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Understanding trophic niche differentiation is critical for exploring interspecific 
competition and stable coexistence among morphologically similar sympatric 
species. Bats are an ideal model for studying trophic niche differentiation among 
species because of their high taxonomic and ecological diversities, as well as their 
special life history traits. Although many factors can affect bat trophic niches, few 
studies have combined multiple factors to investigate the influences on bat trophic 
niches. In this study, we  analyzed the summer diet and potential influencing 
factors of five sympatric rhinolophid bats in southwestern China: Rhinolophus 
macrotis, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus 
affinis, and Rhinolophus pusillus. All five species mainly fed on Lepidopteran 
and Dipteran insects, with a large trophic niche breadth for each species and 
a low degree of dietary overlap. With the exception of R. affinis and R. pusillus, 
significant differences in diet composition were detected among species, which 
indicated relatively low interspecific competition. Canonical correspondence 
analysis showed that both echolocation calls and body size significantly affected 
interspecific diet differentiation, while wing morphology and bite force had 
relatively weak effects. This study suggests that the combined effects of multiple 
factors may drive trophic niche differentiation among five rhinolophid bat species 
in the study area.
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Introduction

Niche theory predicts that the stable coexistence of morphologically and ecologically 
similar species in a community depends on resource partitioning to minimize competition 
(Hutchinson, 1959; Schoener, 1974; Chesson, 2000; Letten et al., 2017). In recent years, 
numerous studies have shown that trophic niche differentiation often plays a key role in 
shaping the structure of animal communities (Holt, 2009; Matthews et al., 2010; Codron 
et al., 2015; Novella-Fernandez et al., 2020), especially for sympatric closely related species. 
This knowledge can be  vital to the understanding of diet composition, interspecific 
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competition, and the mechanism of trophic niche differentiation 
(Salinas-Ramos et al., 2015; Arrizabalaga-Escudero et al., 2018).

Bats are a highly ecologically and species-diverse (> 1,400 
species) mammalian group with real flying capability (Kunz and 
Fenton, 2003; Ingala et al., 2018; Wilson and Mittermeier, 2019). 
Bats play an important role in global ecosystems, such as in 
pollination, seed dispersal, and pest control (Kunz and Fenton, 
2003; Kasso and Balakrishnan, 2013). Approximately 70% of bat 
species feed on insects (Kunz and Fenton, 2003) and often 
co-occur in large multi-species assemblages, with extensive 
variation in foraging strategies, echolocation calls, and wing 
morphology, making bats an ideal model for studying the 
differentiation of trophic niches in communities and the potential 
influencing factors.

Many investigations have demonstrated that differences in body 
size and wing morphology among insectivorous bats are closely 
associated with niche partitioning and can lead to prey differences 
(Norberg and Rayner, 1987; Saunders and Barclay, 1992; Ashrafi 
et al., 2011; Schoeman and Jacobs, 2011). Body size is known to 
be an important factor that directly influences the diet of bats in 
multi-species assemblages (Andreas et  al., 2013; Gnocchi et  al., 
2019). For instance, three coexisting rhinolophid bats (Rhinolophus 
hipposideros, Rhinolophus euryale, and Rhinolophus ferrumequinum) 
differ in body size, resulting in significant differences in the size of 
captured insects (Andreas et  al., 2013). Furthermore, wing 
morphology in bats significantly influences flight patterns and the 
choice of foraging areas. For example, due to minor differences in 
wing morphology, the sympatric sister species Rhinolophus hemelyi 
and R. euryale utilize different foraging areas and therefore capture 
different types of insects, resulting in trophic niche divergence 
(Salsamendi et al., 2012).

In addition to body size and wing morphology, different 
echolocation calls and bite forces may also lead to divergence in 
trophic niches among bat species. Echolocation calls are critical 
to navigation and foraging, and they exhibit great variability as 
adaptations to different environments, such as foraging habitats 
of varying complexity, different foraging strategies, and diverse 
food types (Bogdanowicz et al., 1999; Schoeman and Jacobs, 2003; 
Razgour et al., 2011; Arrizabalaga-Escudero et al., 2018; Pavey, 
2020). Bat species with different peak frequencies exhibit 
significant differences in activity areas and prey types, 
contributing to the full utilization of local food resources and 
promoting coexistence (Fullard et  al., 1991; Pavey, 2020). For 
example, six sympatric Jamaican bat species with different 
echolocation calls differed significantly in their foraging areas and 
diet composition, minimizing the degree of overlap in resource 
use between species (Emrich et al., 2014). The bite force of bats is 
a well-studied ecological trait that is closely related to feeding 
habits and can partly reflect the adaptation of bats to food 
hardness and prey handling (Nogueira et al., 2009; García-Herrera 
et al., 2021). Usually, bats that prefer to feed on hard-shelled prey, 

such as beetles, have robust skulls, while bats that feed mainly on 
soft-bodied insects, such as moths, have weaker skulls and bite 
forces (Aguirre et al., 2003; Krüger et al., 2014).

