GO:0000042 Protein targeting to Golgi BP 0.0491 GB45905

GO:0007179 Transforming growth factor beta receptor signaling pathway BP 0.0491 GB42212

GO:0000786 Nucleosome CC 0.0171 GB47381; GB47506

GO:0005669 Transcription factor TFIID complex CC 0.0223 GB42501

GO:0005740 Mitochondrial envelope CC 0.0223 GB50136

GO:0046540 U4/U6× U5 tri-snRNP complex CC 0.037 GB42296

GO:0051087 Chaperone binding MF 0.0011 GB51727; GB54219

GO:0051082 Unfolded protein binding MF 0.0016 GB40976; GB42297;
GB46774

GO:0004181 Metallocarboxypeptidase activity MF 0.0039 GB40135; GB51355

GO:0008158 Hedgehog receptor activity MF 0.0087 GB52328

GO:0001671 ATPase activator activity MF 0.0174 GB51727

GO:0031177 Phosphopantetheine binding MF 0.0174 GB52590

GO:0001784 Phosphotyrosine residue binding MF 0.0261 GB47413

GO:0004888 Transmembrane signaling receptor activity MF 0.0431 GB53324

GO:0020037 Heme binding MF 0.0465 GB41315; GB42296;
GB42608

genes (GB46774, GB50609, GB42297, GB40976), and BAG gene
(GB54219). The expression of the DEGs was detected in the head,
thorax, abdomen, legs, and wings, and the expression levels of most
genes differed among tissues (P < 0.05). The four L (2) efl genes
were similarly expressed in different tissues, all being expressed in
the thorax (P < 0.05), but with no significant expression in the
remaining tissues (P > 0.05) (Figures 7A–D). The four HSP genes
were most highly expressed in the thorax and had low expression
in other tissues (Figures 7E–H). The BAG gene was most highly
expressed in the thorax, followed by the legs, with the lowest
expression in the wings. All genes were highly expressed in the
thorax with similar expression patterns (P < 0.05) (Figure 7I).

4. Discussion

Global warming and the pollination of greenhouse crops result
in honeybee exposure to heat stress. Honeybees face many adverse
effects of heat stress (Medina et al., 2020; Zhao et al., 2021).
Ambient temperature can greatly affect foraging activity (Al-Qarni,

2006; Blazyte-Cereskiene et al., 2010), then affect crop pollination.
To further understand the molecular mechanism of honeybees
exposed to heat stress, a comparative analysis of gene expression
among different temperatures was performed using RNA-seq, and
the expression patterns of some DEGs were detected in different
tissues. This study provided a set of important pathways and DEGs
associated with high temperatures.

In our study, 277 DEGs were identified between CK and HT.
In all, there were significantly more upregulated DEGs (167) than
downregulated DEGs (110). Of these upregulated DEGs, there were
15 HSPs, including HSP40, HSP70, HSP90, L (2) efl, and so on
(Supplementary Figure 2). HSPs, as highly conserved molecular
chaperones, can influence the folding and functional conformation
of proteins (Purschke et al., 2017; Alqarni, 2020). Both GO
and KEGG enrichment analysis were associated with the protein
processes, which confirmed that heat stress could induce a rapid
response by the organism to synthesize resistance proteins and
protect against damage (Scheffer et al., 2022). This also provided
evidence for the hypothesis that elevated temperature accelerates
protein unfolding and initiates molecular mates (Day et al., 2002).
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FIGURE 6

Protein-protein interaction (PPI) networks of DEGs. The nodes represent proteins and the lines represent interactions. The size of node represents
the degree. The color of node represents the cluster coefficient, values vary from low to high with the color gradient from green to red. The green
line indicates conserved neighborhood evidence, the red line indicates fusion evidence, and the yellow-green line indicates text mining.

TABLE 3 Results of qRT-PCR and RNA-seq on genes.

