
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Anouschka R. Hof,
Wageningen University and Research,
Netherlands

REVIEWED BY

Michael Alister Reid,
University of New England, Australia
Anielly Galego De Oliveira,
State University of Maringá, Brazil
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Introduction: The diversity of freshwater fishes is threatened by multiple

environmental stressors, including climate change, alterations in land use,

and introduction of non-native species. However, the quantification of

temporal biodiversity in freshwater communities is limited. Here, we asked:

i) how has alpha (species richness), beta (changes in freshwater species

composition), and gamma diversity (total species diversity in a landscape)

changed over time for lakes over a 50 year period?; and ii) What are the

climatic, land use, and lake morphological drivers associated with

higher diversity?

Methods:We assembled a database of fish species occurrence from 20 lakes

across subalpine and alpine regions in Alberta from 1970-2019, in addition to

lake morphological, climatic, and land use characteristics of the watersheds.

Results:We observed an overall increase in alpha, beta, and gamma diversity

from the 1970s to 2009s. However, all measures of diversity declined from

2010-2019. We found that more lakes and species assemblages were

influenced by species gains, rather than species losses (with the exception

of the last decade of sampling).

Discussion: Generally, we found that coolwater species were expanding and

coldwater fishes were being lost throughout our study lakes. We highlight

temporal heterogeneity in fish biodiversity responses to substantial

environmental pressures in this region.
KEYWORDS

species richness, beta diversity, freshwater fishes, Albertan lakes, biodiversity,
climate change, land-use change
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1 Introduction

Freshwater fishes play an important role in ecosystems by

influencing levels of water clarity, nutrient loading, as well as the

abundance of aquatic vegetation, invertebrates, and other fish

species (Eilers et al., 2007; Mutethya and Yongo, 2021). Despite

their economic, nutritional, and ecological importance, freshwater

fishes are increasingly threatened by a multitude of natural and

anthropogenic stressors (Islam and Berkes, 2016). Future climate

scenarios predict an average loss of 20% of fish species from all river

basins worldwide due to climate change alone (Manjarrés-

Hernández et al., 2021). Climate-intensified extreme weather

events (Rolls et al., 2017), higher water temperatures (O’Reilly

et al., 2015), and reduced water quality (Vogt et al., 2018;

Woolway et al., 2020), will fragment and degrade habitat quality

and thermal habitat availability, leading to population declines and

range contractions of freshwater fishes (Brie et al., 2016; Van Zuiden

and Sharma, 2016). These climate-induced environmental stressors

coupled with, land use alterations and species introductions

(Dudgeon et al., 2006; Reid et al., 2019), may result in the

extinction of an additional 53 to 86 freshwater fishes in North

America alone by 2050 (Burkhead, 2012), highlighting the need for

immediate action.

Alterations in community composition can provide early

warnings of environmental stress and subsequent biodiversity loss

(Johnson and Angeler, 2014). Quantifying the temporal response of

freshwater fish communities in terms of alpha, beta, and gamma

diversity can provide insights into how the health of freshwater fish

communities are changing over time (Erős et al., 2020). Gamma

diversity is the measure of regional diversity, describing the totality

of species diversity across the study sites (Whittaker, 1960). Alpha

diversity is defined as the species richness within a community

(Whittaker, 1960). Beta-diversity is the degree of change in species

composition and abundance between two or more communities

(Whittaker, 1960; Whittaker, 1972) can be quantified spatially or

temporally (Anderson et al., 2011), and calculated in a variety of

ways (Legendre and De Cáceres, 2013). Changes in alpha diversity

can either increase or decrease beta diversity. If changes in alpha

diversity tend to homogenize different regions (e.g., by adding the

same set of species or removing unique species), beta diversity will

decline. If changes in alpha diversity tend to diversify different

regions (e.g., by adding unique species or removing shared species),

beta diversity will increase.

Measures of species richness, such as alpha and gamma

diversity are insufficient to determine shifts in community

composition (Dornelas et al., 2014). For instance, (Kortz and

Magurran, 2019) assessed plant assemblages on a spatial scale and

found increasing alpha-diversity coupled with decreasing beta-

diversity. These results demonstrate that although species

introductions can cause an initial increase in local species

richness, the widespread introduction of these same species into

several communities leads to increased spatial species similarity

between localities (Finderup Nielsen et al., 2019). Temporal

patterns of beta-diversity are relatively understudied in freshwater

fish assemblages. This knowledge gap exists not only because of a

paucity of long-term fish community data spanning decades
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(Magurran et al., 2019) but is compounded by the complex

dynamics of species composition (Olden and Poff, 2003). Short-

term temporal studies that evaluate communities immediately

before and after an environmental disturbance (Richardson et al.,

2018) would not be able to capture the changing community

compositions because of the time it can take to fully observe

complex community responses. These varying results highlight

the context-dependent mechanism of species composition and the

need for further studies of this phenomenon over longer intervals

of time.

Our goal was to identify how biodiversity has changed in

Albertan freshwater fish communities over the past five decades

in response to previously documented drivers of homogenization:

climate change (Magurran et al., 2015) and land use changes

(Iacarella et al., 2018). We focused on 20 lakes surveyed over five

decades from 1971 to 2019 located in central and southern Alberta,

Canada. This alpine region is a good study system to elucidate the

impact of anthropogenic activity and climate change on lake fish

assemblages owing to its rising temperatures (Kienzle, 2018) and

intensive land development (Komers and Stanojevic, 2013). We

quantified changes in species composition and populations of

functional groups, such as thermal and trophic guilds.