While the abovementioned factors may affect the trophic niche 
differentiation of insectivorous bats, few studies have examined 
the mechanisms of trophic niche differentiation in bats in terms 
of multiple factors (Biscardi et  al., 2007). To some extent, this 
research gap has limited the comprehensive understanding of the 
mechanisms of bat dietary differentiation and how they shape 
resource use across a community. Furthermore, studies that 
employ traditional morphological methods in the examination of 
guano typically have a lower resolution, such as ordinal or family-
level identification, which may overlook some prey that have been 
thoroughly digested, resulting in a biased view of bat feeding 
habits (Rolfe et  al., 2014). In recent years, high-throughput 
sequencing techniques have been widely used in dietary studies 
because of their efficiency and productivity, which can improve the 
taxonomic assignment to the species level through analyzing DNA 
residues in the guano and thus reveal more subtle niche 
differentiation (Leal et  al., 2018; Jusino et  al., 2019). High-
throughput sequencing has been used in many studies on trophic 
ecology and the differentiation of trophic niches in coexisting 
species (Gordon et  al., 2019; Novella-Fernandez et  al., 2020; 
Andriollo et al., 2021).

This study investigated the trophic niche differentiation of five 
sympatric rhinolophid bats, including Rhinolophus macrotis, 
Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus 
affinis, and Rhinolophus pusillus, and determined the relative 
importance of body size, wing morphology, echolocation calls, and 
bite force to the trophic niche differentiation of these species. First, 
high-throughput sequencing technology was used to analyze the 
diets of the five rhinolophid bats to reveal the diet composition and 
the niche overlap relationships among species. Second, body size, 
wing morphology, echolocation calls, and bite force were combined 
to determine their effects on trophic niches. This study contributes 
to the understanding of the trophic niche differentiation in 
sympatric bats and helps to improve the knowledge of the 
mechanisms of coexistence among bats.

Materials and methods

Study site and species

The sampling site, Xianren Cave (102°20′E, 24°30′N), is located 
on the Yunnan-Guizhou Plateau at an altitude of 2049 m in Yunnan 
Province, China. The site has a subtropical climate with an average 
annual temperature of 15.5°C and an average annual rainfall of 
973.5 mm, with precipitation mainly concentrated in June–October. 
The vegetation surrounding the cave mainly included Juglans 
catanensis, Pinus yunnanensis furnace, Cryptomeria fortunei, and 
Phyllostachys sulphurea, as well as agricultural fields and villages, all 
of which provided a good foraging habitat for bats. Preliminary 
monitoring revealed that five rhinolophid bat species coexisted 
stably in the cave, including R. macrotis (about 50 individuals), 
R. osgoodi (about 40 individuals), R. ferrumequinum (about 20 
individuals), R. affinis (about 20 individuals), and R. pusillus (about 
20 individuals) (unpublished data).

Abbreviations: R. m, Rhinolophus macrotis; R. o, Rhinolophus osgoodi; R. f, 

Rhinolophus ferrumequinum; R. a, Rhinolophus affinis; R. p, Rhinolophus pusillus; 

OTUs, operational taxonomic units; PF, peak frequency; Fmin, minimum frequency; 

Fmax, maximum frequency; POO, percent of occurrence; RRA, relative read 

abundance.
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Sample collection

To minimize the disturbance to lactating bats, we chose to conduct 
the study in August–September 2017 and 2018, from 21:00 to 4:00 the 
following morning. Bats were captured with mist nets at the entrance 
of the Xianren cave after they returned to the cave. Species and sex 
were identified based on external morphological characteristics, and 
whether bats were adults or juveniles was judged based on epiphyseal 
fusions (Stebbings, 1968). Once juveniles were identified, they were 
immediately released in situ. Captured bats were placed singly in 
sterilized kraft paper bags for 2 h while droppings were collected. The 
bags were checked frequently to ensure the freshness of the droppings. 
The droppings were placed into lyophilized tubes containing RNAlater 
(RNA-EZ Reagents RNA-Be-Locked A, Sangon Biotech, Shanghai, 
China) using sterilized forceps. At least five droppings per bat were 
collected, returned to the laboratory, and stored at −80°C for 
DNA extraction.

