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In order to learn about broad scale ecological patterns, data from large-scale

surveysmust allow us to either estimate the correlations between the environment

and an outcome and/or accurately predict ecological patterns. An important part

of data collection is the sampling e�ort used to collect observations, which we

decompose into two quantities: the number of observations or plots (n) and

the per-observation/plot e�ort (E; e.g., area per plot). If we want to understand

the relationships between predictors and a response variable, then lower model

parameter uncertainty is desirable. If the goal is to predict a response variable, then

lower prediction error is preferable. We aim to learn if and when aggregating data

can help attain these goals. We find that a small sample size coupled with large

observation e�ort coupled (few large) can yield better predictions when compared

to a large number of observations with low observation e�ort (many small). We

also show that the combination of the two values (n and E), rather than one alone,

has an impact on parameter uncertainty. In an application to Forest Inventory

and Analysis (FIA) data, we model the tree density of selected species at various

amounts of aggregation using linear regression in order to compare the findings

from simulated data to real data. The application supports the theoretical findings

that increasing observational e�ort through aggregation can lead to improved

predictions, conditional on the thoughtful aggregation of the observational plots.

In particular, aggregations over extremely large and variable covariate space may

lead to poor prediction and high parameter uncertainty. Analyses of large-range

data can improve with aggregation, with implications for both model evaluation

and sampling design: testing model prediction accuracy without an underlying

knowledge of the datasets and the scale at which predictor variables operate can

obscure meaningful results.

KEYWORDS

aggregation, clustering, Forest Inventory and Analysis (FIA), parameter uncertainty,

prediction performance, sample design, sampling e�ort

1. Introduction

In order to understand and predict ecological processes, researchers often draw on data

from regional sampling networks. However, when using these data, it is common to combine

data sets or ask questions different from those for which the sampling was originally designed

(Tinkham et al., 2018); thus, the analysis may need to adjust for differences in scale and focus
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between the sampling design and analysis goals. Similarly,

investigators and institutions confront several design decisions

with implications for further data analysis when creating regional

sampling networks (Gregoire and Valentine, 2007). including and

especially the size and number of plots to use to sufficiently sample

the underlying variation relevant to ecological or bio-geographic

patterns of interest (Zeide, 1980; Wang et al., 2001, 2008).

As part of effectively designing new studies or asking new

questions of existing datasets, we must better understand the

impact of a critical component of the process: the total sampling

effort used to collect observations. In particular, we seek to learn

how exploratory and predictive modeling goals are affected by

the total sampling effort used to collect the data. To this end, we

decompose the sampling effort of a given study into two quantities:

the number of observations (n) and the effort per observation (E).

We demonstrate that, when looking at broad ecological patterns,

analyses and potentially sampling design need to balance the trade-

offs of using/collecting data from few, intensely-sampled locations

vs. a larger number of locations sampled with less intensity.

Throughout this paper, we refer to this trade-off of few, large

observation efforts vs. many, small observation efforts as FLvMS.

FLvMS decisions broadly depend upon the geographic scale

of the processes and patterns that the network aims to monitor

or understand. When we consider scale, we mean questions of

geographic focus, for example, the size of a geographic region

being sampled or the area over which the variation driven by

an ecological process operates. Large observation plots (e.g.,

ForestGeo Anderson-Teixeira et al., 2015) can provide detailed

information about habitats and communities, such as increasing

probability of capturing rare events (e.g., Barnett and Stohlgren,

2003). This benefit comes with the cost of observing only a limited

set of potential sites or habitats. Alternatively, numerous small

plots can extend the range of observed ecological variation, but

with limited information per plot. Current monitoring designs

do attempt to balance information at local and regional scales

under the inevitable constraint of resources. While ideas related to

FLvMS are mentioned in recent efforts to guide prediction from

monitoring networks (Zeide, 1980; Wang et al., 2001, 2008; Wintle

et al., 2010; Yim et al., 2015; McRoberts et al., 2018), there is limited

work looking specifically at the impacts of FLvMS for statistical

regression modeling, as we elaborate below (Dietze et al., 2018).

We find that FLvMS can have practical implications for the

quality of ecological insights gained from data. When fitting

models, studies tend to focus on the following aspects of the model:

its explanatory ability and its utility for prediction. Explanatory

modeling focuses on understanding how a set of predictor variables

are associated with or affect a response variable, often through an

assumed parametric relationship (e.g., regression models). In this

context, low uncertainty for the parameters estimates is desirable in

order to obtain statistical conclusions for hypotheses and theory.