Additionally, we identified temporal patterns in biotic

homogenization by calculating both temporal gamma, alpha, and

beta diversity metrics (Rahel, 2002; Olden and Rooney, 2006). More

specifically, we asked: (1) How have gamma, alpha, and beta

diversity changed over time? and (2) Which lake morphology,

climate, and land use variables are associated with higher diversity?

Examining the potential effects of climate change and land use

on Albertan lake fish assemblages over a period of five decades may

contribute to filling in gaps in the literature regarding temporal beta

diversity as a response to multiple environmental stressors,

particularly in relatively understudied alpine systems. We predict

that the fish communities in Alberta will become more similar over

time with increased non-native species richness and decreased

native species richness (Villéger et al., 2011; Moi et al., 2021;

Sleezer et al., 2021). We expect higher species richness in larger

lakes and in lower elevation regions with warmer temperatures, as

these lakes are generally able to support more diversity (Macarthur,

1965; Guo et al., 2015). Finally, we predict that the key drivers of

changes in the fish community will be Alberta’s accelerated

warming and intensive land use (Magurran et al., 2015; Iacarella

et al., 2018; Cazelles et al., 2019).
2 Methods

2.1 Study area

To investigate long term changes in lake fish communities in

Alberta, we compared fish assemblages over 5 decades in 20 lakes

across Alberta. These lakes sit within a geographic region spanning

49.9°N – 56.6°N, and 110.03°W – 118.6°W. Most of the lakes are

found at latitudes north of 53.5°N, except for Lake Newell and

Rattlesnake Lake which lie around the 50.0°N parallel (Figure 1).

Similarly, while most of the lakes can be characterized as being within
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the boreal forest biogeographical region, the westernmost lakes,

Musreau and Sturgeon are in the eastern slopes of the Rocky

Mountains, while the more southerly lakes, Newell and Rattlesnake,

are situated in parkland prairies (Alberta-Parks 2015). The surface

area of these 20 lakes ranges from 1 km2 to 1186.5 km2 with a mean

surface area of 117.6 km2. Mean depth ranges from 1.6 m to 17.8 m

with an average mean depth of 10.4 m. As glacial lakes situated near

the foothills of the Rocky Mountains in Alberta, the elevation of our

study lakes range from 529 m – 868 m above sea level with mean

elevation of 636.3m.

The annual average temperature has increased throughout the

province at significant rates from 1950-2010 (Kienzle, 2018). Since

the 1950s, the average annual temperatures have increased by a total

of 2-4˚C and 1-2˚C in the north and south, respectively (Kienzle,

2018). Northern regions of Alberta appear to be warming more

rapidly than the rest of the country, as over the same time period,

Canada’s annual mean temperature has increased by 1.5˚C

(Vincent et al., 2012). As of 2018, the human footprint is

approximately one-third of Alberta’s total land cover (Alberta-

Biodiversity-Monitoring-Institute, 2020). The industries that
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contribute most to the footprint are agriculture, forestry, and

energy, including the vast oilsands industry (Alberta-Biodiversity-

Monitoring-Institute, 2020). In a 16-year period from 1992 to 2008,

Alberta’s boreal forest experienced anthropogenic disturbances and

forest fires at a rate of 3156 km2 a year (Komers and Stanojevic,

2013). At current rates, by 2028, all of Alberta’s boreal forest would

be within 500 m of a human disturbance (Komers and Stanojevic,

2013). Alberta’s accelerated temperature increases, and intensive

land use make the province an ideal study area to assess the effects

of multiple stressors on community composition.
2.2 Data acquisition

As we were interested in long-term changes in biological and

functional diversity, our goal was to acquire as many lakes with fish

community composition going back five decades with resampling

approximately every decade. Thus, we assembled a georeferenced

time series dataset of 20 lakes in Alberta with fish community data

collected between 1971 and 2019. The fish communities comprised
FIGURE 1

Location of the 20 study lakes found in Alberta, Canada with fish community composition data extending from 1970-2019.
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fishes from the warmwater, coolwater, and coldwater thermal guilds

(Magnuson et al., 1979). Warmwater fishes are defined as those with

a final temperature preferendum greater than 25°C, while coolwater

fishes are defined as those with a final temperature preferendum

between 19 and 25°C, and coldwater fishes have a final temperature

preferendum below 19°C (Coker et al., 2001; Supplementary

Table 3). Our dataset included 16 coldwater species, 11 coolwater

species, and 2 warmwater species. To quantify how changes in

diversity in each lake have affected functional traits and groupings,

our focal fish species were also classified into aggregated trophic

guilds of preyfish, intermediate predators, and predators based on

feeding guilds according to FishBase (Froese and Pauly, 2023).

More specifically, a species was classified as preyfish if

planktivorous, detritivorous or invertivorous and served as prey

to larger adult fishes. Intermediate predators were omnivores,

feeding on plankton, insects, mollusks, and other adult fish of

smaller size, but were also prey to larger adult fishes. Predators

were invertivorous or carnivorous, feeding on other fishes, but were

themselves never prey to other fishes as adults. Our dataset included

15 preyfish, 9 intermediate predators, and 5 predators. All of our

species were native or naturalized.