Collection of data on morphology, bite 
force, and echolocation calls

After the guano was collected, the forearm length of each bat was 
measured using a digital caliper (TESA-CAL IP67, Tesa Technology, 
Renens, Switzerland, 0.01 mm) and body mass was determined with 
an electronic balance (ProScale LC-50, Accurate Technology, Inc., 
Asheville, NC, United States, 0.01 g). The wing morphology of each 
bat was drawn with reference to Thabah’s method (Thabah et  al., 
2007). The bite force of the molars was recorded five times for each bat 
following the method of Freeman and Lemen (2008) using a bite force 
measurement system (Nanjing Bioinspired Intelligent Technology Co., 
Ltd., Nanjing, China) with an accuracy of 0.01 N. The system includes 
a sensor (NBIT-S1-100NHL-001) and data acquisition system (NBIT-
Dus-2404A), and was used following the manufacturer’s protocol. The 
maximum bite force was taken as the bat’s bite force value. The 
echolocation calls were recorded using an ultrasound recorder 
(UltraSound Gate 116, Avisoft Bioacoustics, Berlin, Germany) when 
the bats were resting in a temporary laboratory (5 m × 4 m × 3 m), with 
the recording microphone aimed at the resting bat’s head at a distance 
of 30 cm. The sampling frequency was 375 kHz, and the resolution was 
16 bits. The data were input into a laptop computer and analyzed using 
Avisoft SASLab Pro software. Each bat was recorded for at least 1 min 
(Jacobs et  al., 2007; Li et  al., 2007). After all measurements and 
acoustic recordings were finished, the bats were released in situ. A 
total of 98 bats were captured in the field, including 36 R. macrotis (18 
females and 18 males), 29 R. osgoodi (21 females and eight males), 11 
R. ferrumequinum (six females and five males), 12 R. affinis (six 
females and six males), and 10 R. pusillus (two females and 
eight males).

DNA extraction, PCR amplification, and 
sequencing

Genomic DNA was extracted from 200-mg guano per bat using 
the E.Z.N.A™ Mag-Bind Soil DNA Kit (OMEGA Bio-Tek, 
Norcross, GA, United  States) according to the manufacturer’s 
instructions. After DNA extraction, DNA integrity was tested using 

2% agarose gels. A 225-bp fragment of the cytochrome c oxidase 
subunit I  (COI) was amplified using the primers LCO-1490 
(5′-GGTCAACAAATCATAAAGATATTGG-3′) and ZBJ-ArtR2c 
(5′-WACTAATCAATTWCCAAATCCTCC-3′) (Zeale et al., 2011; 
Chang et al., 2019). Genomic DNA was accurately quantified using 
the Qubit 2.0 DNA Assay Kit (Life Technologies, Thermo Fisher 
Scientific, Waltham, MA, United States) to determine the amount of 
DNA added to the PCR reaction. The first step of PCR amplification 
reaction was conducted in a final volume of 30 μl containing 15 μl 
2 × Taq Master Mix, 10 ng of genomic DNA, 1 μl primer F, and 1 μl 
primer R, with water added to reach a volume of 30 μl. The conditions 
for PCR were as follows: 94°C for 3 min; five cycles at 94°C for 30 s, 
45°C for 20 s, and 65°C for 30 s; 20 cycles at 94°C for 20 s, 55°C for 20 s, 
and 72°C for 30 s; and a final extension at 72°C for 5 min. After the 
first step, the PCR products were checked using 2% agarose gel. The 
second step of the PCR amplification reaction was conducted in a final 
volume of 30 μl containing 15 μl 2 × Taq Master Mix, 10 ng of genomic 
DNA (from the first step), 1 μl primer F, 1 μl primer R, and water 
added to reach a volume of 30 μl. The PCR amplification reaction 
conditions were as follows: 95°C for 3 min; five cycles at 94°C for 20 s, 
55°C for 20 s, and 72°C for 30 s; and a final extension at 72°C for 
5 min. The PCR products were purified using Agencourt AMPure XP 
(Beckman Coulter, United States), and the DNA concentration of each 
sample quantified using the Qubit 2.0 DNA Assay Kit (Life 
Technologies, Thermo Fisher Scientific, Waltham, MA, United States) 
to normalize samples according to the manufacturer’s protocol. The 
final products were sequenced using the Illumina Miseq platform 
(2 × 300 bp) at Sangon Biotech (Shanghai, China).

Sequencing data analysis

Primers and adaptors were removed from the raw sequences using 
cutadapt v1.2.1 (Martin, 2011), and paired-end reads were merged 
using PEAR v0.9.6 (Zhang et  al., 2014) based on barcode tags to 
distinguish samples. Finally, the data files were quality-filtered using 
Prinseq v0.20.4 (Schmieder and Edwards, 2011). The operational 
taxonomic units (OTUs) were clustered using Usearch after the 
singletons and chimeras were removed (Edgar, 2010). All optimized 
sequences were mapped to representative sequences, and OTU tables 
with a 97% similarity threshold were generated. The samples with 
fewer than 12,000 sequences were discarded, and the data were 
rarefied to 12,000 sequences per sample. Following this standard, six 
individuals with fewer than 12,000 sequences were removed (three 
R. macrotis, one R. osgoodi, one R. ferrumequinum, and one R. affinis). 
Finally, to minimize the effect of sequencing errors, the OTUs 
representing <0.1% of the normalized sequences for each sample were 
removed to prevent the generation of potentially erroneous results 
(Bokulich et al., 2013). Representative sequences of each OTU were 
compared with the reference sequences in the Barcode of Life 
Database (BOLD1) and the Genbank database2 to obtain taxonomic 
information. OTUs that did not match any taxonomic information 
were excluded. The identification criteria were based on slightly 

1 www.boldsystems.org/

2 http://www.ncbi.nlm.nih.gov/GenBank
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modified “strict” and “best” matching methods (Ross et  al., 2008; 
Razgour et al., 2011).