The goal of predictive modeling is to obtain precise predictions

for new or future observations, which can be important for

decision-making and policy recommendations (Iwamura et al.,

2020; Malik et al., 2021). Predictive power is typically assessed

using metrics (e.g., root mean squared error) computed from a

held-out validation set, where improved metrics imply improved

prediction accuracy on that validation set. A model that makes

poor predictions might still advance understanding of why or how

ecological phenomena occur if it provides parameter estimates

with low uncertainty. Conversely, parameter estimates with low

uncertainty do not necessarilymake for good predictions, especially

in complex systems (Lo et al., 2015). The distinction between

the two goals has practical implications for sampling design

in networks focused on broad-scale ecological and biophysical

patterns (Shmueli, 2010). In this work, we explore how design

decisions involving FLvMS can affect parameter estimates and

predictions in different ways. We do not claim to address all

relevant factors related to FLvMS for design (with the notable

omission of sampling costs and crew time/costs), but instead

address a gap in statistical evaluation often seen in discussions

around FLvMS.

FLvMS is also a consideration beyond the design stage;

when using previously collected data, analyses can benefit from

combining or aggregating observations in order to reduce noise

depending on the spatial distribution pattern of the process(es)

of interest. Observations may be aggregated in space (Iverson

and Prasad, 1998), time (Crewe et al., 2016), or environmental

conditions (Andelman and Willig, 2004; Zhu et al., 2014; Schliep

et al., 2016). Compositing multiple observations taken at several

microsites or sub-plots within a single site is a type of aggregation

that can also reduce noise, depending on the design of subplots

(e.g., soil samples, Singh et al., 2020). Here, we describe the original

plot/observation as the original sampling unit. When observations

are aggregated together, we refer to these modified observations as

having different units of analysis for modeling (e.g., 10 observations

aggregated into a single quantity has a unit of analysis of 10;

Neuendorf, 2021). However, the potential benefits of increased

effort per observation, aggregated/composited unit of analysis, may

be offset by the undesirable effect of masking processes operating

at fine spatio-temporal scales (Rossi et al., 1992; Jelinski and

Wu, 1996; Liebhold and Gurevitch, 2002; Maas-Hebner et al.,

2015). Thus, the FLvMS trade-off should be a ubiquitous design

consideration for both observational studies and resulting analyses.

We provide a framework for network design and data

aggregation that integrates FLvMS to demonstrate several insights,

(i) low uncertainty for predictions depends on large effort per

observation (E), whereas low uncertainty for parameter estimates

depends on large total sample effort (effort per observation ×

number of observations, or S = nE), (ii) prediction accuracy

usually improves with data aggregation, whereas parameter

uncertainty does not, (iii) poor predictions that come from designs

based on small plots may be rehabilitated by aggregating the

predictions, and (iv) models can have high predictive accuracy

yet non-informative parameter estimates. We start with theory

and simulations, followed by an application to Forest Inventory

and Analysis (FIA) data that further explores the impacts of

aggregation. Material provided in the Supplement are referred to

with an “S.”

2. Theory and analytical findings

2.1. FLvMS as a distribution of e�ort

Understanding the divergent effects of FLvMS for parameters

and predictions requires the concepts of observation effort and

sample effort. A sample consists of n observations. The fundamental

FLvMS trade-off concerns the distribution of effort over the n
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observations. Consider a response yi at location i observed with an

associated observation effort Ei. Total sampling effort is the summed

observation effort,

S =

n
∑

i=1

Ei (1)

Terms related to FLvMS are defined in Table 1. For fixed S, a design

based on many small plots involves large n and low Ei. Where

observation effort is constant (Ei = E) we see this trade-off directly:

S = nE.

In networks where plots are not clustered, aggregating

observations within the existing network reduces the effective

sample size (↓ n), while increasing the effective observation effort

(↑ E), but we demonstrate that it does not change the sample

effort, S. We use the symbol ∗ to denote quantities associated

with aggregation: a sample of n = 10, 000 plots, each with effort

E = 1 m2, could be aggregated to groups of J = 10 plots with

aggregate sample size n∗ = 1, 000 and aggregate effort E∗ = 10 m2.

For (discrete) count data, an aggregate observation j has response

y∗j =
∑

i∈Aj
yi and aggregate effort E∗j =

∑

i∈Aj
Ei, where Aj holds

the indices of the original observations associated with aggregate

j. Summing over n∗ yields S. A simple graphic of this aggregation

design is shown in Figure 1. Where observation effort is constant

(ignoring any fixed costs associated with each plot, e.g., travel), the

total sample effort S is unchanged by aggregation, i.e., S = nE =

n∗E∗. For heterogeneous effort,

S =

n
∑

i=1

Ei =

n∗
∑

j=1

E∗j (2)

In this paper, we view the concept of effort applied to

continuous responses involves averages rather than sums. We

imagine the practice of averaging water or soil samples to reduce

the noise and obtain more precise measurements of concentrations

or mineralization rates. We note that averaging is not appropriate

for aggregating count data, as the average of discrete counts might

no longer be discrete. So for continuous y, y∗j = 1
Jj

∑

i∈Aj
yi where

Jj = |Aj|.

Observations can be aggregated within or between plots. For

example, multiple soil and water measurements from the same

plot are composited to reduce noise (e.g., Singh et al., 2020). The

increase in effort, represented by the composite measurement,

reduces the composite variance, as we demonstrate in Section 2.2.

