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Alligator weed Alternanthera philoxeroides is a perennial, worldwide pernicious 
weed. The beetle Agasicles hygrophila is considered to be a classical biological 
agent used to control A. philoxeroides. In the insect peripheral olfactory system, 
the odorant receptor co-receptor (ORco) plays an important function in the 
perception of odors in insects. However, the function of ORco in the mating 
and host-finding behaviors of A. hygrophila remains unclear. In this study, 
we characterized the odorant receptor co-receptor of A. hygrophila (AhygOrco). 
Real-time quantitative PCR (qRT–PCR) showed that AhygOrco was predominantly 
expressed in the antennae of both male and female adults, and the difference 
between male and female antennae was not significant. The RNA interference 
(RNAi) results showed that compared to the control, the injection of AhygOrco 
dsRNA strongly reduced the expression of AhygOrco by 90% in male beetles and 
89% in female beetles. The mate-seeking and feeding behavior of AhygOrco-
silenced beetles were significantly inhibited. Male adults were significantly less 
successful in finding a mate compared to the control group. Furthermore, host 
allocation abilities toward A. philoxeroides of both adults were significantly 
repressed. These results indicated that AhygOrco is associated with A. hygrophila 
feeding and mate-seeking and that inhibition of AhygOrco expression is one of 
the causes of reduced host and mate recognition in A. hygrophila. Meanwhile, 
the study provides support for exploring gene functions based on RNAi.
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1. Introduction

Almost all animals respond to pheromones and other chemical 
signals (Suh et al., 2014) that indicate food, shelter and predators, and 
they rely heavily on their olfactory system to achieve this process (Wyatt, 
2003). The main olfactory structures in Lepidoptera are the antennae 
and labial palps. Odors are detected in these structures mainly through 
chemosensory receptors, belonging to the olfactory receptors (ORs) and 
ionotropic receptors (IRs) of the family of membrane proteins (Larsson 
et al., 2004; Benton, 2006; Benton et al., 2009). These receptors form 
ligand-gated ion channels in vivo and can be expressed in different 
heterologous expression systems in order to study their role (Sato et al., 
2008; Wicher et al., 2009; Carey et al., 2010; Wang et al., 2010).

Insect ORs are a large gene family, which is considered as the main 
family of receptors involved in olfactory function (Zhang and Lofstedt, 
2013; Koenig et al., 2015). These genes have relatively low sequence 
similarity across insect taxa (Krieger et al., 2003; Hansson and Stensmyr, 
2011; Zhang and Lofstedt, 2015). One particular class of ORs is called 
the odorant receptor co-receptors (Orco). Orco genes are highly 
conserved and have been shown to be  homologous in most insect 
species. Insects use olfactory receptors to distinguish thousands of 
volatiles or pheromones (Hallem and Carlson, 2006). In the process of 
olfactory recognition, a specific OR is required together with the 
universal Orco protein to form the Orco-OR receptor complex as a 
functional tetramer ligand-gated ion channels to exercise function 
(Vosshall and Hansson, 2011; Nakagawa et al., 2012; Kumar et al., 2013; 
Missbach et al., 2014; Turner et al., 2014).

Studies exploring the structure and function of Orco have been 
uninterrupted, and several recent studies have shown that the structural 
integrity of Orco influences the channel activity of the insect Orco-OR 
complex (Nichols and Luetje, 2010; Jones et al., 2011; Nichols et al., 
2011; Nakagawa et al., 2012). Abnormal disruptive expression of Orco 
significantly impairs olfactory function in insects (Zhao et al., 2011; Liu 
et al., 2017). Orco mutation makes insects lose their sense of smell to 
various odors (DeGennaro et al., 2013; Koutroumpa et al., 2016; Li et al., 
2016; Yan et al., 2017), and the mutation also completely disrupts the 
feeding behavior of the species (Fandino et al., 2019). In addition, some 
studies have shown that Orco is often associated to the tissues involved 
in oviposition, mating, development, resistance and metabolic regulation 
(Libert et al., 2007; Kato and Touhara, 2009; Fan et al., 2015; Trible et al., 
2017; Sun et al., 2020).