Gene ID Gene name log2FC Gene ID Gene name log2FC

RNA-seq qRT-RCR RNA-seq qRT-PCR

GB40866 HSC70-4 2.14 2.56 GB45910 L (2) efl 7.04 7.86

GB42297 HSC70-5 1.11 2.15 GB47475 L (2) efl 5.25 5.12

GB50609 HSP70-Ab 4.68 6.13 GB54219 BAG 3.47 9.59

GB50730 HSP70-Cb 1.95 3.24 GB52590 FAS 12.96 3.86

GB40976 HSP90 4.42 4.61 GB52489 AQPAe.a 2.45 1.88

GB46774 HSP40 3.60 1.51 GB46514 Esterase B1 2.67 2.22

GB45913 L (2) efl 5.08 5.14 GB45905 TRIP11 2.74 2.05

GB45912 L (2) efl 4.21 4.87 GB52056 IGF2BP1 −1.12 −1.05

Compared with previous studies, the HSP family, such as sHSP,
HSP40, HSP70, and HSP90, also participated in honeybee heat
stress responses (Liu et al., 2012; Alqarni et al., 2019). We
could not find any sHSPs, however, we found 6 L (2) efl genes.
Under heat stress conditions, the intracellular environment is
destroyed, which leads to cell apoptosis. The apoptosis process
is regulated by caspase protease, and the upregulation of HSP90,
HSP70, and other stress-related genes could inhibit the activity
of caspase protease (Hitomi et al., 2004). We identified increased
expression of HSP genes involved in multiple processes, but a
striking finding was that L (2) efl genes were dominant, indicating
that the genes contributed the most to 20 d old worker bees in
45◦C. The expression of HSPs may be a potential target related
to the survival and performance of honeybees in harsh climatic
conditions.

In addition, these DEGs were found to be associated with
the zinc finger protein family (ZFPs, 5 genes), BAGs family (3
genes), and ubiquitin family (5 genes). ZFPs can bind to biological
macromolecules and participate in the regulation of resistance
mechanisms in response to various biological and abiotic stress
factors at the transcriptional level (Andrew et al., 2004; Giri et al.,
2011; Droll et al., 2013). BAG proteins may serve as bridging
molecules that recruit HSP70/HSC70 to specific target proteins
(Takayama et al., 1995; Rhoads and Friedberg, 1997). Thus, the
BAG family functionally regulated multiple cellular pathways, such
as programmed cell death (PCD) and stress responses (Kang
et al., 2006). The association between the ubiquitin family and
HSP90 chaperone complex has been reported (Ehrlich et al., 2009).
Ubiquitin-protein activity inhibited unfolded proteins in stress-
induced cell death (Chen et al., 2015), and ubiquitin mediated
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FIGURE 7

Relative expression levels of DEGs in different tissues. (A) GB45910. (B) GB45912. (C) GB45913. (D) GB47475. (E) GB46774. (F) GB50609.
(G) GB42297. (H) GB40976. (I) GB54219. H, head without antenna; Ab, abdomen; T, thorax without wings; L, legs; W, wings. Different capital letters
indicate significant differences between tissues at the 0.05 level. Data are presented as mean ± SE.

proteolysis was one of the recorded KEGG enriched pathways that
was exposed at high temperatures in our findings. The results
suggested that HSPs, BAGs, and ubiquitin family together form
a complex molecular network with ZFPs. More interestingly,
HSPs were also associated with immune responses (Parcellier
et al., 2001; Lanneau et al., 2010; Zhang et al., 2022). Of the
upregulated DEGs, toll-like receptor protein was associated with
immune responses. The KEGG pathway showed enrichment of the
endocytosis pathway, which was also involved in cellular immunity
(Zhu et al., 2020). The endocytosis pathway may be related to
the transport of proteins, thus exerting an immune function for
cellular protection. Previous transcriptomic studies have indicated
the relationship between heat exposure and immunity (Li H.
et al., 2019). In addition, 5 genes related to antioxidants were
expressed at heat temperatures, suggesting that heat stress can
trigger oxidative stress in bees. A. mellifera may promote the body’s
defense against external high temperatures through immune and
antioxidant responses.

