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Hervé Lormee,
French Office for Biodiversity (OFB), France
Jhih-Rong Liao,
Tokyo Metropolitan University, Japan

*CORRESPONDENCE

Christopher Cambrone

christopher.cambrone@caribaea.org

RECEIVED 09 January 2023
ACCEPTED 28 June 2023

PUBLISHED 24 July 2023

CITATION

Cambrone C, Jean-Pierre A, Bezault E
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The family of Columbidae, including pigeons and doves, remains understudied

despite their patrimonial value and high ecological and conservation relevance.

Currently, 353 extant columbid species are listed in the IUCN red list, with about

20% of them being threatened with extinction. However, there has been little

effort so far to synthetize the available information on factors influencing

extinction risk and the allocation of research effort among columbid species.

In this context, using random forest models, the present study aims at

quantitatively assessing to what extent environmental, life history and socio-

political factors may drive the extinction risk of pigeons and doves and explain

differences in scientific attention among species. We found that high risk of

extinction in columbids is associated with small historical range, exposure to

invasive alien mammals and living in isolated islands and/or at low altitudes, while

the probability of population decline is associated with species body size,

surrounding human density and narrow habitat breadth. We also evidenced a

large disparity between species or population extinction risk and scientific

interest. Indeed, most of the studies on columbids have been conducted by

scientists from North America and Western Europe on their local species,

whereas species from biodiversity hotspots, which are more at risk of

extinction, have comparatively received little attention. This unequal

acquisition of knowledge creates gaps that deserve to be filled in order to have

a good appreciation of extinction risk in columbids and associated threats,

through fair transnational cooperation, academic training and regional

coordination in conservation-oriented research on columbids.

KEYWORDS

biogeography, doves, endangered species, extinction risk, pigeons, scientific attention,
threatened species
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1 Introduction

The rate of biodiversity loss is currently increasing at an

unprecedented rate, as a direct consequence of habitat loss,

fragmentation and degradation, biological invasions, and climate

change (Balmford et al., 2003; Barnosky et al., 2011). However, the

extent and rate of biodiversity loss are not uniform around the globe

(Howard et al., 2020), nor across taxa (Pimm et al., 2014). As

available funding for conservation research and actions is limited

(Evans et al., 2012; Waldron et al., 2013), there is an obvious need to

define priorities for optimizing resource allocation (Brooks et al.,

2006). Ideally, prioritization mechanisms should be based on sound

and reliable scientific evidence (Williams et al., 2020). However,

important gaps in knowledge still exist, particularly in several

biodiversity-rich countries, such as Haiti or sub-saharan African

countries, where ongoing conflicts, political instability and poor

access to facilities and funding severely hamper the development of

field research and monitoring programs (Hanson et al., 2009;

Siddig, 2014; Conteh et al., 2017; dos Santos et al., 2020; Vallès

et al., 2021). In addition to spatial bias, the conservation literature

tends to give a disproportionate attention to emblematic,

charismatic, and flagship species (Andelman and Fagan, 2000;

Brambilla et al., 2013; Mammides, 2019; Habel et al., 2021).

Consequently, there is a certain mismatch between research

efforts and conservation priorities (Christie et al., 2021).

Avian conservation biology research is no exception to the rule

(de Lima et al., 2011; Ducatez and Lefebvre, 2014; Murray et al.,

2015; Roberts et al., 2016; Buechley et al., 2019). Various factors,

such as environmental conditions, phylogeny, life-history traits,

levels of anthropogenic pressure, or socio-political factors,

independently or jointly, can affect the risk of extinction of avian

species (Owens and Bennett, 2000). For instance, extinction risk is

not distributed randomly among avian families and in relation to

fecundity and body size (Bennett and Owens, 1997). On the other

hand, the severity of extinction risk of avian species varies in

relation to socioeconomic factors and human pressure (Olah

et al., 2016; Chen et al., 2019). Similarly, variation in the level of

scientific attention among bird species is significantly influenced by

phylogeny, geographic range and ecological life history traits, with

non-threatened species being studied twice as much as threatened

ones (Ducatez and Lefebvre, 2014). For instance, although the

Andean Flamingo, Phoenicoparrus andinus, is the least abundant

flamingo in the world and is listed as Vulnerable by the IUCN

Species Survival Commission (Derlindati et al., 2014), it has

received far less attention than the Least Concern Greater

Flamingo, Phoenicopterus roseus (Johnson and Cézilly, 2007;

Geraci et al., 2012). In addition, the majority of avian

conservation research is conducted in developed countries and/or

by North American and western European researchers, confirming

the mismatch between priorities and capacity for research and

conservation (Brito and Oprea, 2009; Vallès et al., 2021).