Agasicles hygrophila Selma & Vogt (Coleoptera: Chrysomelidae) is 
native to southern Brazil and northern Argentina and is considered a 
biological agent for the control of Alternanthera philoxeroides (Mart.) 
Griseb (Caryophyllales: Amaranthaceae; Lu et al., 2010). After 1964, 
A. hygrophila was introduced to the United  States, Australia, 
New Zealand and Thailand for the biological control of A. philoxeroides 
and achieved great success. Chinese scientists introduced the beetle from 
the United States in 1986, evaluated host specificity and concluded that 
the insect could be safely utilized in China, followed by extensive rearing 
and release, biological characterization and evaluation of its control 
effects. It has an exclusive host recognition ability and can accurately find 
hosts in the field under complex odorscape (Conchou et  al., 2019). 
However, the molecular mechanism of host recognition in A. hygrophila 
is still unclear. In the present study, we identified and cloned the Orco 
gene of A. hygrophila. Afterwards, AhygOrco was silenced by RNAi and 
mutants were behaviorally tested by host and mate behavioral tests. This 
study partialy clarified the AhygOrco functions in A. hygrophila and laid 
the foundation for further study of the olfactory mechanism in 

A. hygrophila. Because of its specificity and high efficiency, RNAi has 
attracted widespread attention from biologists and became one of the 
research hotspots in molecular biology. SiRNA-mediated gene silencing 
plays a pivotal role in the study of insect gene function.

2. Materials and methods

2.1. Insect rearing

Agasicles hygrophila was obtained from the Institute of Plant 
Protection, China Academy of Agriculture Sciences. The beetles were 
reared on A. philoxeroides plants at 26 ± 1°C 85% relative humidity (RH) 
and a 16:8 h (white light: dark) photoperiod in the laboratory. The flea 
beetles were cultivated for three generations to eliminate maternal 
effects before the experiments.

2.2. RNA extraction, cDNA synthesis, and 
gene cloning

Total RNA was extracted from the dissected antennae of 30 
A. hygrophila using a Micro Total RNA Extraction Kit (JianShi Biotech, 
Beijing, China) following the manufacturer’s protocols. The first strand 
of the complementary DNA (cDNA) was synthesized from 1 μg of total 
RNA using a Hifair® III 1st Strand cDNA Synthesis Kit (Yeasen Biotech, 
Shanghai, China) according to the manufacturer’s protocol. The 
synthesized cDNAs were stored at −20°C until use. To identify the 
AhygOrco sequence, three pairs of degenerate primers (AhygOrco-F1: 
5′-TTGTGGAAATCCAGTGAGTCTGC-3′, AhygOrco-R1: 5′-CGGCC 
ACCCGGTATAGTATTTAG-3′, AhygOrco-F2: 5′-ATGATGAAATT 
TAAGGTATCTGGTCTAGTGGC-3′, AhygOrco-R2: 5′-GAAAAAAC 
TGTTGTAGTGACCACGCA-3′, AhygOrco-F3: 5′-TAAGGCTTATG 
CAAGCTTCTGGACA-3′, AhygOrco-R3: 5′-TAGGTAATAAGGCATT 
CCAGACATAGCG-3′, Table 1) were designed to amplify the nucleic 
acid sequence using 2 × Hieff Canace® Gold PCR Master Mix (Yeasen 
Biotech, Shanghai, China). The amplification was performed under the 
following thermal program: 98°C for 3 min, 35 cycles at 98°C for 10 s, 
55°C for 20 s and 72°C for 45 s, followed by 1 cycle at 72°C for 5 min. The 
PCR product was purified using a DNA Gel Extraction Kit (Beyotime 
Biotech, Shanghai, China), cloned into a pClone007 Versatile Simple 
Vector (Tsingke Biotech, Beijing, China) using a Trelief™ 5α Chemically 
Competent Cell (Tsingke Biotech, Beijing, China) and sequenced.