Measurement of wing parameters and 
echolocation calls

After scanning the mapped wing shape, the wing span and wing 
area of each individual were measured using AutoCAD 2021 
(Autodesk, United States), and the aspect ratio and wing loading were 
calculated for each individual (Norberg and Rayner, 1987; Salsamendi 
et al., 2012). For each individual bat, after removing the first and last 
syllables of each echolocation call sequence, 15 syllables with a signal-
to-noise ratio higher than 40 dB were randomly selected. Due to the 
special cochlear structure and Doppler-shift compensation of 
rhinolophid bats during flight, bats are able to actively adjust their call 
frequency to ensure the dominant frequency keep stable (Russell and 
Kossl, 1999; Metzner et al., 2002; Davies et al., 2013). Therefore, three 
acoustic parameters, including peak frequency (PF), minimum 
frequency (Fmin), and maximum frequency (Fmax) were analyzed on 
the power spectrogram and oscillogram with Avisoft-SASLab Pro 
version 5.2.9 (Avisoft Bioacoustics, Berlin, Germany) based on a 1,024 
FFT, 100% frame size, and 93.75% temporal overlap.

Statistical analysis

We quantified the diet composition using the percent of 
occurrence (POO) and relative read abundance (RRA) at the order 
level (Deagle et al., 2018). Chi-square tests (SPSS 22.0) and Kruskal–
Wallis tests (R 4.1.1) with a post hoc Dunn test were used to test for 
differences in the prey orders consumed between bat species. The 
dietary niche breadth of each bat species was calculated using a 
standardized Levins’ index (BA) (Razgour et  al., 2011), the diet 
composition overlap between bat species was measured using Pianka’s 
measure of niche overlap (Ojk) in the “EcoSimR” package in R (Gotelli 
et al., 2015), and the “qgraph” package was used to generate a network 
graph of dietary overlap between species. The ordination of samples 
was visualized depending on dietary composition at the OTU level 
with non-metric multidimensional scaling (NMDS), and an analysis 
of similarities (ANOSIM) test was used to determine whether the 
Bray–Curtis distance of dietary composition at the OTU level was 
greater between than within bat species (Oksanen et al., 2020). The 
ANOSIM test generates a global R statistic that provides a measure of 
the magnitude of difference among groups, with a range between −1 
and + 1. When R > 0, the difference between groups was greater than 
the difference within each group. If the test results were significantly 
different overall, then a pairwise analysis between species was 
performed, and the p-values were corrected with Bonferroni 
correction. The differences between species were calculated for 
forearm length, body weight, aspect ratio, wing loading, bite force, and 
echolocation call parameters using one-way ANOVA or 
non-parametric Kruskal–Wallis tests depending on the test of normal 
distributions or the homogeneity of variances according to Shapiro 
and Bartlett tests in the package stats. The p-values for multiple 
comparisons were corrected using Bonferroni correction. All the data 
are presented as the means ± SD. Spearman correlation analysis was 
conducted to test the relationship between bite force and weight. To 

determine the difference in the alpha diversity of the diet among five 
rhinolophid bats at the OTU level, Kruskal–Wallis tests were used to 
compare the values of the Shannon–Wiener diversity and Gini–
Simpson diversity with non-normal distributions in the “vegan” 
package. The effects of body size, wing morphology, bite force, and 
echolocation call parameters on the diet composition of bats were 
investigated using Canonical correspondence analysis (CCA) with the 
“vegan” package. The response variable (dietary species abundance 
data) and explanatory variables (body size, wing morphology, bite 
force, and echolocation calls) were Hellinger transformed and 
logarithmically transformed, respectively. The variance inflation 
factors (VIF) were calculated to identify the collinearity between the 
explanatory variables until the values of all factors were less than 10. 
To distinguish the contribution of a single variable, the relative 
importance of each influencing factor independently accounting for 
the variations in diet composition was quantified by applying a 
hierarchical partitioning analysis using the “rdacca.hp” package (Lai 
et al., 2022). All statistical analyzes and visualizations were conducted 
in R 4.1.1 (R Core Team, 2021).