In particular, Columbidae, the only extant family of

Columbiformes, is particularly understudied, despite its

patrimonial value and high ecological and conservation relevance

(Walker, 2007; McKenzie and Robertson, 2015; Devenish-Nelson

et al., 2019; Yarwood et al., 2019). Pigeons and doves are one of the
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oldest and most diverse extant lineages of birds. However, their

evolutionary radiation and phylogeny remain poorly resolved

(Soares et al., 2016), with the creation of new genus or species

and the slimming of other genus based on molecular or

paleontological evidence (Johnson et al., 2001; Banks et al., 2013;

Sangster et al., 2018; Steadman and Takano, 2020). Currently, the

family Columbidae includes about 370 species that are distributed

on all continents, except for the high Artic and Antarctica (del Hoyo

et al., 1997; BirdLife International, 2022). They occur in various

habitats (del Hoyo et al., 1997; Gibbs et al., 2001; Carvalho et al.,

2015; Fey et al., 2015; Monterrubio-Rico et al., 2016), where they

provide important ecosystem services, particularly through seed

dispersal (Meehan et al., 2005; Wotton and Kelly, 2012; Costan and

Sarasola, 2017; Ando et al., 2021). However, a significant proportion

of columbid species are endangered or threatened with extinction

(Bennett and Owens, 1997; Walker, 2007; Rivera-Milán et al., 2015;

Lees et al., 2021). This results in habitat fragmentation and

degradation, introduced predators, competition with invasive

columbid species, excessive hunting pressure and ineffective

management, and trade (Walker, 2007; Carvalho et al., 2015;

Camacho-Cervantes and Schondube, 2018; Lamelas-López et al.,

2020; Lormée et al., 2020; Moreno-Zarate et al., 2021; Bacon et al.,

2023). The conservation status of several species remains uncertain,

mainly due to lack of data (del Hoyo et al., 1997; Walker, 2007).

This is particularly true of secretive species or species with very

restricted geographical range for which traditional study methods

might not be appropriate (Cambrone et al., 2021). More to the

point, little effort has been made so far to synthetize the available

information on the factors influencing the conservation status of

columbid species and research effort. To the best of our knowledge,

only Walker (2007) provided a short review of the main drivers of

extinction risk for columbid species based on a relatively simple

statistical analysis of data available from BirdLife International,

emphasizing the vulnerability of insular species. We went further in

the present study by quantitatively assessing to what extent

environmental, life history traits and socio-political factors may

(i) drive the extinction risk of pigeons and doves and (ii) explain

differences in scientific attention among species. To that end, we

relied on random forest (RF) models and an updated database

(including both IUCN conservation status and population trends of

columbid species) especially compiled for this study.
2 Materials and methods

2.1 Database creation

2.1.1 Information about columbid species
We obtained data for the 369 species from three main sources:

Birdlife international (BirdLife International, 2021), the website

Birds of the World (https://birdsoftheworld.org) and Pigeons and

Doves: A Guide to the Pigeons and Doves of the World (Gibbs et al.,

2001). We extracted information on biological, ecological and

environmental traits that are likely to influence extinction risk

(see Buechley et al., 2019). We classified explanatory variables

into four categories: “environment”, “behavior and life history”,
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“anthropogenic pressure” and “socio-political indicators” (Table 1).

In order to estimate each species’ extinction risk, we relied on IUCN

Red List categories and global population trends (BirdLife

International, 2021). We classified species as threatened (critically

endangered CR, endangered EN and vulnerable VU), non-

threatened (near-threatened NT and least-concern LC), extinct

(extinct EX and extinct in the wild EW), or data deficient.

Because non-threatened species do not necessarily show stable or

increasing population trends (Figure 1), we used global population

trends of species (Rodrigues et al., 2006) as a second proxy of

extinction risk. Species were thus classified as increasing, stable or

decreasing according to BirdLife International (2021).