2.3. Bioinformatic analysis

Searching for orthologs of AhygOrco was performed using BLAST.1 
Multiple sequence alignment of AhygOrco and orthologs from four 
other Coleopteran insects was performed with DNAMAN software. The 
transmembrane domain and topology of the deduced AhygOrco protein 
were predicted using TMHMM.2 The amino acid sequences of AhygOrco 
and its orthologs from other insect species were aligned using the 
ClustalW method implemented in the MEGA X software package. The 

1 http://blast.ncbi.nlm.nih.gov/Blast.cgi

2 http://www.cbs.dtu.dk/services/TMHMM/
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phylogenetic tree was constructed by the neighbor-joining (NJ) method 
(Saitou and Nei, 1987) with P-distance modeling (Nei and Kumar, 2000) 
and partial deletion of gaps using the MEGA X software package 
(Kumar et al., 2018). The reliability of the tree structure was assessed 
using a bootstrap procedure based on 1,000 replicates. The Orco amino 
acid sequences of insects are listed in Appendix B.

2.4. Expression profiling of AhygOrco

The expression profiles of AhygOrco were analyzed using qRT–
PCR. Total RNA was isolated from 12 different tissues, including male and 
female antennae (AN), male and female heads without antennae (H), male 
and female abdomens (AB), female ovaries (OV), male testes (TE), male 
and female thoraxes (T), and male and female legs (L), obtained from virgin 
adult beetles of both sexes within 48 h of adult eclosion. The method of total 
RNA extraction was the same as described above. The concentration of each 
RNA sample was standardized to 500 ng/μl, and cDNA was synthesized 
using a Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR Kit 
(Yeasen Biotech, Shanghai, China) according to the manufacturer’s protocol. 
Based on studies in other Coleoptera (Zhang Y. et al., 2021), ribosomal 
protein L13a (RPL13a; Jia et al., 2020) was used as an internal control in the 
present study. Antennal cDNA at 10-fold dilution for qRT–PCR testing. 
qRT–PCR was performed using ABI StepOne Plus (Thermo Scientific, 
Waltham, MA, USA) with Hieff® qPCR SYBR Green Master Mix (Yeasen 
Biotech, Shanghai, China). The reaction program was set as follows: 5 min 
at 95°C, 40 cycles at 95°C for 10 s and 60°C for 30 s, and 20 s at 72°C. The 
qRT–PCR primers were designed using Primer Premier 5.0 (PREMIER 
Biosoft International; AhygOrco -RT-F: 5′- TGTACAACACGAGG 
CAAGAAATGGG-3′, AhygOrco -RT-R: 5′- TCCAACACCTCCACC 
ACCTTGAC-3′, RPL13a-F: 5′- GAAGCGAGTAGTT-GTGCCTG-3′, 
RPL13a-R: 5′-TGCGAACGACTGTCTGGTAT-3′, Table  1), and the 
efficiency of the primers was validated before gene expression analysis. Each 
qRT–PCR was performed using two technical replicates and three biological 

replicates. The expression levels of AhygOrco were calculated by the 
2 − ΔΔCt method (Livak and Schmittgen, 2001).