Fish community data for individual lakes in Alberta were

acquired from the Fish and Wildlife Internet Mapping Tool

(FWIMT), a public map-based repository of fisheries and wildlife

inventory data that allows users to extract spatially referenced data

made accessible by the Government of Alberta’s Ministry of Alberta

Environment and Parks (AEP). Within this repository, each lake’s

datasets were checked for the type of species data recorded (i.e.,

presence/absence, species abundance, stocking records), and extent

of temporal range. We retained only those lakes with presence/

absence datasets to limit biases from unequal sampling effort

between lakes and records of repeated sampling that occurred for

multiple years. However, we must note that there may be limitations

in this dataset as a species absence may not always indicate a real

absence of a fish, but may simply be a result of insufficient sampling

effort. This left us with an aggregated dataset of 20 lakes with

presence/absence data for lake fish communities over the past 50

years, from the 1970s to the 2010s. Each of our 20 study lakes had

been sampled at least once per decade, but not evenly (i.e., not every

10 years), for a total of 100 data points. For example, Bourque Lake

was first sampled in 1979, resampled in 1989, then sampled again in

2000, 2006, and 2016, with the differences between the years being

10, 11, 6, and 10 respectively. The lake that had been sampled

earliest was Wabamun Lake in 1971, while the lake last sampled was

Musreau Lake in 2019. Each of our 20 study lakes were then cross-

referenced by name and coordinates, using Google Maps, the

Watershed Dictionary (https://a100.gov.bc.ca/pub/fidq/

viewWatershedDictionary.do), and the Canadian Geographical

Names Database (CGNDB) (https://www.nrcan.gc.ca/earth-

sciences/geography/querying-canadian-geographical-names-

database/canadian-geographical-names-database/19870) to clarify

the geographical coordinates, while also ensuring that each lake

was the same one sampled over time. On average, annual air

temperatures for our study lakes statistically significantly

increased by 0.88°C over 36.7 years, or 0.02°C/year (t = 0.16, p =

0.015). The majority of regions warmed over the course of this study
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(16 sites). Air temperatures warmed fastest around Bourque Lake at

3.29°C over 37 years or 0.08°C/year.

We acquired 47 environmental variables encompassing climate,

lake geomorphology, and changes in land cover. Climatic data

consisted of monthly averages of precipitation and air temperatures

for January to December, as well as derived seasonal and annual

averages. Monthly climatic data were acquired from ClimateNA, an

MS Windows application containing PRISM (Daly et al., 2008). We

extracted gridded monthly climate normal data from 1971-2000 for

each lake’s coordinate and elevation data at a resolution of 800m x

800m. Lake geomorphological characteristics were acquired from

georeferenced lake records in HydroLAKES, and included latitude,

longitude, lake area (km2), shoreline length and shape, volume (mcm),

average depth (m), average discharge (m3/s), elevation above sea level

(m), and watershed area (km2) (Messager et al. 2016). Changes in land

cover were quantified as GIS derived measures of the average urban,

cropland, pasture, forest, shrubland, and sparse land covers present in

each lake’s watershed area in hectares (ha) during each decade of

sampling. Land cover data were acquired from Historic Land

Dynamics Assessment(HILDA+) (Winkler et al., 2020).

Fish community data consisted of species occurrence (presence/

absence) data for up to 28 species and one hybrid (Coregonus artedi

x C. clupeaformis), from 10 families. The fish assemblages were

dominated by fish species from the Cyprinidae and Salmonidae

families, which collectively accounted for 58% of the species in our

dataset, or 31% (9 species) and 27% (8 species) respectively. All

other fish families, including the Esocidae, Lotidae, Percopsidae,

Cottidae, and Hiodontidae were represented by one species each

(Supplementary Table 3). Several notable species of important

commercial status were present in our data, including northern

pike (Esox lucius), walleye (Sander vitreus), Cisco (Coregonus

artedi), yellow perch (Perca flavescens), lake whitefish (Coregonus

clupeaformis), rainbow (Oncorhynchus mykiss), and bull trout

(Salvelinus confluentus) (Table 1).
2.3 Data analysis

To examine how lake fish communities in Alberta have changed

in our study lakes between the 1970s and 2010s, we first calculated

gamma diversity in each decade (Figure 2). Gamma diversity was

calculated as the sum of unique species across all of our study lakes

during each decade. All analyses were performed in R (R Core

Team, 2021).
2.3.1 How has a-diversity changed over time?
We calculated a-diversity as the sum of unique species

occurrences (total species richness) in each lake at time of

sampling. Next, we examined how a-diversity changed in each

lake over time between the 1970 and 2010 decades. Additionally, we

calculated average a-diversity values per lake from the 1970s to the

2010s (Supplementary Table 2). To understand how environmental

factors are shaping patterns in a-diversity in lake fish communities

in Alberta, we calculated Spearman correlations to quantify the

significance and strength of the relationships between total species
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Catostomus catostomus 0 – 0 + – 0

Catostomus commersonii 0 0 0 – + 0 – 0 0 –

Chrosomus eos

Chrosomus neogaeus

Coregonus artedi 0 0 0 0 0 0 0

Coregonus artedi x Coregonus clupeaformis +

Coregonus clupeaformis 0 0 0 0 0 0 – 0 0

Cottus cognatus

Couesius plumbeus +

Culaea inconstans + +

Esox lucius 0 0 0 0 0 0 – 0 0 0

Etheostoma exile – – +

Hiodon alosoides

Hybognthus hankinsoni +

Lota lota – – – 0 0 – – –

Margariscus margarita +

Notropis atherinoides +

Notropis hudsonius 0 0 + + + + + +

Oncorhynchus mykiss –

Perca flavescens 0 0 + 0 + 0 0 0

Percopsis omiscomaycus + + +

Pimephales promelas

Prosopium williamsoni

Pungitius pungitius +

Rhinichthys cataractae

Salmo trutta

Salvelinus confluentus –

Salvelinus namaycush

Sander vitreus 0 0 0 + 0 0 – 0 0

+ represents overall species gains, - represents overall species losses, and 0 for no species change. A blank cell represents the absence of a species in that
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richness and climate, geomorphology, and land cover. Strongly