We also discovered 40 DEGs related to metabolism. There
were both 26 upregulated and 14 downregulated genes. The
KEGG results revealed that metabolic processes were the main
pathways (Figure 5). Lipids and amino acids provide energy for
organisms via the tricarboxylic acid cycle. Metabolism of energy
was essential to maintain homeostasis and growth (Zhu et al.,
2020). Heat stress could impair the energy reserve and metabolism
of insects (Slimen et al., 2016). This result was consistent with
the result of physiological experiments (Yang et al., 2009; Neal,
2015), showing that high temperatures could lead to disruption in
metabolism in honeybees. Transcriptome profiles also suggested
that high temperatures could cause disruption at metabolic levels
(Ma et al., 2019; Shen et al., 2021). In addition, DEGs were
found to be associated with stress resistance and protein kinases.
A total of 8 protein kinase-related genes were identified, of which
5 were upregulated and 3 were downregulated. Protein kinases can
phosphorylate proteins by transferring phosphate groups to specific
substrate proteins, usually ATP or GTP as donors and serine,
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threonine, and tyrosine as receptors (Krupa et al., 2004; Faucher
et al., 2008). The regulation of fatty acid synthase and serine
protease is part of the diapause program (Robich and Denlinger,
2005; Vatanparast and Park, 2021). The heat stress caused metabolic
disorders which cause diapause in honeybees. Simultaneously,
adult honeybees had an ability to adapt to heat stress (Stabentheiner
et al., 2010). It may be related to the higher content of metabolic
enzymes.

Signal transduction pathways could link environmental stress
to the organism, thus inducing most of the above-mentioned
defense responses (Kawasaki et al., 2002; Ludwig et al., 2005). When
organisms were subjected to heat stress, various signal transduction
pathways could be activated, such as Notch, MAPK, Fox O, mTOR,
Hippo, and Wnt (Badr et al., 2018). In the current experiment,
some signal transduction pathways were involved, such as the Fox
O, MAPK-fly, mTOR, Wnt, and TGF-beta. In the Wnt signaling
pathway, downregulated of the t-cell factor/lymphoid enhancing
factor (TCF/LEF) in the nucleus potentially contribute to cell
cycle arrest (Kiuchi et al., 2008), and upregulated of the siah-1
interacting protein (SIP) might lead to proteolysis (Supplementary
Figure 3). In the TGF-bate singling pathway, upregulated of
the Samd2/3 potentially contribute to G1 arrest and lead to
angiogenesis extracellular matrix neogenesis, immunosuppression,
and apoptosis induction (Supplementary Figure 4). Studies have
consistently shown that both Fox O (Martins and Link, 2016) and
TGF-beta (Shaw et al., 2007) signaling pathways were involved
in life-cycle regulation. Together with Hippo, the Wnt, TGF-beta,
and Fox O signaling pathways affected body segment formation,
pigmentation, appendage development, and the development of
wings in insects (Barry and Camargo, 2013), which may be a key
factor in diapause. Thus, the signaling transduction pathways might
be the central convergence point in the A. mellifera response to heat
stress.

In this experiment, all nine heat-related genes were higher
expressed in the thorax of A. mellifera than in other tissues. The
thorax temperature is regulated at different levels depending on
food quality and demand in the colony (Stabentheiner and Kovac,
2014, 2016). The regulation of the thorax temperature plays a
crucial role in honeybee flight ability (Souza-Junior et al., 2020).
The thorax temperature can exceed 40◦C during flight (Kovac et al.,
2018). In A. mellifera, the main mechanisms for the prevention
of thorax overheating during the flight are reduced metabolic and
increased evaporative when the temperatures rise from 33 to 45◦C
(Kovac et al., 2018). This may be related to the high expression of
heat-responsive genes in the thorax. Therefore, it was supposed that
the thorax may be the most important part of the response to heat
stress.

5. Conclusion

High temperatures can influence the physiological metabolism
in honeybees, and the expression profiles of stress-related genes
can also be induced in response to extreme environmental
temperatures. Overall, 1,743 new genes were obtained, and 277
DEGs (167 upregulated DEGs and 110 downregulated DEGs) were
identified in A. mellifera under heat stress by RNA-seq. Both GO

and KEGG pathway enrichment analysis showed that these DEGs
were involved in protein folding, binding, response to stress, and
signal transduction pathways. DEGs related to metabolism, protein
processing, immune response, and signal transduction may work
together to protect against heat stress in A. mellifera. This study
provided a set of important pathways and DEGs associated with
high temperatures. Nine DEGs were highly expressed in the thorax
of A. mellifera than in other tissues, which was supposed that the
thorax may be the most important part in the response to heat
stress. These results will be helpful to the function research of heat
resistance-related genes.
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