2.5. dsRNA synthesis, microinjection, and 
qRT–PCR validation

Based on the cDNA template, a pair of primers (Saleh et al., 2006; 
Xiao, 2014; Wang, 2019) containing the T7 RNA polymerase promoter 
(dsOrco-F: 5′- TAATACGACTCACTATAGGGCTGCCATAGGA-
GATGCTTATGGTG-3′, dsOrco-R: 5′- TAATACGACTCACTATAGG 
GAGCTTCTTCG-GAGCCATCGT-3′, Table 1) was amplified using a 
2 × Hieff Canace® Gold PCR Master Mix (Yeasen Biotech, Shanghai, 
China). The amplification was performed under the following thermal 
program: 98°C for 3 min, 35 cycles at 98°C for 10 s, 55°C for 20 s and 
72°C for 45 s, followed by one cycle at 72°C for 5 min. After PCR 
amplification using the primers, the obtained targeting fragment was 
used to synthesize dsOrco with a T7 RNAi Transcription Kit (Vazyme 
Biotech, Nanjing, China) according to the manufacturer’s instructions. 
In addition, the dsRNA of the enhanced green fluorescent protein 
(dsEGFP, the sequence of EGFP is shown in Appendix A, the primers of 
dsEGFP are shown in Table 1, GenBank acc. No.: MN830806.1) was also 
synthesized as the control treatment. The concentrations of the 
synthesized dsOrco and dsEGFP were diluted to 10 μg/μL and stored at 
−20°C until use. The newly emerged A. hygrophila were separated into 
male and female beetles and were used for RNAi microinjection. Newly 
emerged A. hygrophila male adults (within 12 h after eclosion) were 
placed on a soft plastic plate with their abdomens facing up. Then, 0.1 μl 
of dsOrco or dsEGFP was injected into the junction site between the first 
and the second abdominal segment of each individual using a R480 
Pico-Injector (RWD Life Science Co. Ltd., Shenzhen, China). After 
injection, insects were allowed to recover in plastic boxes with 
A. philoxeroides. After 48 h of injection, the antennae were pulled off 
with tweezers by grasping at the root of the antennae and were 
subsequently transferred to a 1.5 ml centrifuge tube. The methods of 
total RNA extraction and mRNA level validation were performed as 
described above.

2.6. Behavioral tests after RNAi

Behavioral test on feeding. After 48 h of injection, insects from 
the dsOrco-injected and dsEGFP-injected groups were individually 
transferred to one side of a square plastic dish (10 × 10 × 1.7 cm, 
Figure 1A). Prior to this, a fresh leaf of A. philoxeroides was placed 
on the opposite side of the dish. The time period from the 
introduction of an insect to successful leaf contact was measured. If 
an insect failed to touch the leaf within 2 min, it was judged unable 
to recognize the feeding (Liu et al., 2016). Insects that had not made 
a position move within 2 min were abandoned. Behavioral tests were 
performed on each individual one by one. And the number of 
preferences for host leaf in a group with 30 individuals of each 
gender was counted to calculate a success rate (SR), the number (N) 
of preferences for host leaf as a fraction of the total beetles 
SR = N/30. The experiment was repeated three times to avoid 
random error, as a result, a total of 90 individuals of each gender 
were used. After one completion of the test, the dish was washed 
with 75% ethanol. The whole bioassays were performed under white 
lighting at 26 ± 1°C and 85% relative humidity.

TABLE 1 List of the designed primers for PCR for AhygOrco cloning,  
qRT-PCR and dsRNA syn-thesis.

Primer 
name

Sequence(5′-3′)