correlated variables based on variance inflation factors greater than

5 were removed from subsequent correlational analyses. Spearman

correlations were calculated and plotted using corrplot (Wei and

Viliam, 2021).
2.3.2 How has beta diversity changed over time?
We quantified changes in community composition (b-diversity) in

each of our lakes over the past five decades by calculating temporal b-
diversity indices (TBI). TBI was calculated as a comparison between

two decades. Here, we present the comparison between the first and

last decades. TBI measures the change in species assemblages between

the same site at different time points (Legendre, 2019). TBI values were

calculated as dissimilarity (D) values using the Jaccard index and

ranged from 0 – 1, with values approaching 1 indicating that the two

communities are completely dissimilar (Jaccard, 1908; Legendre, 2019;

Magurran et al., 2019).While a-diversity can indicate broad changes in
biodiversity such as the pool of species diversity, b-diversity measures

calculated as TBI values also provide insight into the losses and gains of

species that can indicate changes to community composition even

when the number of species present remains the same (Magurran et al.,

2019). We also identified which fish species were lost or gained by each

lake (Supplementary Table 1), as well as patterns in the losses and gains

of species in terms of thermal and trophic guilds. Temporal beta

diversity indices were calculated using the adespatial package (Dray

et al., 2022).
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To understand how environmental factors may be shaping b-
Diversity patterns in lake fish communities in Alberta, we

conducted a redundancy analysis (RDA) to summarize the

variation in the occurrence of fish species explained by time,

climatic, lake geomorphological, and land cover environmental

factors. We retained the environmental characteristics with

variance inflation factor values of less than 5 to reduce

multicollinearity between environmental variables. We performed

a second redundancy analysis to examine the influence of the

environmental factors on average total species richness, net gain,

and net loss of species between the 1970s and 2010s amongst fish

communities in our set of study lakes. Lastly, we performed an

ANOVA to identify the significant variables influencing b-Diversity
over the last 50 years. The Redundancy Analysis were run in the

vegan package in R (Oksanen et al., 2008).
3 Results

Gamma diversity increased within our set of Albertan lakes until

the end of the 2000s and then declined subsequently. In the 1970s,

there were 19 species, increasing to 24 species by the 2000s. By the

end of the 2010s, there were 21 species in our study lakes (Figure 2).
3.1 How has alpha diversity changed
over time?

In general, a-diversity within individual lakes in Alberta

remained low across the entire 50-year sampling period between

1971 and 2019, averaging 7.5 species per lake. Each lake rarely

hosted more than 10-13 species during any decade out of a total of

30 potential species. The lakes with the highest average species

richness over the 50-year period were Wolf and Lesser Slave Lake,

with 9.8 species per lake (Supplementary Figure 1).

Despite the low biodiversity, a-diversity in many individual lakes

also fluctuated between lakes and across decades. Generally, a-
diversity increased from the 1970s to 2000s, followed by a decline

in the 2010s. More specifically, during the 1970s, species richness

averaged 6.75 across all lakes, ranging from 4 species (Winagami

Lake) to 16 species (Primrose Lake) per lake (Figure 3). However,
FIGURE 3

Average a-diversity per decade in our study lakes in Alberta. The data points represent a-diversity for each lake for the specified decade.
FIGURE 2

Patterns in gamma diversity in our study lakes between 1970 and
2019. Initial regional diversity consisted of 19 species, but declined
to 18 species over the next decade, before increasing to 24 species
by the 2000s, and declining again during the 2010s to 21 species.
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during the next decade in the 1980s, even though species richness

averaged 6.7 species, Primrose Lake lost 9 species, thus a-diversity
ranged from 4 species (Winagami Lake) to 10 species (Rock Island

Lake). During the 1990s, changes in a-diversity within individual

lakes continued to fluctuate, with species richness averaging 7.6 and

ranging from a minimum of 5 species (Winagami & Bourque Lakes),

to a maximum of 11 species at Lake Newell. a-diversity peaked in the
2000s, at an average of 8.6 fishes, with 7 lakes hosting 10 or more

species and at a maximum of 13 species per lake (Wolf and Lesser

Slave Lakes). However, a-diversity decreased for some lakes, such as

Muriel Lake which lost 6 species, reaching an a-diversity value of 3,
despite previously experiencing an increase in a-diversity of 9 species
during the 1990s. By the 2010s, a-diversity in many lakes decreased,

such that only five lakes still had more than ten fish species. The fish

communities in this set of Albertan lakes were composed almost

exclusively of coldwater (n=16) and coolwater fishes (n=11).

However, there have been periodic occurrences of two warmwater

prey fishes, Pimephales promelas (fathead minnow) and Chrosomus

eos (northern redbelly dace) over the 50-year study period, although

these warmwater fishes did not successfully establish. There did not

appear to be consistent patterns of diversity changes by functional

groups (Table 2). These fishes first appeared in the 1980s, but were no

longer present after the subsequent two decades.