Because observation and sample effort are not often discussed

in the context of trade offs between goals of prediction and

parameter estimation, the majority of this section (Sections 2.2,

2.3) comprises analytical solutions that provide general principles

based on how sample effort S is distributed between sample size n

and observations effort E. We focus on the effects of n, E, and S

on parameter estimation (Section 2.2) and prediction uncertainty

(Section 2.3) in the context of discrete and continuous data. This

section finishes with details concerning simulations (Section 3.1)

and an application to the FIA monitoring network (Section 3.2).

2.2. Parameter estimates

2.2.1. Count data: Original sampling unit
In models for count data yi, the quantity of interest is often

counts per effort CPEi = yi/Ei. For non-moving organisms (e.g.,

plants), effort is represented by plot area. For point counts, camera

traps, and pitfall traps (e.g., vertebrates and insects), effort is

observation time, and CPE is counts per unit time. In fisheries,

effort may be the number of trawls and CPE is catch per trawl.

As an example, consider the semi-structured, global citizen science

eBird (2017) dedicated to avifauna observation. Observers report

the number of bird species detected on a bird outing, where the

observation duration can vary from 1 min to several hours. A

statistical model for the bird counts needs to adjust for the duration

of each observation, as one bird observed in 1 min is different from

one bird observed over the course of 2 h. Thus, the duration of each

bird outing can be viewed as observation effort (Tang et al., 2021),

and CPE could be the number of birds observed in a 30 min time

frame. In these cases, observation effort Ei is a known quantity that

is not estimated.

Poisson regression models are often used for modeling counts

yi. Observation effort Ei typically enters a Poisson model as follows:

yi ∼ Pois(Eiλ). In a generalized linear model, Ei is known as an

offset for yi, as Ei is fixed and known in advance. This specification

changes the parameter estimate λ̂ from an intensity to a rate (per

area, per time, and so forth). For simplicity, let effort be constant, so

Ei = E. Then the estimate that maximizes the Poisson likelihood,

or MLE, is λ̂ = ȳ/E, where ȳ is the observed sample mean. λ̂ has

asymptotic variance Var(λ̂) = λ/(nE) = λ/S. Re-writing in the

scale of interest CPEi = yi/E, the MLE and its uncertainty are

λ̂ = CPE (3)

Var(λ̂) =
λ

S
(4)

where CPE = 1
n

∑n
i=1 CPEi = ȳ/E. In other words, the estimate

λ̂ has units determined by observation effort E, but the uncertainty

depends on sample effort S, regardless of how it is allocated between

n vs. E.

2.2.2. Count data: Aggregated unit of analysis
Aggregation does not change this result, yielding

λ̂∗ = CPE∗ = CPE (5)

var(λ̂∗) =
CPE∗

S∗
=

CPE

S
(6)

Thus, FLvMS by itself does not affect parameter uncertainty,

which depends instead on total sample effort. However, spatial

patterns may change this result (see Section 4.1, 4.2).

2.2.3. Continuous data: Original sampling unit
As for discrete counts, increasing effort has minimal impact

on parameter uncertainty for a continuous response. The linear

regression model with predictors held in n × p matrix X is yi =
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TABLE 1 Terms and definitions related to few-large vs. many-small and aggregation concepts.

Term Definition

n Sample size on original scale (ex. number of plots)

Ei Observation effort associated with observation i on original sampling unit (ex. plot area).

May be constant Ei = E.

S Total sampling effort, where S =
∑n

i=1 Ei .

S = nE for constant observation effort.

n∗ Aggregate sample size

E∗j Observation effort associated with aggregate j.

May be constant E∗j = E∗ .

Jj Number of observations aggregated together into aggregate observation j.

May be constant Jj = J.

Mj Number of observations composited at site j.

May be be constantMj = M.

σ 2 Local, within-site error variance for Gaussian data.

τ 2 Between-site error variance for Gaussian composite data.

FIGURE 1

Example graphic of aggregating count data. (A) Observed counts y1, . . . , y12 at single plots (E = 1) within a spatial region. Background color denotes

the spatial distribution of an environmental predictor such as habitat. (B) Possible aggregation of the original data based on habitat. (C) Data

aggregated to a new unit of analysis, where y∗1 = y1 + y2 + y3, and similarly for the other three aggregated observations. On this unit of analysis, there

are n∗ = 4 observations, each obtained with aggregated observation e�ort E∗ = 3. In both (A, C), total sampling e�ort is S = 12.

x′iβ + ǫi, with Gaussian noise ei ∼ N(0, σ 2). Here, xi is p-vector of

predictors and intercept. The estimated parameters and associated

covariance are

β̂ = (X′X)−1X′Y (7)

Cov(β̂) =
σ 2

n
V−1
x (8)

where Vx is the covariance in predictors.