AhygOrco-F1 TTGTGGAAATCCAGTGAGTCTGC

AhygOrco-R1 CGGCCACCCGGTATAGTATTTAG

AhygOrco-F2 ATGATGAAATTTAAGGTATCTGGTCTAGTGGC

AhygOrco-R2 GAAAAAACTGTTGTAGTGACCACGCA

AhygOrco-F3 TAAGGCTTATGCAAGCTTCTGGACA

AhygOrco-R3 TAGGTAATAAGGCATTCCAGACATAGCG

AhygOrco-RT-F TGTACAACAGAGGCAAGAAATGGG

AhygOrco-RT-R TCCAACACCTCCACCACCTTGAC

RPL13a-F GAAGCGAGTAGTTGTGCCTG

RPL13a-R TGCGAACGACTGTCTGGTAT

dsOrco-F TAATACGACTCACTATAGGGCTGCCATAGGAG

ATGCTTATGGTG

dsOrco-R TAATACGACTCACTATAGGGAGCTTCTT

CGGAGCCATCGT

dsEGFP-F TAATACGACTCACTATAGGGTGAGCAAGGGCGAGGAG

dsEGFP-R TAATACGACTCACTATAGGGCGGCGGTCACGAACTCCAG
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Behavioral test on mate-seeking. After 48 h of injection, insects 
from the dsOrco-injected and dsEGFP-injected groups were 
individually transferred to one side of a square plastic dish 
(10 × 10 × 1.7 cm, Figure 1B). Prior to this, an unmated female adult (3 
d after eclosion) was fixed on the opposite side of the dish by using 
double-sided adhesive tape. The time period from the introduction of 
a male insect to successful contact with the body of the female was 
measured. If an insect failed to touch the body of the opposite sex 
within 60 s, it was judged unable to recognize the mate. If an insect 
failed to touch the body of the female within 60 s, it was judged unable 
to recognize the mate. Insects that had not made a position move 
within 60 s were abandoned. Behavioral tests were performed on each 
pair of A. hygrophila one by one, and the number and time spent by 
males to successfully found females was counted in a group of 30 pairs 
of A. hygrophila. In addition, a success rate (SR) was calculated as a 
fraction of the number of males that successfully found females (N) to 
the total number of male beetles SR = N/30. To avoid random errors, 
the experiment was repeated three times. A total of 90 pairs of 
A. hygrophila were used to behavioral test on mate-seeking. After one 
completion of the test, the dish was washed with 75% ethanol. The 
whole bioassays were performed under white lighting at 26 ± 1°C and 
85% relative humidity. All of the behavioral tests were performed at 
17:00–19:00, when the insects were most active.

2.7. Data analyses

In the behavioral test on feeding, the SR of dsOrco-injected insects 
was normalized to the SR of dsEGFP-injected females. And in the 
behavioral test on mate-seeking, the SR of dsOrco-injected insects was 
normalized to the SR of dsEGFP-injected insects. All data are expressed 
as the means ± SEMs (standard errors of the mean). Statistical analyses 
were performed in IBM SPSS Statistics 27. For the expression profiling 
of AhygOrco in different tissues, the significant differences among 
different samples (including males and females) were analyzed using 
one-way analysis of variance (ANOVA) followed by a Tukey’s post hoc 
test. For the statistical tests of relative expression of AhygOrco and SR of 
host feeding, as well as mate-seeking between dsOrco-injected insects 
and dsEGFP-injected insects, we performed the non-parametric tests 
(Mann–Whitney U test) for males and females, respectively. The level of 
significance was set at p < 0.05. The figures were constructed using 

GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA) and Adobe 
Illustrator CS6 (Adobe, San Jose, CA, USA).

3. Results

3.1. Identification, sequence analysis, and 
expression profiling of AhygOrco

AhygOrco mRNA was identified from the ovarian transcriptome 
(unpublished data) of A. hygrophila. Based on the cDNA template and 
specific primers for PCR, the AhygOrco gene was cloned successfully 
(the sequence of AhygOrco is shown in Appendix A, GenBank acc. No.: 
OP972585). The complete open reading frame (ORF) length was 
1,440 bp, encoding 479 amino acids. The transmembrane prediction 
results showed that AhygOrco has seven putative transmembrane 
regions, with the N-terminus inside the cell membrane and the 
C-terminus outside, which is similar to a typical insect OR 
(Figures 2A,B). Orco genes from eight coleopteran insects were used to 
perform multiple sequence alignment. The identities of AhygOrco with 
the Orco orthologs of the other insects were in the range of 85%–95% 
(Table 2). The membrane topology analysis of the AhygOrco protein 
predicted by TMHMM2.0 indicated that this protein is a seven 
transmembrane protein with an intracellular N-terminus and an 
extracellular C-terminus (Figure  2B), which is consistent with the 
membrane topology of Orco protein demonstrated in L. Hesperus (Hull 
et al., 2012), D. melanogaster, and A. gambiae (Benton et al., 2006).