Lower elevation and larger watershed areas were consistently

identified as important factors explaining higher total species

richness in our study lakes. However, other environmental

characteristics were statistically significant depending upon the

species richness metric used. For example, when considering total

species richness per lake, we found that species richness was higher

in deeper lakes (r = 0.23, p < 0.05) with larger watershed areas (r =

0.43, p < 0.05) at lower elevations (r = -0.26, p < 0.05), and greater

urban land cover (r = 0.23, p < 0.05) (Figure 4). When considering

average total species richness per lake over time, only watershed

area (r = 0.74, p < 0.05) was positively correlated with total species

richness, whereas elevation (r = -0.45, p < 0.05) was negatively

correlated with total species richness (Figure 4). When considering

total species richness during the 1970s, the initial decade of

sampling, total species richness was positively correlated with

watershed area (r = 0.52, p < 0.05), and negatively correlated with

elevation (r = -0.61, p < 0.05) and average air temperature (r = -0.57,

p < 0.05) (Figure 4). However, during the 2000s, the decade of peak

average total species richness, only a larger watershed area was

correlated with higher species richness (r = 0.57, p < 0.05)

(Figure 4). In the 2010s, the final decade of sampling, the only

significant environmental variables with total species richness were

watershed area (r = 0.69, p < 0.05), and average air temperatures (r

= -0.56, p < 0.05; Figure 4). The lakes with warmer temperatures

tended to have lower total species richness, with most lakes with

higher species richness in the 0 – 4°C range.
3.2 How has beta diversity changed
over time?

Between 1970 and 2019, mean temporal beta diversity steadily

increased from 0.30 to 0.44 (Figure 5A). Generally, more lakes
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gained more fish species than lost fish species (Figure 5B). However,

in the last decade, there were fewer species gained and more species

lost. Over the entire time period, most lakes gained more species

overall than lost more species, averaging a net gain of 0.95 species

(Figure 5B; Table 3). Thirteen lakes experienced net gains ranging

from 1 - 6 species, averaging 2.5 species gained. Five lakes

experienced net losses, ranging from 2 to 9 species, or 3.6 species

lost. However, this figure is skewed by the 9 species lost by Primrose

Lake; otherwise, these five lakes lost 2 - 3 species only, or an average

of 1.8 species lost. Overall, each lake experienced different changes

in terms of gains or losses in species. Furthermore, fish community

composition in our study lakes also changed over time (Table 3).

Species composition was associated with elevation, watershed

area, average depth, presence of shrubland, and urban land covers,

as well as shoreline shape. The redundancy analysis explained 23%

of the variation (Figure 6A; R2 = 0.31; R2
adj = 0.23). For example, we

found that cisco (Coregonus artedi), lake whitefish (Coregonus

clupeaformis), northern pike (Esox lucius), and walleye (Sander

vitreus) were more likely to occur in lakes experiencing increasing

urban land cover over the past 50 years. Burbot (Lota lota) and

longnose sucker (Catostomus catostomus), were more likely to

occur in deeper lakes with larger watersheds and more shrubland

cover. Finally, brassy minnow (Hybognathus hankinsoni), and

allegheny pearl dace (Margariscus margarita) were more likely to

occur in lakes at higher elevations, or higher levels of annual

precipitation and temperature. Additionally, species that occurred

in lakes with more pasture and sparse land covers and or lakes at

higher elevations or higher levels of annual precipitation and

temperature did not generally co-occur with species in lakes with

more complex shorelines and a higher quantity of urban land cover.

To quantify beta diversity, we calculated net and scaled losses

and gains and related them to environmental gradients in our

model. The redundancy analysis explained 58% of the variation

(Figure 6B; R2
adj = 0.58). Lakes with more net losses in species were

associated with larger watersheds, and more urban land cover as

well as higher precipitation. In contrast, lakes that experienced a net

gain in species were associated with more shrubland land covers or

had more complex lake shorelines as well as more sparse land cover

to a lesser extent. In general, species assemblages appear to have

been more strongly influenced by gains in species diversity, rather

than species losses. The exceptions to this were Musreau Muriel and

Primrose Lakes, where between the 1970s and 2010s, they not only

experienced a net gain in species rather than loss, but incoming

species also replaced prior assemblages.
4 Discussion

Temporal patterns of biodiversity are relatively understudied,

particularly in freshwater fish communities. The paucity of long-term

community data spanning decades (Magurran et al., 2019), complex

dynamics of biotic homogenization and differentiation (Olden and

Poff, 2003), differential responses of environmental stressors on

varying communities (Iacarella et al., 2018; Lindholm et al., 2020),

and the interacting effects of multiple environmental stressors over

space and time (Murdoch et al., 2020a) all contribute to lack of clear
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TABLE 2 Alberta freshwater fish species list with common name, family, thermal (warmwater, coolwater, coldwater) and trophic guilds (preyfish, intermediate predator, predator), and habitat (pelagic,
benthopelagic, benthic) and changes in lake occupancy for each of our study fish species and five decades of sampling.