In this continuous case, it can be useful to think about

residual variation as an inverse of effort. For example, consider the

effect of compositing M measurements within a given site, where

compositing yields one single sample from the site. Assuming

independence, the variance for the composited sample reduces

from σ 2 to σ 2/M, where σ 2 is the residual variance from the linear

regression model. In the sense that effort reduces error, σ 2 can be

likened to error with minimal effort (M = 1). Defining observation

effort E = 1/σ 2 allows observation effort to enter the model in the

continuous case, as Equation 8 becomes

Cov(β̂) =
1

nE
V−1
x = S−1V−1

x . (9)

Note that in the linear regression setting, the residual variances σ 2

are assumed equal across observations i, so observation effort E is

similarly assumed constant across i.

Where the predictors are replaced with an overall mean µ,

Equation 9 simplifies to Var(µ̂) = S−1. Where predictors are

not only centered, but also standardized, they too have variance
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Var(β̂k) = S−1, k = 1, . . . , p. Thus, as in the discrete case, the

parameter uncertainty depends on total effort, not n alone or E

alone.

2.2.4. Continuous data: Aggregated unit of
analysis

Unlike discrete data where aggregated counts are sums,

aggregating continuous data is done by averaging across Jj
observations. In this framework, we imagine each location i has a

single observation, and aggregation averages the responses across

Jj unique sampling locations. Taking constant Jj = J, aggregation

leads to reduced sample size n∗ = n/J, increased effort E∗ = EJ,

and, if we assume for the moment independent observations,

reduced variance σ 2
j = σ 2/J. Letting YJ be the vector holding the

aggregated responses yj, the estimated parameters and associated

covariance on the aggregated unit of analysis are

β̂ = (X′
JXJ)

−1XJYJ

Cov(β̂) =
σ 2

n∗J
V−1
J = S−1V−1

J (10)

where VJ is the covariance in the aggregated predictors XJ . If the

covariance in predictors is unaffected by aggregation (i.e., Vx =

VJ), then as in the discrete case, the uncertainty in β̂ depends on

total sampling effort S and not n or E alone.

2.2.5. Continuous data: Composite scale
In some cases, variance in the continuous response may have

two components: variance between repeated measurements at a

given location i (σ 2), and variance between locations (τ 2). The

residual variance combines within- and between- site variances:

yi ∼ N(xiβ , σ
2 + τ 2). In the geostatistical literature, σ 2 is the

“nugget". When compositing M measurements within each site i,

the composite response is y∗i ∼ N(x∗i β , σ
2/M + τ 2). Composited

effort increases with the number of measurements: E∗ = ME =

M/σ 2. In this setting, the covariance of the coefficients is

Cov(β̂) =

(

σ 2

nM
+

τ 2

n

)

V−1
x =

(

1

SM
+

τ 2

n

)

V−1
x (11)

where SM = nE∗ = nM/σ 2. If local variance is large (σ 2 >> τ 2),

then uncertainty scales with 1/SM , notM alone and not (unless it is

small) n alone. Conversely, if local variance is small (τ 2 dominates),

then Cov(β̂) ≈ τ 2/nV−1
x , and increasing sample size n does more

to reduce parameter uncertainty than compositingM.

These analytical solutions illustrate the important point

that networks based on large sample effort produce the most

informative parameter estimates. In both discrete and continuous

cases, parameter uncertainty shows the same decline with total

effort S, regardless of how it is allocated between n and E.

2.3. Prediction

Paradoxically, the importance of total effort S for parameter

estimation, regardless of its allocation to n vs. E, does not hold for

prediction. In fact, observation effort E assumes the dominant role

in prediction, with n (and thus, S) only becoming important when

n is small [though this can depend upon the context and underlying

spatial heterogeneity, e.g., Nyyssönen and Vuokila (1963)]. We

show this with simulation for the Poisson case in Section 4.1, and

demonstrate the analytic results for the continuous Gaussian case

here.

2.3.1. Continuous data: Original scale
Interest lies in the uncertainty around a prediction ŷi for given

predictors xi. For observation i, the linear regression model with

intercept α and p predictors held in xi is

yi = α + x′iβ + ǫi (12)

once again with Gaussian noise ǫi ∼ N(0, σ 2). Let the predictors

xi be centered across the observations. With observation effort

E = 1/σ 2, this model has predictive variance.

Var(ŷi) = Var(α)+ Var(x′iβ)+ Var(ǫi)

= σ 2

[

1

n

(

1+ x′iV
−1
x xi

)

+ 1

]

=
1+ x′iV

−1
x xi

S
+

1

E
(13)

where Vx is the variance in the predictors. Unless n is small, the

second term dominates, because S = n × E. By contrast with

parameter uncertainty, observation effort E is dominant here.

2.3.2. Continuous data: Composited unit of
analysis

For composite measurements, the residual variance associated

with each composite response is σ 2/M + τ 2, assuming the same

number of measurements at each location. The observation effort

E∗ = ME and sample effort S = nME both scale with the number

of replicates M. Prediction uncertainty is still dominated by E, not

S.