A phylogenetic tree was constructed by using 40 insect Orco 
protein sequences. The tree was constructed with MEGA X based on a 
ClustalW alignment. Bootstrap values are based on 1,000 replicates. 
The branch lengths are proportional to the percentage of sequence 
difference (scale bar, 0.05% difference). The results showed a very high 
level of conservation and a relationship among the Orco subtypes 
within insect orders (Figure  3). RT–qPCR assays were used to 
determine the relative expression levels of AhygOrco in different adult 
tissues. The results showed that AhygOrco was highly expressed in male 
and female antennae, with transcript levels significantly higher than in 
other tissues (exceeding at least 200-fold), followed by the abdomen 
(Figure  3). The remaining tissues had extremely low expression. 
However, the difference in AhygOrco levels between male and female 
antennae was not significant (Figure 4).

A B

FIGURE 1

(A) Behavioral test device on feeding. (B) Behavioral test device on mate-finding. Test insects are placed at the gray origin.

https://doi.org/10.3389/fevo.2023.1104962
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ning et al. 10.3389/fevo.2023.1104962

Frontiers in Ecology and Evolution 05 frontiersin.org

3.2. Expression analysis of Orco after RNAi

After 48 h (Ma et  al., 2020; Tian et  al., 2022) of knockdown, 
we verified the RNAi efficiency of dsOrco by qRT–PCR. The expression 
level of the AhygOrco gene was significantly lower in dsOrco-injected 
beetles than in dsEGFP-injected beetles (dsOrco-injected: male, 
p < 0.0001, female, p < 0.0001), with knockdown levels reaching 90% in 
males and 89% in females (Figure 5A).

3.3. Knockdown of AhygOrco impairs 
feeding and mate seeking

To study the effect of silent Orco on host and mate recognition, 
behavioral bioassays were performed. The results showed that the host-
seeking behavior of AhygOrco-silenced males and females was 

significantly inhibited, with only 30% of females and 27% of males 
finding their hosts within 2 min, which was significantly lower than that 
of dsEGFP-injected males (Figure 5B). Meanwhile, the host-seeking 
behavior of AhygOrco-silenced males was significantly inhibited, with 
only 47% of males finding a mate within 60 s, which was significantly 
lower than that of insects injected with dsEGFP (Figure 5C). In addition, 
for those insects that successfully found a host, significantly fewer of the 
dsOrco-injected group were able to find a host within 60 s compared to 
the dsEGFP-injected group (dsEGFP: 69%, dsOrco: 37%, Figure 5D).

4. Discussion

In the present study, we  characterized the olfactory receptor 
coreceptor gene AhygOrco of A. hygrophila. AhygOrco has seven TMDs, 
an Nin-Cout topology and a highly conserved C-terminal structural 

A

B

FIGURE 2

(A) Multiple sequence alignment of the AhygOrco-deduced amino acid sequence with the other Orco from seven Coleoptera insects (Ocom: Ophraella 
communa, Cbow: Colaphellus bowringi, Aqua: Ambrostoma quadriimpressum, Tmol: Tenebrio molitor, Rfer: Rhynchophorus ferrugineus, Sory: Sitophilus 
oryzae, Aver: Asbolus verrucosus). The transmembrane domains I–VII are indicated by red lines. (B) Prediction of transmembrane helices in the encoded 
amino acid sequence.
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domain, as predicted by the Orco amino acid sequence comparison and 
TMHMM program. In detail, the predicted results of the TMHMM 
procedure show that the topology of AhygOrco is consistent with the 
topology of Orco of other insects with 7 TMDs (Mombaerts, 1999; 
Butterwick et al., 2018). It is localized in the plasma membrane, with the 

N-terminal located inside the cell and the C-terminal located outside 
the cell. The Nin-Cout topology is used to form the unique Orco-OR 
complex structure, which is a heteromeric ligand-gated ion channel 
(Sato et al., 2008; Touhara, 2009; Wicher et al., 2009). Unlike other 
known families of ion channels, this receptor is not associated with G 
protein coupling (Smart et al., 2008). This ion channel is unique to 
insects to cope with the odor environment (Benton, 2006; Touhara and 
Vosshall, 2009). Through the phylogenetic tree of multiple insect Orco, 
we found seven insect Orco with high similarity to AhygOrco for amino 
acid sequence comparison. There are a large number of amino acid 
sequences in the C-terminal region that are identical to those of other 
insects. This finding is consistent with previous findings, and it is 
hypothesized that this high degree of sequence conservation corresponds 
to a specific function of this region (Krieger et  al., 2003; Malpel 
et al., 2008).