90s 2000s 2010s
Net

change
Average

Lake Occupancy

6 6 7 -4 6.8

18 18 16 -2 18

1 2 0 0 0.6

0 0 1 0 0.4

11 11 12 1 11.4

0 1 2 2 0.8

19 18 18 0 18.2

0 0 0 -1 0.2

0 2 2 2 1

1 5 3 2 2.2

19 18 18 0 15.3

4 7 3 0 3.2

0 0 0 0 0.2

1 1 1 1 0.8

15 14 7 -7 13.6

0 2 2 2 1

2 2 1 0 1

9 16 17 12 10

1 0 0 -1 0.3

17 18 17 4 13.8
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Species Name
Common
name

Family
Thermal
guild

Trophic
Guild

Abbr. 1970s 1980s 19

Catostomus catostomus longnose sucker catostomidae coldwater preyfish cc1 11 4

Catostomus commersonii white sucker catostomidae coolwater preyfish cc 18 20

Chrosomus eos
northern
redbelly dace leuciscidae warmwater preyfish ce

0 0

Chrosomus neogaeus finescale dace cyprinidae coolwater preyfish cn 1 0

Coregonus artedi cisco salmonidae coldwater
intermediate
predator ca

11 12

Coregonus artedi x
Coregonus clupeaformis whitefish hybrid salmonidae coldwater

intermediate
predator cc4

0 0

Coregonus clupeaformis lake whitefish salmonidae coldwater
intermediate
predator cc2

18 18

Cottus cognatus slimy sculpin cottidae coldwater preyfish cc3 1 0

Couesius plumbeus lake chub leuciscidae coldwater preyfish cp 0 0

Culaea inconstans brook stickleback gasterosteidae coolwater preyfish ci 1 1

Esox lucius northern pike esocidae coolwater predator el 18 19

Etheostoma exile iowa darter percidae coolwater preyfish ee 3 2

Hiodon alosoides goldeye hiodontidae coolwater
intermediate
predator ha

0 1

Hybognthus hankinsoni brassy minnow cyprinidae coolwater preyfish hh 0 1

Lota lota burbot gadidae coldwater
intermediate
predator ll

14 18

Margariscus margarita
allegheny
pearl dace leuciscidae coolwater preyfish mm

0 1

Notropis atherinoides emerald shiner leuciscidae coolwater preyfish na 1 0

Notropis hudsonius spottail shiner leuciscidae coldwater preyfish nh 5 3

Oncorhynchus mykiss rainbow trout salmonidae coldwater predator om 1 1

Perca flavescens yellow perch percidae coldwater
intermediate
predator pf

13 14

https://doi.org/10.3389/fevo.2023.1129356
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wu et al. 10.3389/fevo.2023.1129356

Frontiers in Ecology and Evolution 09
evidence of temporal betadiversity across studies. Generally,

environmental stressors are expected to increase temporal beta

diversity (McGill et al., 2015). Notably, we observed an overall

increase in gamma, alpha, and beta diversity from the 1970s-2009,

followed by a decrease in all measures of diversity in the 2010s. We

highlighted the role of temporal heterogeneity in diversity metrics in

our study region. The fish communities in our set of lakes are clearly

responding to environmental stressors, including changes in climate

and land use. Only time will tell if fish biodiversity within these lakes

will continue to decline in response to environmental degradation or

rebound back to the highest recorded biodiversity levels of the 2000-

2009 decade.
4.1 How has alpha diversity
changed over time?

The richness offish species was relatively low in our set of study

lakes found at relatively higher elevations in the province of Alberta,

Canada. On average, lakes comprised less than 8 fish species. For

both gamma and alpha diversity, we found that between the 1970s

and the 2000s, species diversity increased in our alpine study lakes.

However, after 2010, species diversity decreased. Overall, we found

that many of these lakes gained new fish species until 2010, after

which these lakes generally began to lose fish diversity. Notably,

only five lakes had more than ten fish species by the end of the

sampling period. Even the lake with the highest total species

richness at any point during the 50-year sampling period,

Primrose Lake, which was found to have 16 species during the

1970s, averaged 8.2 species over the entire temporal range, as by the

1980s, it had only 7 species, and reached a minimum of 5 species by

the 2010s. In contrast, the lake with the fewest species at any point

during the 50-year sampling period was Muriel Lake during the

2010s, with 2 species, yet it averaged 4.8 species over the entire

temporal range.

Despite the low richness of fish species, we observed expected

patterns of association between species richness and environmental

variables. For example, we found that species richness was higher in

deeper lakes with larger watershed areas. The observation that

species diversity is higher in larger areas has long been described

across ecological studies (Arrhenius, 1921; Williams, 1943;

Macarthur, 1965), and lakes are no exception (Barbour and

Brown, 1974; Brucet et al., 2013). Larger and deeper lakes tend to

have more complex habitats and greater environmental stability

than smaller and shallower lakes to host higher species diversity (Irz

et al., 2004; Brucet et al., 2013). Further, we found that there were

fewer fish species in lakes found at higher elevations. Many studies

have shown that higher stress abiotic environments at higher

elevations often limits growth, survival, fecundity, and species

ranges (Louthan et al., 2015), although climatic warming could

increase the invasion risk of alpine systems (Holzapfel and

Vinebrooke, 2005; Rahel and Olden, 2008; Pauchard et al., 2016).

Finally, there was a weak positive correlation between higher species

richness in lakes and urbanized regions. Urbanization has a

complex relationship with species diversity across taxa (Luck and

Smallbone, 2010). Urbanization may be associated with a higher
T
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introduction of species that are desirable to humans. For example,

we found more sport and commercially important fishes in

urbanized landscapes in Alberta, such as cisco and lake whitefish.

Higher urbanization may be associated with a higher influx of

nutrients and primary production which have been associated with

higher fish species diversity. For example, in a study from 1632 lakes

in 11 European countries, primary productivity was the most

important determinant of fish density (Brucet et al., 2013).