Results

Sequencing data and dietary pattern

A total of 7.64 million raw sequences were obtained, with an 
average of 83,061 sequences per sample. Following quality control, 
6.19 million sequences were obtained, with an average of 67,303 
sequences per sample. After deleting OTUs that did not match the 
taxonomic information, 1,031 OTUs were obtained through 
comparison with the BOLD and Genbank databases, all of which were 
from the Arthropoda phylum. Among all OTUs, 83.41% were 
identified at the order level, 45.59% at the family level, 19.79% at the 
genus level, and 14.06% at the species level (Supplementary Table S1). 
Insects comprised the majority (98.81%) of phylum detected. 
Lepidoptera (58.65%) and Diptera (21.72%) comprised the majority 
of all 15 orders detected. Noctuidae (20.21%), Geometridae (14.04%), 
Erebidae (10.00%) and Tortricidae (4.68%) comprised the majority of 
families detected. Some differences were detected in the diet 
composition among bat species. The diets of R. macrotis and 
R. ferrumequinum were mainly composed of Lepidoptera (R. macrotis: 
96.31%, R. ferrumequinum: 89.88%). The diet of R. osgoodi consisted 
mainly of Lepidoptera (73.49%) and Diptera (17.28%). The diet of 
R. affinis mainly consisted of Diptera (59.39%) and Lepidoptera 
(26.64%). The diet of R. pusillus mainly consisted of Diptera (75.13%) 
and Coleoptera (15.40%).

Dietary overlap and resource partitioning

At the OTU level, no significant differences were found in the 
Shannon–Wiener diversity or Gini–Simpson diversity between five 
rhinolophid bats (p = 0.94 and p = 0.91, respectively; 
Supplementary Figure S1). Overall, low levels of dietary overlap were 
found among bat species, with the greatest overlap value between 
R. affinis and R. pusillus (0.33), and the lowest value between 
R. macrotis and R. affinis (0.01; Table  1; Figure  1). The Levins’ 
standardized measure of niche breadth showed that dietary niche 
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breadth ranged from 0.42 to 0.76, with the largest value for 
R. ferrumequinum and the smallest for R. macrotis (Table 1). The RRA 
analysis of the diet composition of each bat species at the order level 
showed significant differences in the consumption of Coleoptera, 
Diptera, Lepidoptera, Hemiptera, and Neuroptera (Kruskal–Wallis 
test, p < 0.05; Table 2; Figure 2). In addition, analysis of POO at the 
order level showed significant differences in the consumption of 
Coleoptera, Diptera, Hemiptera, and Neuroptera (Chi-squared test, 
p < 0.05; Table 2; Figure 2).

Interspecific differences in body size, wing 
morphology, bite force, and echolocation 
calls

Body size differed greatly among bat species (Table  3; 
Supplementary Table S2), with the largest body weight and forearm 
length found in R. ferrumequinum (body weight: 18.58 ± 0.97 g; 

forearm length: 61.17 ± 0.40 mm) and the smallest found in R. pusillus 
(body weight: 4.90 ± 0.34 g; forearm length: 39.18 ± 1.21 mm). The 
maximum bite force was also found in R. ferrumequinum 
(5.65 ± 0.51 N), and the minimum was found in R. pusillus 
(1.02 ± 0.14 N). A significant positive correlation was detected 
between bite force and the body weight of bats (Spearman r = 0.87, 
p < 0.001). After removing the effect of body weight, there was 
still a significant difference between the four paired groups 
(R. ferrumequinum–R. macrotis, R. ferrumequinum–R. osgoodi, 
R. ferrumequinum–R. pusillus, and R. affinus–R. osgoodi) (Kruskal–
Wallis test, p < 0.05; Table 3; Supplementary Table S2). R. macrotis had 
the lowest peak frequency (57.88 ± 0.86 kHz) and R. pusillus had the 
highest peak frequency (101.92 ± 1.49 kHz; Table  3; Figure  3). 
Significant differences were detected between bat species in body 
weight, forearm length, wing loading, bite force, peak frequency, 
minimum frequency, and maximum frequency (Kruskal–Wallis test, 
p < 0.001), as well as in the aspect ratio among species (one-way 
ANOVA, F = 5.16, p < 0.001; Table 3; Supplementary Table S2).

TABLE 1 Breadth of trophic niches and dietary overlap between five rhinolophid bats. BA: standardized Levins’ measure of niche breadth. For the dietary 
overlap index, values range from 0 (no dietary overlap) to 1 (full dietary overlap).

R. affinis R. ferrumequinum R. macrotis R. osgoodi R. pusillus

R. ferrumequinum 0.21

R. macrotis 0.01 0.03

R. osgoodi 0.16 0.07 0.32

R. pusillus 0.33 0.08 0.03 0.25

BA 0.75 0.76 0.42 0.65 0.68

FIGURE 1

Network of five rhinolophid bat species. Each filled circle represents an individual, and the thicker the connection between circles, the higher dietary 
overlap between the individuals.
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Factors influencing trophic niche 
differentiation

The NMDS ordination of diet composition between groups of five 
rhinolophid bats resulted in a two-dimensional solution with final 
stress of 0.103. The samples obtained from the five rhinolophid bats 
were spread out in the diagram, and the ANOSIM analysis showed 
significant differences in dietary composition in all pairwise 
comparisons (Figure 4A; r = 0.17, p = 0.001), except between R. affinis 
and R. pusillus (r = 0.09, p = 0.07). Because all factors had VIF values 
of less than 10 (Table 4), all factors were added to the model. The 
results of the CCA showed a significant relationship between all 
factors and diet data (adjusted r2 = 1.63%, p = 0.001; Table 4; Figure 4B), 
and the results of the permutations tests for each influencing factor 
individually showed that body weight, forearm length, peak frequency 
were all significantly correlated with dietary composition (p < 0.05; 
Table 4; Figure 4B). Hierarchical partitioning analysis showed that 
echolocation calls (peak frequency) were the most important factors, 
followed by body size factors (forearm length and body weight), while 
parameters such as wing loading and bite force had no significant 
effect on the diet composition structure for each bat species (Table 4; 
Figure 4B).