2.1.2 Scientific attention
In order to quantify scientific attention given to each columbid

species, we relied on the number of peer-reviewed articles retrieved

from an extensive bibliographic search on all databases of the Web

of Science (conducted by mid-2021). We performed searches using

current and past binomial scientific names, vernacular names in

English, French and Spanish and all recognized synonyms. To

compile all possible names of species, we used the websites

Avibase (https://avibase.bsc-eoc.org) and Birds of the World. We

considered several “research areas”, as defined in the Web of

Science, as all studies bringing ecological knowledge about a

species may be of help for its conservation (Courchamp et al.,

2015). Each search was conducted using the following procedure:

“TS=”

(in order to search following terms in title, abstract and

keywords of articles)

+

Full binomial scientific names, vernacular and all recognized

synonyms in independent quotes, separated by “OR”

+

“AND SU=(“Ecology” OR “Biodiversity and Conservation”

OR “Ornithology” OR “Evolutionary Biology” OR “Zoology”)”

(to limit searches to studies related to following

science disciplines: Ecology, Conservation Biology, Ornithology,

Evolutionary Biology/Ecology and Zoology)

+

“NOT SU=(“Veterinary Sciences” OR “Neurosciences and

Neurology” OR “Anthropology”)”

(to exclude any study related to veterinary sciences,

neurosciences and neurology, and anthropology).

We also performed a global search in order to estimate national

contributions to research on Columbidae, assessed from the

affiliations of authors of peer-reviewed articles. To that end, we

used the same search nomenclature, except that we replaced names

of species and their synonyms by “Columbidae”, “Columbiformes”,

“Pigeon” and “Dove”, separated by the Booleans operator “OR”. In

order to exclude all articles on Pigeon pea (Cajanus cajan), we

added: NOT TS=(“Pigeon*pea*” OR “Cajanus cajan”).
2.1.3 Spatial analyses (GIS)
We used QGIS (3.10.11) to calculate spatial statistics for

explanatory variables used in our analyses (Table 1 and
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Supplementary Material 1, Method A1). We obtained various

raster and polygon files for historical species range from several

sources (Table 1), and rasterized polygons representing area

distribution of species using scientific attention (log[number of

articles + 1]) as value for the raster unit (square of 400km²). Since,

polygons of several species may overlap, we beforehand calculated

the mean of scientific attention per raster unit.
2.2 Random forest models

We relied on random forest models because this machine-

learning technique has been increasingly used in ecological and

macro-ecology studies (Cutler et al., 2007; Kampichler et al., 2010)

to assess the impact of various drivers on the extinction risks of a

given group of species (Davidson et al., 2012; Di Marco et al., 2014;

Di Marco et al., 2018; Buechley and Şekercioğlu, 2016; Buechley

et al., 2019). In particular, the method is robust to both phylogenetic

inertia and outliers, and can include both continuous and

categorical variables (Murray et al., 2011; Davidson et al., 2012;

Buechley et al., 2019). This technique is therefore particularly

suitable for columbids given that their phylogenetic relationships

are not fully resolved due to scarce sampling of taxa and limited

availability of sequence data (Khan and Arif, 2013; Bruxaux

et al., 2018).

We excluded extinct species and data deficient species from our

analyses relying on RFs (Figure 1). We performed three different RF

models to identify the factors influencing extinction risk,

population trends, and scientific attention among columbids,

including all traits listed and detailed in Table 1 as explanatory

variables. We considered a wider range of threats than the ones

considered by IUCN, thus reducing the risk of circularity when

using IUCN status as a proxy of extinction risk of columbid species.

All models were performed using the R software (v4.1.1, R Core

Team, 2021), using RandomForest package (Liaw and Wiener,

2002). Forests consisted of 10,000, 10,000 and 1,000 classification

trees for models implying respectively extinction risk, population

trends and scientific attention, in order to reach the lowest value of

Out Of Bag errors (OOB; i.e., the percentage of error in predicting

the class of these statistical individuals across the random forest

formation, see Supplementary Material 1, Method A2), which was

also stable throughout the formation of the forest. To evaluate the

accuracy of our classification models, we relied on the percentage of

species correctly classified (i.e., 100% − OOB), Cohen’s kappa

statistic that tests the consistency between the actual and

predicted classifications, and the sensitivity, specificity and the

true skill statistic (TSS = sensitivity + specificity − 1; Allouche

et al., 2006; Prasad et al., 2006; Gamer et al., 2019). For the RF

addressing scientific attention (quantitative variable), we included

the current IUCN category status (threatened/non-threatened) and

population trends as explanatory variables. We relied on the

percentage of variance explained (R²) as accuracy metrics to

assess the performance of the model. The number of variables

tested at each split was determined by the program (mtry; root-

squared of the total number of explanatory variables). We estimated

the relative importance of each explanatory variables implied in RF
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TABLE 1 Traits used as explanatory variables in random forest models.