However, as can often occur in fish community composition

studies, our redundancy analysis explained only a small fraction

of the variation in species occurrence (Figure 6A; R2 = 0.31; R2
adj =

0.23) as associated with our environmental variables. In our RDA,

we considered elevation, watershed area, average depth, presence of

shrubland, and urban land cover. This suggests that factors not

considered within our study may be influencing species

distributions including other types of land cover (i.e. cropland,

pasture, forest etc.), ecological interactions (Soukup et al., 2022),

and or habitat structures and measures of habitat complexity

(Smokorowski and Pratt, 2007; Wellborn et al., 1996).

Furthermore, biases associated with sampling, including the

relative ease of catching larger fishes compared to smaller prey,

the difficulty of sampling fishes that are found in more

complex vegetation, and species that are highly motile, can

reduce explained variation in multivariate analyses (Sharma and

Jackson, 2007).
FIGURE 4

Spearman correlation coefficients between species richness and
lake morphological (shoreline length and shape, average depth (m),
elevation above sea level (m), and watershed area (km2)), climatic
(annual precipitation and air temperature), and land use (urban,
pasture, shrubland, sparse) characteristics. The plot only shows
significant correlations, that is empty spaces had non-significant
correlations (p > 0.05).
A

B

FIGURE 5

(A) Changes in dissimilarity of fish community composition and its gain and loss components between the 1970s and 2010s; (B) Loss-gain plot
summarizing fish species losses and gains from fish community composition for 20 lakes sampled between 1970-2019. The green line indicates the
line where species gains equal losses. The position of the red line above the green line indicates that on average, there were more species gains
than species losses in our study lakes.
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4.2 How has beta diversity
changed over time?

Many environmental stressors associated with driving the

extinction or extirpation of many climate-sensitive freshwater

species have intensified over the past 50 years in our study lakes,

including non-native species introductions (Eilers et al., 2007),

recent increases in urban land cover and their associated water

quality impacts, as well as climate pressures from increased annual

precipitation and temperature (Reid et al., 2019). However, our

study lakes in Alberta may be experiencing an increase in
Frontiers in Ecology and Evolution 11
biodiversity. Between 1971 and 2019, mean temporal beta

diversity increased from 0.30 to 0.44, with the strongest changes

in species assemblages taking place during the 1990 – 2000s,

reflecting similar changes in alpha diversity in the same decades.

Over the entire time period, most lakes gained more species overall

than lost more species. Only two lakes, Lakes Newell, and Orloff

lake experienced no net changes in species richness, although they

also experienced substitutions by other species. For example, Lake

Newell hosted a population of white sucker (Catostomus

commersonii) from the 1970s until 2017 and gained a population

of Walleye (Sander vitreus) after 1988, and a population of spottail
TABLE 3 Fish alpha and beta diversity measures for each lake in our study.

ID
code

Watebody
Name

Total Species over
study period

Average
Total Species

Species Rich-
ness Change

Net
Species
Loss

Net
Species
Gain TBI

P-
value

1
BOURQUE
LAKE 10 7 -2 2 0 0.22 0.948

2 ETHEL LAKE 9 7.4 -2 2 0 0.22 0.945

3
FAWCETT
LAKE 11 8.6 2 1 3 0.4 0.6492

4 LAKE NEWELL 12 7 0 2 2 0.57 0.19

5
LESSER
SLAVE LAKE 14 9.8 6 0 6 0.50 0.4071

6 MOOSE LAKE 12 9.2 4 0 4 0.36 0.7202

7 MURIEL LAKE 11 4.8 -3 5 2 1
2.00E-
04

8
MUSREAU
LAKE 9 5.8 -2 4 2 0.86 0.0031

9

NORTH
WABASCA
LAKE 11 8.6 2 1 3 0.36 0.7324

10 ORLOFF LAKE 8 6.4 0 1 1 0.28 0.8592

11 PEERLESS LAKE 12 8.4 6 0 6 0.50 0.4154

12
PRIMROSE
LAKE 17 8.2 -9 10 1 0.65 0.0727

13
RATTLESNAKE
LAKE 9 6.4 1 1 2 0.43 0.5536

14
ROCK
ISLAND LAKE 12 8.4 3 0 3 0.33 0.8016

15 SPENCER LAKE 9 6.4 1 0 1 0.17 0.9592

16
STURGEON
LAKE 10 7.2 1 1 2 0.38 0.7021

17
WABAMUN
LAKE 9 7 3 0 3 0.38 0.6969

18
WHITEFISH
LAKE 10 8 1 1 2 0.33 0.8015

19
WINAGAMI
LAKE 6 5 2 0 2 0.33 0.7988

20 WOLF LAKE 16 9.8 5 1 6 0.5 0.4063
front
Furthermore, we provide the Temporal Beta Diversity Index (TBI) for each lake between the first and last decade and its associated significance p-value. An ID code is included to correspond to
the numbered ID within Figure 5B.
iersin.org
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shiner (Notropis hudsonius) in 1997. A population of longose sucker

(Catostomus catostomus) was also present in 1974, but not in 1988,

present again in 1997, but no longer sampled afterwards.