The expression of AhygOrco, in antennae was 200-fold higher than 
that in other parts of the body, it is not surprising in consideration of its 
functions in olfaction (Melo et al., 2004; Pitts et al., 2004; Zhang X. F.  
et al., 2021). In addition, the expression of AhygOrco in non-olfactory 
tissues suggests that they might be also involved in some non-olfactory 
chemosensory perception process, such as the Orco genes could mediate 
the activation of spermatozoa in Aedes aegypti (Pitts et al., 2014) and 
Cimex lectularius (Hansen et al., 2014).

RNAi technology is increasingly used to explore gene function and 
has a better knockdown efficiency in Coleoptera (Yan et al., 2017). In 
this experiment, we adopted the delivery method of injecting dsRNA 
into the abdomen of adults, and RT–qPCR analysis after treatment 
showed that the expression level of the AhygOrco gene was reduced by 
nearly 90% in both males and females (Bettencourt et  al., 2002; 
Tomoyasu and Denell, 2004; Huvenne and Smagghe, 2010). This shows 
that we  successfully and effectively silenced the AhygOrco gene 
by RNAi.

The results of behavioral tests showed that the experimental group 
injected with dsOrco significantly reduced its response to A. philoxeroides 
leaves compared to the control group for both females and males. In 
addition, dsOrco injection was found to significantly impair the mate 
detection ability of A. hygrophila. The above results provide evidence 
that repression of the AhygOrco gene significantly impairs the host and 
mate detection ability of A. hygrophila. This suggests that AhygOrco plays 
an extremely important role in the olfactory system, which is consistent 
with previous studies (Larsson et al., 2004; Jones et al., 2005; Fan et al., 
2015; Lin et al., 2015). After silencing Orco, A. hygrophila is still attracted 
to the host, and we  speculate that there are other pathways for 
A. hygrophila to sense the host, such as the IR pathway. Currently there 
are two possibilities regarding the relationship between the ORs pathway 
and the IR pathway. One is as Zhang et al. (2019) discovered that both 
Orco pathway and IRs pathway are involved in acid sensing. 
Alternatively, as in Helicoverpa armigera, defects in Orco pathway do not 
alter the insect’s response to acid (Fan et  al., 2022). An interesting 
question for future research is whether Orco pathway is involved in acid 
sensing in A. hygrophila along with IRs pathway.

According to the reaction time needed for A. hygrophila to detect 
its host, the experimental group injected with dsOrco took 
significantly more time than the control group. For such results, 
we  speculate that the action of A. hygrophila to find a host is 
performed by multiple senses together. Long range detection relies 
initially on olfaction (OR and IR pathways) but other cues such as 
visual ones can be equally involved. Silencing AhygOrco prolongs the 
time needed for A. hygrophila to detect its host, althought it does not 

TABLE 2 Percent identities between AhygOrco and Orco orthologs in other 
insect species.

Order Species GenBank 
acc. no.