Discussion

Diet composition and trophic niche 
overlap

All five rhinolophid bats investigated in this study relied on 
Lepidoptera as their main diet type. This finding was similar to the 
conclusions of previous studies conducted in summer 
[R. ferrumequinum (Jin et al., 2005; Andreas et al., 2013); R. affinis (Ye 
et al., 2009); R. pusillus (Wei et al., 2006); R. osgoodi and R. macrotis 
(Shi et  al., 2009)]. However, there are some differences between 
previous findings and the current study. For example, studies on 
R. affinis and R. pusillus showed that Coleoptera were an important 
diet component (R. affinis: 39.51%, R. pusillus: 41.08%; Wei et al., 
2006; Ye et al., 2009), while the present study found that Coleoptera 
make up only a relatively small part of the diet (R. affinis: 5.14%, 
R. pusillus: 15.40%), which may be due to the difference in available 
insect resources at different study sites or different research methods 
used. These insects provide a substantial, high-quality food source for 
bats that can ensure that their nutritional needs are met (Clare et al., 
2011; Emrich et al., 2014; Rolfe et al., 2014; Chang et al., 2019). The 
present study used high-throughput sequencing to identify the species 
of insect residues remaining in bat guano, yielding a total of 145 
identified insect species. This method has a high resolution compared 
with traditional guano analysis methods. For instance, this study 
detected small, soft-bodied Chironomidae in bat guano, which are 
easily overlooked in traditional guano analysis methods (Krüger 
et al., 2014).

Trophic niche differentiation is an effective way for sympatric bats 
to reduce competition for food resources and thus promote 
coexistence (Alley, 1982; Letten et  al., 2017), and it has been 
demonstrated in numerous studies, such as Pteronotus macleayii and 
Mormoops blainvillii in Jamaica, and M. blainvillei, Pteronotus 
quadridens, and Pteronotus parnellii portoricensis on the island of T
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Puerto Rico (Rolfe and Kurta, 2012; Emrich et al., 2014). In this study, 
all five rhinolophid bats had wide trophic niche breadth (0.42–0.76) 
and low overlap in trophic niche among species (0.01–0.33). This may 
have been due to the fact that sampling was conducted during the 
rainy season, when insects were abundant in our studied region 
(Zhang et  al., 2017). However, significant differences on food 
composition among species (Figure  4A) could also suggest that 
morphological and acoustic differences shape their trophic 
relationships. In addition, according to optimal foraging theory, bats 
can prey upon insects based on their phenotypic characteristics; for 
example, bats with different peak frequencies will prey upon insects 
with different body sizes (Pyke et al., 1977; Perry and Pianka, 1997; 
Mello et al., 2004; Rollinson et al., 2013). In fact, significant differences 
were found in the insects captured by bats at the order level, such as 
Lepidoptera, which were the most abundant in the diet compositions 
of R. macrotis, R. osgoodi, and R. ferrumequinum. This may be because 
Lepidoptera are frequently a primary food resource of insectivorous 
bats due to their high abundance and wide global distribution (Hebert 
et  al., 2003). This finding may also be  due to the large size of 
lepidopterans, which have soft bodies and contain more energy, 

making them preferred prey for many predators (Krüger et al., 2014; 
Wray et al., 2021).

Factors influencing trophic niche 
differentiation

It has been shown that the trophic niche differentiation and stable 
coexistence of sympatric bats are influenced by many factors. In this 
study, differences were detected in the echolocation calls, body size, 
wing morphology, and bite force among five rhinolophid bat species. 
These differences may affect the flight patterns, foraging areas, and 
prey sizes of bats, and ultimately affect bat diet differentiation 
(Schoener, 1971; Norberg and Rayner, 1987; Mancina et al., 2012; 
Emrich et al., 2014).

Bats used echolocation calls to locate insects during foraging, and 
the parameters of echolocation calls, such as peak frequency, can 
significantly affect bat foraging habitats and prey types (Fullard et al., 
1991; Bogdanowicz et al., 1997; Andreas et al., 2012; Gordon et al., 
2019). In the present study, the results revealed that the peak 

FIGURE 2

Relative read abundance (RRA) and percent of occurrence (POO) of diet composition at the order level in five rhinolophid bats.

TABLE 3 Results of Kruskal–Wallis (all factors except aspect ratio) and analysis of variance (ANOVA) (aspect ratio) tests examining the variation 
(mean ± SD) of influencing factors among five bat species. The p-values were adjusted with the Bonferroni correction method for multiple comparisons.