2.3.3. Continuous data: Aggregated unit of
analysis

On the aggregated scale, the predictive variance for

Equation 12 is

Var(ŷj) = σ 2
J

[

J

n

(

1+ x′jV
−1
J xj

)

+ 1

]

(14)

where xj is the p-vector of predictors associated with aggregate

observation yj. Once again, the full effect depends on how variances

are affected by aggregation. If the residual variance and the

aggregate covariance in predictors are unaffected by aggregation
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(VJ = Vx, σ
2
J = σ 2/J) then the aggregate predictive variance in

Equation 14 can be re-written as

Var(ŷj) =
1+ x′jV

−1
x xj

S
+

1

EJ
(15)

Considering aggregated continuous data, here we assume that

residual variance σ 2 and the covariance in predictors Vx are

unaffected by aggregation. If we further assume constant Jj = J

for simplicity and independent observations, then the uncertainty

in the prediction for the aggregated response ŷj is

Var(ŷj) =
1+ x′jV

−1
x xj

S
+

1

EJ
(16)

The second term will dominate if n is not small (n ≫ J ⇒ S ≫

EJ). Thus all else being equal, predictive variance declines with

aggregation, and it still depends primarily on observation effort E,

not sample effort S.

Taken together, with this definition of E = 1/σ 2, predictions

are controlled by observation effort, while parameter estimates are

controlled by total sample effort, regardless of how it is allocated

between FLvMS. However, these analytical results omit the impact

of unmeasured variables, a characteristic of real data not found

in simulated data. As discussed in Supplementary material 1, the

residual variance can also depend on how aggregation affects not

only the measured variables but also the unmeasured variables. In

the following section, analytical results are extended in simulation

and the FIA monitoring network.

3. Methods

3.1. Methods for simulations

Simulation allowed us to evaluate FLvMS under relaxed

assumptions. Comparisons of model fitting on the original (n,E, y)

and aggregate (n∗,E∗, y∗) scales start with randomly generated data,

including random regression parameters in the length-p vector β .

There is a n × p design matrix X, with xi = (1 xi1 . . . xi(p−1))
′,

where xi1 ∼ N(0, 1), and length-n response vector y = (y1 . . . yn)
′.

The observations inXwere then aggregated to (n∗,E∗, y∗) based on

covariate similarity in the X (Figure 1B).

In the first set of simulations, the predictors X were

uncorrelated. In the second set of simulations we generated

collinear data, where the randomly generated predictors took the

form xi = (1, xi1, xi1, xi2)
′, where xi1, xi2 were sampled

independently, and xi3 ∼ N(0.3 × xi1, 1). Aggregation between

observations based on covariate similarity in X increases the

correlation between x1 and x3 from 0.25 at the original effort

E = 1 scale to (0.65, 0.89, 0.95, 0.98) for corresponding aggregated

effort E∗ = (10, 60, 125, 200). Each row in the aggregated n∗ × p

design matrix X∗ holds average predictors from J rows in X. The

length-n∗-vector of aggregate y∗ = (y∗1 , . . . , y
∗
n∗ )

′ was obtained

by summation (discrete counts) or averaging (continuous). For

discrete data, aggregation gave effort E∗ = JE and sample size

n∗ = n/J, simulated as yi ∼ Pois(Eλi) with log(λi) = x′iβ .

These simulated data were fit using a Poisson regression model.

For composited continuous data, yim = x′iβ + wi + ǫim for m =

1, . . . ,M, where wi ∼ N(0, τ 2) and ǫim ∼ N(0, σ 2), yielding

composite observation y∗i ∼ N(x′iβ ,E
∗
i + τ 2). These data were fit

using a linear regression model.

For out-of-sample prediction, additional test data {Xtest , ytest} of

size ntest were generated and subsequently aggregated to obtain the

n∗test × p design matrix X∗
test and response y∗test . For models fitted

to aggregate train data, predictions y
∗(pred)
i,test were obtained at the

aggregated unit of analysis. To evaluate the effects of aggregation

post-fitting, predictions were first obtained at the original sampling

unit (E = 1), and then subsequently aggregated to effort E∗

based on covariate similarity in X∗
test . In all cases, we compared

predicted and true values using root mean square predictive error,

RMSPE =

√

1
ntest

∑ntest
i=1 (y

∗(pred)
test,i − y∗test,i)

2. Simulation and analyses

were conducted with R [Version 3.6.1; R Core Team (2013)].