Identity 
(%)

Coleoptera Ophraella communa QEE83332.1 92.69

Colaphellus bowringi ALR72547.1 89.56

Ambrostoma quadriimpressum AJF94638.2 88.52

Tenebrio molitor AJO62219.1 85.8

Tribolium castaneum XP_008194693.1 84.97

Rhynchophorus ferrugineus AOO35283.1 85.65

Sitophilus oryzae XP_030747553.1 85.21

Asbolus verrucosus RZC33009.1 85.8

Ips typographus QOI12086.1 82.54

Dendroctonus ponderosae XP_019768125.2 82.25

Harmonia axyridis XP_045467401.1 76.99

Coccinella septempunctata XP_044763441.1 75.57

Diptera Scaeva pyrastri AOE48068.1 69.96

Anopheles funestus AIO10777.1 69.04

Hermetia illucens XP_037921946.1 69.5

Aedes aegypti NP_001345400.1 69.25

Drosophila sechellia XP_002038406.2 67.15

Drosophila mauritiana XP_033166181.1 67.15

Drosophila eugracilis XP_017082279.1 66.94

Musca domestica AFH96944.1 68.91

Stomoxys calcitrans NP_001298174.1 68.7

Culex quinquefasciatus XP_038118600.1 67.85

Lepidoptera Eriocrania semipurpurella ATV96621.1 69.98

Lampronia capitella AWV67916.1 65.7

Manduca sexta CUQ99422.1 62.66

Agrotis segetum AGS41440.1 63.28

Planotortrix octo AJF23826.1 62.24

Lobesia botrana AXF48755.1 62.24

Neuroptera Chrysoperla carnea XP_044737916.1 74.39

Hymenoptera Cephus cinctus NP_001310774.1 66.8

Athalia rosae XP_012253637.2 66.8

Macrocentrus cingulum AGI62937.2 65.57

Orthoptera Oedaleus asiaticus QAB43939.1 61.68

Hemiptera Acyrthosiphon pisum AQS60741.1 56.52

Laodelphax striatellus AWO14314.1 60.75

Yemma signatus AXX83067.1 62.42

Apolygus lucorum AHC72290.1 61.38

Lygus lineolaris AFX73448.1 60.75

Lygus Hesperus AFX73447.1 60.75
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completely disable the ability to find its host. This is consistent with 
Balkenius’s study (Balkenius et al., 2009; Tateishi et al., 2022). These 
facts demonstrate that AhygOrco is a key receptor in A. hygrophila 
olfaction, that the OR pathway is important for insects to be able to 
carry out normal physiological life activities and that other sensory 
systems synergistic with olfaction should be  further defined in 
the future.
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FIGURE 3

Neighbor-joining tree of Orco orthologs from different insects. Bootstrap support values based on 1,000 replicates are indicated. The branch lengths are 
proportional to the percentage of sequence difference (scale bar, 0.05% difference). The AhygOrco sequence is shown in the red box. The Orco amino acid 
sequences of all insects are listed in Appendix B. GenBank accession numbers of the other sequences are listed in Table 2.
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FIGURE 4

Expression profiling of AhygOrco in different tissues of male and female beetles. All expression fold changes were related to the leg of the male. AN: 
antennae, H: heads without antennae, AB: abdomens, OV: female ovaries, TE: male testes, T: thoraxes, L: legs. Bars with the same letter are not significantly 
different from each other at the p < 0.05 level based on Tukey’s test. Each point represents the mean (n = 3) ± SEM. (F 11,24 = 9752.504, p < 0.001).

A B

C D

FIGURE 5

(A) Validation of AhygOrco transcript levels in dsOrco-injected and dsEGFP-injected A. hygrophila. The transcript level of AhygOrco was normalized to the 
RPL13a control gene. The values marked with different letters are significantly different based on Mann–Whitney U test (Male: Z = −1.964, p < 0.05; Female: 
Z = −1.964, p < 0.05). Data are presented as the mean (n = 3) ± SEM. (B) The percentage of individuals who successfully found A. philoxeroides within 2 min. 
(Mann–Whitney U test, Male: Z = −1.993, p < 0.05; Female: Z = −1.993, p < 0.05). (C) The percentage of individuals who successfully found a mate within 60 s. 
(Mann–Whitney U test, Z = −1.993, p < 0.05) Data are presented as the mean (n = 3) ± SEM. (D) The time these individuals spent searching. dsEGFP, insects 
injected with dsRNA against EGFP. dsOrco, insects injected with dsRNA against AhygOrco.
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