R. macrotis 
n = 33

R. osgoodi 
n = 28

R. ferrumequinum 
n = 10

R. affinis 
n = 11

R. pusillus 
n = 10

Chi-
squared/F

p

Weight (g) 6.47 ± 0.66 6.24 ± 0.53 18.58 ± 0.97 13.41 ± 0.92 4.90 ± 0.34 64.91 <0.001

Forearm (mm) 44.12 ± 1.84 43.79 ± 1.17 61.17 ± 0.40 51.86 ± 0.99 39.18 ± 1.21 63.89 <0.001

Aspect ratio 6.03 ± 0.34 6.15 ± 0.40 6.63 ± 0.43 6.31 ± 0.24 6.08 ± 0.44 5.16 <0.001

Wing loading (N/m2) 5.32 ± 0.37 5.19 ± 0.33 8.48 ± 0.48 7.49 ± 0.45 5.06 ± 0.26 50.85 <0.001

Bite force (N) 1.50 ± 0.57 1.41 ± 0.62 5.65 ± 0.51 3.76 ± 0.67 1.02 ± 0.14 53.26 <0.001

Peak frequency (kHz) 57.88 ± 0.86 91.27 ± 0.75 72.96 ± 0.43 82.92 ± 1.33 101.92 ± 1.49 53.59 <0.001

Fmin (kHz) 57.49 ± 0.87 90.86 ± 0.74 72.60 ± 0.42 82.51 ± 1.31 101.54 ± 1.50 83.87 <0.001

Fmax (kHz) 59.00 ± 0.87 92.39 ± 0.75 74.07 ± 0.43 84.04 ± 1.33 103.02 ± 1.49 83.86 <0.001
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frequency is a significant variance of all explanatory variables. This 
suggests that the echolocation calls of different bat species have an 
important influence on their dietary habits, similar to the findings of 
a previous study (Andreas et al., 2012). In general, bats with higher 
peak frequencies (short wavelengths) have smaller body size and fly 
at slower speeds, although they are more maneuverable than larger 
bats. These smaller bats are well-suited for foraging in dense spaces, 
and high-frequency echolocation calls help the bats move quickly and 
locate insects in cluttered environments (Jacobs et al., 2007). The prey 
detection hypothesis suggests that differences in echolocation 
frequencies may cause differentiation in prey sizes and that high-
frequency calls are more sensitive to detecting smaller prey items 
(Barclay and Brigham, 1991; Jones, 1997). For example, R. euryale 

and R. mehelyi often exhibit sympatric distribution and are 
acoustically similar (R. euryale: 104.4 kHz; R. mehelyi: 106.8 kHz), but 
R. euryale tends to consume larger moths, while R. mehelyi prefers 
smaller moths (Salsamendi et al., 2006; Arrizabalaga-Escudero et al., 
2018). A study on two cryptic species of pipistrelle bats found that 
10 kHz difference in echolocation call frequency was not sufficient to 
influence the target strengths of the main prey types (Jones and 
Barlow, 2001). However, the large range of peak frequencies (57.88–
101.92 kHz) detected among the bats in this study may have 
contributed to the differences in diet composition. For instance, in a 
previous study (Shi et al., 2009) conducted in the same cave as our 
study, R. macrotis had lower peak frequencies (~58 kHz) and a higher 
consumption of larger insects than coexisting R. lepidus (later 

FIGURE 3

Sound envelopes (top) and acoustic spectrograms (bottom) corresponding to the peak frequencies of echolocation calls of five rhinolophid bats.

A B

FIGURE 4

(A) Non-metric multidimensional scaling (NMDS) of the diet composition of five bat species based on the operational taxonomic unit (OTU) level. Each 
point represents an individual. (B) Canonical correspondence analysis (CCA) plot showing the correlation between diet composition and the body size, 
wing morphology, bite force, and echolocation calls of five bat species. Each point in the graph represents an individual, and the arrows indicate 
different variables, where the longer the ray, the greater the influence of that variable, and the angles between arrows represent the degree of 
correlation between them (acute angle: positive correlation; obtuse angle: negative correlation; right angle: no correlation).
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identified as R. osgoodi, ~91 kHz) based on the measurement of prey 
size (Shi et al., 2009).