3.2. Methods for FIA application

To demonstrate aggregation effects in a real-world example, we

modeled basal area (continuous) on FIA phase-2 plots that were

sampled after 1995 in the eastern US (Gray et al., 2012). Following

Qiu et al. (2021), we used all four sub-plots for each FIA plot

site. However, we note that an application can also be restricted

to only the central sub-plot, which has been shown to have a

limited impact on residual variation as compared to compositing

all four subplots (Gray et al., 2012; McRoberts et al., 2018). We

excluded non-response plots but included mixed condition plots,

which skews our sample away from private property and potentially

includes plots that are particularly noisy due to intra-site condition

variation. Following Qiu et al. (2021), covariates included percent

clay and cation exchange capacity (CEC) in the upper 30 cm of soil

(Hengl et al., 2017), mean annual temperature (◦C), and moisture

deficit (mm; Abatzoglou et al. (2018)), and stand age (Burrill et al.,

2021). Spatial correlation persists over a large spatial range for

temperature and moisture deficit, but not for soil variables and

stand age (Supplementary Figure 2A).

A linear regression model was fitted at seven levels of

aggregation, including the n = 127, 640 observed plots (J =

1), aggregate plots based on covariates and proximity at J =

10, 60, 125, 200 (the group sizes examined in Brown and Westfall,

2012), and ecoregions (histograms in Supplementary Figure 2B).

Aggregation was performed using k-means clustering (here, k

= J) on a combination of habitat and proximity. Specifically,

plots were clustered together based on standardized longitude,

latitude, and stand age, as well as the categorical moisture type

of the climate (mesic, xeric, or hydric). This k-means clustering

was modified to only allow plot clusters approximately equal

to the target aggregate size but not much larger or smaller (so

for J = 10, 60, 125, 200, the ranges were 10–15, 60–65, 125–

135, and 200–210, respectively). Following Qiu et al. (2021),

this was achieved by first using a typical k-means clustering

algorithm, retaining all the clusters within the initial cluster

size tolerance, and then re-running the clustering with the

remaining plots until they matched the required cluster size

tolerance. Because of the tolerance, the resulting sizes of each

aggregated cluster j may slightly differ (i.e., Jj not necessarily
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FIGURE 2

Uncertainty in slope estimates from simulated Poisson data. (A) Posterior mean parameter estimates diverge from the value used to simulate data

(vertical dashed line) due to stochasticity, but parameter uncertainty (68% boxes and 95% whisker widths) are fixed for a given total sampling e�ort S,

regardless of how it is partitioned by sample size n vs. observation e�ort E. (B) Where there is a correlated predictor (left panel), uncertainty in

parameter estimates increases with aggregated e�ort E∗, despite the same total e�ort S, but not for the uncorrelated predictor (right).

FIGURE 3

Out-of-sample true and predicted counts with corresponding root mean square prediction error for simulated data when aggregating before (A) and

after (B) model fitting. (A) Increasing observation e�ort E improves predictions with reduced uncertainty, while increasing sample size n does not.

The combination (n = 100, E = 1) plotted in dark red can be used as reference. (B) Predictions from a model fitted with E = 1 are dominated by

noise, but can be rehabilitated by aggregation to E∗ = 10 or 1,000.

equal to J. However, we continue to refer to the different

aggregation sizes as J = 10, 60, . . . for simplicity. Aggregation

to the U.S. Environmental Protection Agency (EPA) level III

and level IV ecoregions is based on EPA’s biotic, abiotic, and

land use criteria (Omernik, 1987). (Supplementary Figure 2E).

For ecoregions, the numbers of plots depend on ecoregion size

(Supplementary Table 1A).

To understand how aggregation affects parameter estimation,

we fit linear regression models to the full set of data at each level

of aggregation. The models were fit within a Bayesian framework,
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and we obtained posterior credible intervals for the regression

coefficients. We used independent, weakly informative N (0, 100)

priors for the regression coefficients in β and an Inverse Gamma

(1, 10) prior for the variance σ 2. To understand how prediction

performance is affected by aggregation, data were then randomly

split into 70% training and 30% test sets for each aggregation. For

each of the seven training sets, we obtained predictions for the

respective test sets. We averaged the RMSPE for out-of-sample

predictions across 50 repetitions.

4. Results

4.1. Simulations

Simulations described in Section 3.1 extend the theoretical

results from Section 2 to multiple parameters, additional models,

and correlation in predictors. As for the continuous model

(Equation 10), aggregation with discrete counts and fixed sample

effort S does not affect confidence-interval width, regardless

of the how sample effort is partitioned between n and E.

Confidence intervals instead narrow from increasing S (Figure 2A

and Supplementary Figure 1A). Also as in analytical results,

shifting effort from many-small to few-large, either by design

or aggregation, dramatically improves prediction, regardless of

whether it is done before or after model fitting (Figures 3A, B). The

fact that aggregation improves prediction offers the opportunity for

multi-scale analysis within an existing design, depending on the

scales most closely aligned with the processes included in a model.

In the continuous case with within- and between-site

variance (Equation 11), compositing measurements (increasingM)

improves prediction when within-site (local) variance dominates

(σ 2 ≫ τ 2). Conversely, when between-site variance dominates

(τ 2 ≫ σ 2) compositing has little effect (Figure 4).