Class Variables Description Source

Environment Altitude Averaged altitude at which species occurs (x10² m).
BirdLife International,
2021

Environment
Dist. to
continent ‡

Distance to the closest continent (km). Species being even partially on continent are set at 0. This variable
was normalized using log (x+1) transformation in order to improve graph quality.

Sayre et al., 2019;
BirdLife International,
2021; data.gouv.fr

Environment
Endemicity
‡

Species occurring in one country (Yes/No).
BirdLife International,
2021

Environment
Hurricane
frequency ‡

Number of hurricanes ranked at least 3 in the Saffir-Simpson scale per year, since 1980. Hurricanes are
known to affect avifauna (Wunderle 1995).

Knapp et al., 2010

Environment IBA Overlap between historical species range and Important Bird and Biodiversity Areas (Yes/No).
BirdLife International,
2021

Environment
Prop. in
islands ‡

Proportion of historical species range on islands. Islands species are usually more prone to extinction (Wood
et al., 2017)

Sayre et al., 2019; data.
gouv.fr

Environment
Prop. in
biodiv.
Hotspot ‡

Proportion of historical species range overlapping with biodiversity hotspots. Hoffman et al., 2016

Environment
Range size
‡

Historical geographic range size of species (km²). This variable was normalized by log transformation in
order improve on graph quality. This variable is a strong predictor of species vulnerability (Staude et al.,
2020, Newsome et al., 2020)

BirdLife International,
2021

Environment
Island
endemic ‡

Restriction of historical species range to a single country consisting of one or several islands (Yes/No).
Island-endemic species are usually more prone to extinction (Wood et al., 2017)

Sayre et al., 2019;
BirdLife International,
2021; data.gouv.fr

Environment
Prop. in
tropical ‡

Proportion of historical species range between the northern and the southern tropics. Manually created

Behaviour
and Life
history

Fecundity Average clutch size.
Birds or the world; Gibbs
et al., 2001

Behaviour
and Life
history

Diet
Seven diet categories: granivorous, frugivorous, herbivorous (parts of plants other than seeds or fruits. e.g.,
buds), invertebrates eaters, meat, fungi and/or reptiles. The last three diet are very rare. For models, they
were coded for each 0 (not have this diet) and 1 (having this diet).

Birds or the world; Gibbs
et al., 2001

Behaviour
and Life
history

Diet
breadth

Number of diet categories per species
Birds or the world; Gibbs
et al., 2001

Behaviour
and Life
history

Forest
dependency

Forest dependency of species. (No forest sp. (No)< Low (Lo)< Medium (Mid)< High (Hi))
BirdLife International,
2021

Behaviour
and Life
history

Generation
length

Generation length of species from Birdlife International. The variable is known to impact extinction risk in
birds (Bird et al., 2020).

BirdLife International,
2021

Behaviour
and Life
history

Sociality Sociality of species. (Gregarious (Greg.)/Occasionally gregarious (Occ.)/Solitary (Sol.))
Birds or the world; Gibbs
et al., 2001

Behaviour
and Life
history

Life
stratum

Stratum in which the species live (Arboreal (Arb.)/Ground (Gr.)/Both).
Birds or the world; Gibbs
et al., 2001

Behaviour
and Life
history

Mass
Averaged body mass of species (g). This variable was normalized using log transformation to improve graph
quality.

Birds or the world; Gibbs
et al., 2001

Behaviour
and Life
history

Migration Migration status: Full migrant (Full.)/Vagrant (Vag.)/Sedentary (Sed.)
BirdLife International,
2021; Birds of the world;
Gibbs et al., 2001

(Continued)
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models based on the mean decrease Gini (when the dependent

variable is qualitative or classes) or increase in node purity (when

the dependent variable is quantitative), as a measure of how much

model accuracy decreases when removing explanatory variables.