Fish community compositions in our study lakes have changed

over time. The five most common species across the 50-year

sampling period were lake whitefish (Coregonus clupeaformis),

white sucker, northern pike (Esox lucius), and yellow perch (Perca

flavescens). The most common fishes were coolwater fishes, with the

exception of lake whitefish, a coldwater species. In contrast, the least

common species were the goldeye (Hiodon alosoides), which was

found only once in 1986 in Lesser Slave Lake; slimy sculpin (Cottus

cognatus), which was found only once in Primrose Lake in 1978;

brown trout (Salmo trutta) which was found only twice in Lake

Newell in 1988 and 1997; and finescale dace (Chrosomus neogaeus)

which was found only twice; in Peerless Lake in 2012 and Wolf lake

in 2013. Only two species exhibited rapid and sudden changes in

lake occupancy over our 50-year sampling period: spottail shiner

and burbot (Lota lota). Spottail shiners are coolwater minnow fish

that originally occupied only 5 lakes in Alberta, but eventually

expanded into 16 lakes by the 2000s, before being lost from 4 lakes,

with a net expansion of 7 lakes. Burbot are a native coldwater and

deep-water species that originally occupied 14 lakes and expanded

into 18 lakes by the 1980s. However, by the 2010s, burbot was found

only in 7 lakes.

Overall, in our study of this set of Albertan lakes, we found that

over the entire time period, most lakes gained more species overall

than lost species, averaging a net gain of one fish species per lake.

Although most lakes lost one or two fish species, many also gained at

least two or three more. Although changes to species assemblages

were caused by a wide variety of species, only a few species expanded

into or were lost from multiple lakes between the 1970s and 2010s.

The species that were lost from multiple lakes were mostly coldwater

fishes, such as burbot and longnose sucker. Four other species were

also lost from one or two lakes, including bull and rainbow trout,

slimy sculpin, and white sucker, many of which were already found in

few lakes. Coldwater fishes typically require cold, well oxygenated

waters to thrive (Scott and Crossman, 1973; Magnuson et al., 1979).

In response to water temperature warming, coldwater fishes have
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been increasingly lost from lakes where water temperatures have

begun to exceed the thermal tolerances of coldwater fishes (Sharma

et al., 2011; Van Zuiden and Sharma, 2016; Wu et al., 2022).

Conversely, coolwater fishes were expanding into our study lakes

over the 50-year period. This included important sport and

commercial fisheries, such as walleye and yellow perch, but also

important coolwater forage fishes, such as spottail shiner. In high

northern lakes and rivers, other studies have detected the expansion

of coolwater fishes (Lehtonen, 1996; Campana et al., 2020; Murdoch

et al. 2020b). For example, in Alaskan streams, climate warming

increased fish diversity and abundance, such that coolwater species

increased their abundance, productivity, and ranges, whereas

coldwater fishes declined (Murdoch et al. 2020b).
5 Conclusions

Interestingly, we found consistent patterns of increasing

biodiversity across the study lakes with increasing gamma, alpha,

and beta diversity indices in response to changes in climatic stressors

and anthropogenic activities from 1970-2009. However, gamma,

alpha, and beta diversity began to decline after 2010. The

combination of the expansion of coolwater fishes and reduction in

coldwater fishes, dissimilar fish assemblages were able to establish

across this set of Alberta lakes. A similar case was noticed with fish

communities in California, where fish assemblages became

progressively dissimilar (Marchetti et al., 2001). The increase in

beta diversity may or may not be temporary with continued

pressures from accelerated climate warming and intense land use

changes, which differentiate the fish assemblages among different sites

(Socolar et al., 2016). This highlights the scale dependency of the

processes affecting species composition scale (Marchetti et al., 2001).

Much work remains to understand the drivers, mechanisms,

and patterns in temporal biodiversity. First and foremost, consistent

and systematic long-term ecological monitoring programs,

particularly for biotic variables, including species composition,

abundance, and life history traits are required (Lindenmayer

et al., 2022). Large knowledge gaps remain in quantifying how
A B

FIGURE 6

Redundancy analysis of fish community and lake morphological, climatic, and land use characteristics for: (A) species occurrence, and (B) beta
diversity metrics. Only the first two RDA axes are shown explaining 23% of the variation for fish species occurrence and 58% of the variation in beta
diversity metrics. Abbreviations are used for fish species and the codes are provided in Table 2.
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and why communities are changing over time, the temporal scale at

which communities respond to environmental stressors, how

environmental stressors affect lakes differently based on the

composition of generalists and specialists, non-indigenous species,

or varying life history traits, and at which scales biotic data should

be gathered to answer these questions. Although there are very few

case studies quantifying temporal biodiversity patterns

(Winegardner et al., 2017; Zeni et al., 2020; Lindholm et al.,

2021), there are not yet clear results on whether biodiversity is

increasing or decreasing. For example, we would have hypothesized

that fish biodiversity should have decreased in lakes in such close

proximity to oilsands and at higher elevations where climate is

changing rapidly. For example, both Primrose and Wolf Lakes are

relatively close to oilsands. Although Primrose Lake has

experienced large declines in fish biodiversity, Wolf Lake has seen

gains in fish species.

Nevertheless, we hope that this study can begin to provide a

framework to analyze temporal patterns in biodiversity and serve as

a guide to advise on conservation efforts to protect endemic species

and freshwater ecosystems from intensifying co-occurring

environmental threats (Socolar et al., 2016). Specifically, by

mapping the temporal changes of alpha diversity, it is possible to

identify the biodiversity hotspots that experience major species

losses, such as Primrose Lake, which should be prioritized in the

conservation context (Fugère et al., 2016). On the other hand, the

relationship between environmental stressors and ecological

patterns involving local species introductions and extirpations can

be investigated by measuring the changes in beta diversity (Socolar

et al., 2016; Sarker et al., 2019; Zhang et al., 2022). Long-term

studies of biodiversity are integral at providing valuable insights to

evaluate the impacts of environmental disturbance on aquatic

communities, thereby subsequently allowing us to predict the

consequences of global environmental change on our

freshwater communities.
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