Simulations also examined parameter uncertainty in the

scenario of correlated predictors. Parameter uncertainty increased

with aggregation because predictor collinearity increased with

the degree of aggregation E∗, despite fixed sample effort S

(Figure 2B). Unlike results with uncorrelated predictors, the

parameter uncertainty with correlated predictors continues to

increase with increasing aggregation.

4.2. Application to FIA monitoring network

The application to the FIA network described in Section 3.2

extends insights from analytics and simulation to a large network

that responds to predictors on multiple scales. Our application

is designed to explore how aggregation affects both parameter

estimation and predictive performance in this complex network.

We begin by discussing the affects on parameter estimation.

Estimates for the effects of climate variables, soils, and stand age

on basal area differ in their responses to the degree (J) and the

method (covariate clustering vs. EPA ecoregions) of aggregation

(Figure 5A). Uncertainty in parameter estimates decreases when

moving from J = 1 to J = 10, but then increases slightly with

increasing aggregation up to J = 200. This may be tied to a small

increase in collinearity in predictors with large aggregated plot

FIGURE 4

Average root mean square prediction error (RMSPE) for simulated

composite Gaussian data under varying M (number of composited

observations), within-site variance σ 2 and between-site variance τ2.

Colors denote the ratio σ 2/τ2, and 1RMSPE denotes the di�erence

RMSPEM=1 − RMSPEM=10. Prediction performance improves with

increasing M, but the amount of improvement depends on the

relative magnitudes of σ 2 and τ2. The more σ 2 dominates τ2 (i.e.,

large σ 2/τ2), the larger the improvement in predictive performance

with increasing m (from 1RMSPE = 0.165 in red to 1RMSPE = 1.623,

purple).

clusters (aggregated units of analysis) J (Figure 5B). The reduced

uncertainty from J = 1 to J = 10 is unexpected due to the induced

collinearity, but it comes with a large reduction in estimated

residual variance (Figure 5C).

Ecoregion aggregation generates especially wide

confidence intervals because ecoregions are not defined

on the basis of covariates selected for their importance

for trees (Supplementary Table 1B). Most coefficients from

the EPA III aggregation have 95% credible intervals that

include zero, and they diverge from estimates that come

from aggregation based on covariate similarity, none of

which have posterior 95% intervals that include zero

(Figure 5A). Additionally, the collinearity in predictors

at ecoregion aggregations is much larger than the

collinearity for aggregations based on covariate similarity

(Figure 5B).

The parameter estimates showing the largest increase in

interval width with aggregation are those with regional-scale

spatial correlation, including annual deficit, temperature, and clay.

Stand age, which is not spatially correlated at scales that can

be resolved at the FIA sampling density, does not show this

increase in interval width with aggregation. However, the role of

stand age is obliterated when aggregated to the ecoregion scale

(Figure 5A).

For predictions on held-out data, prediction performance

improves with aggregation by covariate similarity and distance

up to at least J = 125, with the lowest RMSPE for J = 200.

Prediction for level IV ecoregions is worse than for level III, despite
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FIGURE 5

(A) Posterior mean estimates, with 68 and 95% credible intervals for coe�cients in the Gaussian model for basal area with aggregation of FIA plots.

Credible interval width shows modest increase with aggregation level from aggregations of J = 10 up to J = 200 plots, and large uncertainty at

ecoregions (EPA III, IV). (B) Ratio change from J = 1 in magnitude of pairwise correlations between predictors in X increase slightly with aggregation

by distance and covariate similarity (J = 1, . . . , 200) and then increase more dramatically at the ecoregion level (side panel). Colors in (B) denote the

second variable that is pairwise correlated with each panel. (C) Estimated residual variance of each model decreases with J, with a large decrease

from J = 1 to J = 10.

level IV showing narrower confidence on parameter estimates

(Figure 5A). If there is an optimal aggregation at which both

parameter estimates are predictions are useful, it is in the range

of 10 ≤ J ≤ 200.

5. Discussion

Through analytical examples and an application to FIA

data, we illustrate how data can be used to both understand

ecological relationships and predict outcomes from statistical

models is informed by the idea of few-large vs. many-small

(FLvMS). Building up from analytical calculations, we establish a

direct and quantifiable link between sample size and effort per

observation (together, the total sampling effort) to uncertainty in

parameter estimates and prediction. These relationships remain

under simulation (Figures 2, 3), which, combined with a case study,

extends results to spatially correlated predictors (Figure 5B). While

the fact that correlation between covariates degrades information

content has long been known (e.g., Dormann et al., 2013), our

results place these relationships in the context of the FLvMS

trade-off.