The morphological characteristics of bats are an important factor 
influencing the trophic niche differentiation of sympatric species. To 
some extent, morphological differences can reflect functional 
differences, which in turn affect the trophic niches of bat species (Pyke 
et al., 1977; Norberg and Rayner, 1987; Barclay and Brigham, 1991; 
Gnocchi et al., 2019). In the present study, body weight and forearm 
length were greater in R. ferrumequinum and R. affinis compared with 
the other species, with no significant difference between these two 
species and a significant difference from the remaining three species. 
The result of hierarchical partitioning analysis implies that forearm 
length and body weight play important roles in determining the 
trophic niche of sympatric bats. For instance, R. ferrumequinum and 
R. pusillus with different body sizes have significant differences in 
predation on Dipteran and Lepidopteran insects. Salsamendi et al. 
(2012) found that the niche partitioning of two sympatric sibling 
rhinolophid bats, R. euryale and R. mehelyi, was due to their 
differences in wing morphology, although their echolocation calls are 
almost identical. Andreas et al. (2013) suggested that the body size of 
three occurring horseshoe bats significantly affected the size of the 
prey. This suggests that, in addition to differences in echolocation 
calls, the body size of coexisting bats plays an important role in the 
differentiation of trophic niches, which is consistent with the 
predictions of morphological ecology (Findley and Black, 1983; Jacobs 
and Barclay, 2009).

Wing loading is an important parameter used to measure the 
flight ability of bats, and species with different wing morphology adapt 
to the local environment and food resources, allowing the more 
efficient use of food and habitat resources (Norberg and Rayner, 1987). 
In general, bats with high wing loading fly fast and forage in more 
open environments (Ye et al., 2009; Andreas et al., 2012; Mancina 
et  al., 2012; Salsamendi et  al., 2012). In this study, wing loading 
explained 15.0% of the diet composition, implying that wing loading 
had influence on inter-species trophic niche differentiation in bats. 
Not all pairwise comparisons of wing loading among bat species have 
shown significant differences, which may dilute the role of wing 
loading on interspecific trophic niche differentiation in bats. 
Furthermore, the bite force of bats is closely related to prey type, is 
influenced by factors including bat body weight and skull morphology, 
and is an important factor influencing the differentiation of trophic 
ecological of bats (Freeman and Lemen, 2010; García-Herrera et al., 

2021). The bite force of bats in this study only explained a small part 
of diet composition, but was significantly correlated with body weight. 
This was similar to previous studies, in which larger bat species were 
generally found to have strong jaw and bite muscles that could 
produce greater bite force (Aguirre et al., 2003; Herrel et al., 2005; 
Freeman and Lemen, 2008). However, R. pusillus in this study 
consumed more Coleoptera than other species (RRA: 0.15; POO: 
0.22) with small body size and low bite force, implying that bite force 
was not the main factor determining differences in the trophic ecology 
of bats. Because of its particularity (flight, nocturnal activity, 
migration, and social life), the trophic niche of a given bat species is 
dynamically affected by many factors, such as the spatial and temporal 
variation of food resources and environmental condition, as well as 
body condition, so the main factors affecting diet composition may 
change. It is difficult for a single factor to determine the trophic niche 
differentiation of bat species, and studying single factors alone may 
negatively impact our comprehensive understanding of the 
mechanisms of species coexistence in communities (Vesterinen et al., 
2018; Gordon et  al., 2019; Novella-Fernandez et  al., 2020; Wray 
et al., 2021).

The CCA showed a low total explanation in this study. This 
pattern is more typical in ecological data (<10% of the variance 
explained) (ter Braak and Verdonschot, 1995) due to the nature of the 
presence–absence data type and the data including a large number of 
zeros, as was the case in this study. The dropping sample obtained 
from a single individual would not contain the full range of prey at the 
order level, but only one or a few arthropod orders. Although second-
generation sequencing methods were used to obtain OTUs for species 
identification, this process generated more zeros in the data than 
traditional guano analysis methods.

In summary, this study investigated the trophic ecology and 
the effects of body size, wing morphology, bite force, and 
echolocation calls on the diet composition of five sympatric 
rhinolophid bats. The results revealed that all bats occupied a wide 
breadth of trophic niches in summer and that there was a low 
degree of trophic niche overlap between species. Significant 
differences in diet composition between species (except for 
between R. affinis and R. pusillus) were probably caused by the 
combined effect of the factors included in the study. CCA showed 
that body size and echolocation calls are the main factors that 
influenced the diet composition of bat communities, causing 
differentiation in trophic ecological niches among species, 

TABLE 4 Hierarchical partitioning of the relative importance of each influencing factor relative to the total explanatory variables.

Variables VIF Unique Average.shared Individual 
importance

I.perc (%) p - value

Weight 0.46149 0.0005 0.0022 0.0027 16.88 0.001

Forearm 0.16788 0.0007 0.0021 0.0028 17.50 0.012

Peak frequency 0.00005 −0.001 0.0029 0.0019 11.88 0.001

Fmin 0.00001 −0.0004 0.0026 0.0022 13.75 0.611

Fmax 0.00003 0.0000 0.0023 0.0023 14.37 0.570

Aspect ratio 1.31351 −0.0003 0.0002 −0.0001 −0.62 0.590

Wing loading 0.13396 −0.0008 0.0016 0.0024 15.00 0.153

Bite force 8.27648 −0.0006 0.0015 0.0021 13.12 0.322

Total 0.0154 0.0163
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suggesting that the combined effects of multiple factors influenced 
the stability of bat communities.
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