Our results demonstrate differing implications of FLvMS design

for the goals of parameter estimation and prediction (Equations

9, 13). Parameter uncertainty depends on total sample effort

S and not on how it is distributed across FLvMS (Figure 2A),

though this relationship can be degraded by correlated predictors

(Figure 2B). The extent to which this effort-dependence becomes

important can change with the spatial scale of correlation, which

can differ for each covariate (Figure 5B), or with changes in residual

variance (Figure 5C). The application to FIA data illustrates that the

underlying spatial patterns in the data (including omitted variables

and spatial correlation between plots) might impact how much

extra information is gained from larger plots vs. more plots [E vs. n;

e.g., Nyyssönen and Vuokila (1963)]. For example, especially poor

predictions for Level IV ecoregions in our application (Figure 6) are

likely due to the incorporation of land use at Level IV that may not

be relevant for forest biomass at this scale (Omernik and Griffith,

2014; Roman et al., 2018). Improved prediction with more plot

aggregation in FIA reflects the dominant role of broad-scale climate

for the distribution of forest abundance, just as prediction skill for
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FIGURE 6

True and predicted total basal area with 95% prediction intervals at di�erent levels of aggregation. Note that with the exception of EPA IV, the axes are

the same across aggregations. Predicted TBA better approximates the truth for aggregated data (black y = x line provided for comparison), and

prediction error decreases with aggregation.

precipitation can improve with an expanded spatial scale (Chardon

et al., 2016). These results are especially focused on predicting basal

area for trees in similar growing conditions, as is used for analyses

within groupings like land use or habitat type (Carter et al., 2013;

Thompson et al., 2017) but results may vary when predicting back

out onto spatially contiguous groups of plots across habitat types.

There are also likely unmeasured variables, conditions, or plots that

skew results, which are especially important for accurate prediction

at fine spatial scales.

The option to aggregate many small plots helps to achieve

goals of both parameter estimation and prediction within the same

network. Whereas a large plot averages away the role of fine-

scale influences, small plots capture these local differences, while

offering the option to aggregate. The hybrid design used by the

National Ecological Observation Network (NEON) embeds many-

small within regional sites, intended to capture multiple variables

at multiple scales. If the many-small design seems optimal, it is

important to appreciate howmeaningful signal can degenerate into

noise when effort is too low.

To be clear, we do not posit that one should always

aggregate data during analysis. For example, if a sample

consists of observations from each of a few very different

ecoregions, aggregation would most likely lead to poorer inference.

Additionally, not all data are suitable for aggregation. Two

examples include: instances of the ecological fallacy - the

assumption that what holds true for the group also holds true

for an individual (Plantadosi et al., 1988), and relationships that

shift based on the timescale examined [especially for seasonal

responses, e.g., food webs (Jordán and Osváh, 2009)]. The authors

also note that aggregation is most straightforward with data that

can be averaged or summed into totals. As we demonstrate in

our application to FIA data, the method of aggregation can

greatly influence how much information can be extracted from the

data.

Our results also point to the importance of knowing one’s

dataset and not relying on statistical tools alone to determine

the relevance of environmental predictors. It can be tempting to

use large datasets to search for the environmental covariates that

produce the "best" predictions for a given response of interest.

However, models that obtain the "best" predictions might not

reveal meaningful ecological relationships. For example, using

temperature and precipitation gradients is common practice to

define species distribution models, and can be used successfully at

global and regional scales (Elith and Leathwick, 2009). But those

two metrics alone will not be as meaningful at the meter scale

for many species, and modeling at that scale would have so much

noise as to obscure the signal in the data. The conclusion, however,

should not necessarily be that temperature and precipitation are

irrelevant but perhaps that climatic impacts operate at larger scales

than 1 m (Beaumont et al., 2005; Elith and Leathwick, 2009; Austin

and Van Niel, 2010).

Focusing on the effects of FLvMS, post data collection, we

intentionally omit fixed costs that can be associated with an

observation, regardless of size [e.g., travel; Scott (1993); Henttonen

and Kangas (2015)]. There are many factors that impact the

cost of travel, including the road network, terrain, fuel costs,

personnel costs, equipment portability, weather, and more [e.g.,

Morant et al. (2020); Lister and Leites (2022)] that would require

economic modeling beyond the scope of this paper in order

to be broadly applicable. Heavily-instrumented networks like

NEON involving costly analytical techniques (e.g., soil and foliar

biogeochemistry analytes) and heterogeneous responses (e.g., plant

phenology as well as abundance and diversity) introduce additional

considerations that are not included here.

The benefits and costs for parameter estimation and prediction

from FLvMS designs take on new importance with large

investments in sampling networks like FIA, NEON (Schimel, 2011),

and the South African Ecological Observatory Network (SAEON;
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Van Jaarsveld et al., 2007). For example, from 2006 to 2016, the

FIA program invested more than $20M annually to monitor tens of

thousands of plots (Vogt and Smith, 2016, Table 3). Through 2024,

annual operation costs for NEON are estimated to exceed $60M to

make repeated observations of ecosystems that include vegetation

plots of a similar size ((NSF, 2019), p. 16). These sampling networks

can be invaluable for monitoring and also for understanding

ecological processes and predicting future outcomes if the data are

analyzed thoughtfully and the design facilitates these analysis goals.

By extracting the contribution of FLvMS for parameter estimation

and prediction, this analysis facilitates its consideration as one

of many important components of data analysis and monitoring

network design.
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