The calculation is based on the Gini/node impurity value estimated

from classification trees composing the forest. Detailed explanations

about random forest modelling are provided in Supplementary

Material 1, Method A2.

After inspecting partial dependence plots of relationships

between explanatory and dependent variables, we restricted the

analysis to the eight first most important variables, as the other ones

were much less meaningful and did not present enough variation

(Supplementary Material 2, Figure A4–A7). In order to compare

and statistically assess the relative importance of explanatory

variables and partial plots, we calculated 95% confidence interval

(95%CI) by performing 1,000 independent bootstraps from the

original dataset (Cumming and Finch, 2005). Results of inferential

statistical tests (i.e., tests of Wilcoxon, Kruskal-Wallis, Kendall’s

correlation or Fisher) are presented in Supplementary Material 2

(Table A1–A3), for all explanatory variables.

Although accuracy metrics were calculated for each RF

model, we assessed the prediction capacity of models
Frontiers in Ecology and Evolution 05
addressing extinction risk and evaluated overfitting issues by

randomly splitting the original dataset into a training dataset

(80% of the original dataset) and a dataset that was used to make

predictions about extinction risk (i.e., the remaining 20% of the

original dataset). Thereafter, we compared predicted results to

actual ones by calculating sensitivity, specificity and TSS. This

process was renewed 1,000 times in order to calculate the mean

and 95% confidence interval of the three performance statistics.

Thereafter, we predicted extinction risk for all columbid species

by excluding one by one each species from the training dataset

(i.e., all species, excepted the species tested). As we found

mismatches between predicted and actual extinction risk for

some species, we assessed to what extent this was related to levels

of scientific attention. To that end, we considered two groups

based on the median of scientific attention (i.e., one). The first

group then consisted of species for which more than one

published scientific article was available whereas the second

one corresponded to species for which one or zero scientific

article was available. We then tested for differences in the relative

proportions of mismatches and correctly evaluated species

between the two groups using a Chi-square test. For both

analyses, significance level was set at 0.05.
TABLE 1 Continued

Class Variables Description Source

Behaviour
and Life
history

Habitat
breadth

Number of different habitats used, based on Habitat level 2 from Birdlife International.
BirdLife International,
2021

Pressure
Subsistence
use

Species hunted for subsistence purpose, as defined by IUCN red list (Yes/No).
BirdLife International,
2021

Pressure
Handicraft
use

Whole or parts of the species used for crafting jewellery, ornament, or any items (Yes/No).
BirdLife International,
2021

Pressure HFP ‡
Geometric mean of human footprint values estimated in 2009 (see Di Marco et al., 2018 and Venter et al.,
2016 for detailed explanation).

Venter et al., 2016;
Venter et al., 2018

Pressure IAS birds Species impacted by invasive alien bird species (Reported/Not Reported).
BirdLife International,
2021

Pressure
IAS
mammals

Species impacted by invasive alien mammals species (Reported/Not Reported).
BirdLife International,
2021

Pressure IAS reptiles Species impacted by invasive alien reptiles species (Reported/Not Reported).
BirdLife International,
2021

Pressure Pets use Use of species used as pet or display (Yes/No).
BirdLife International,
2021

Pressure
Sport
hunting use

Species exposed to sport hunting (Yes/No).
BirdLife International,
2021

Socio-
political
indicator

GSI ‡
Governance stability index. This index is the average of six indices that measures governance (voice and
accountability, political stability and absence of violence, government effectiveness, regulatory quality, rule of
law, and control of corruption (Baynham-Herd et al., 2018).

World Bank database

Socio-
political
Indicator

HDI ‡
Human Development Index. This index is based on life expectancy, years of schooling and gross national
income per capita.

World Bank database

Socio-
political
indicator

Human
density ‡

Number of humans per km2. Averaged over estimates for 2000, 2005, 2010 and 2020. CIESIN, 2018
‡ means that data were extracted using GIS tools.
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3 Results

Among the 369 described columbid species, 76% are considered by

IUCN as non-threatened and 19% as threatened, and 5% as extinct or

extinct in the wild (Figure 1). In terms of population trends, 52% of

species are declining, while 33% are stable and 9% are increasing. As

expected, the relative proportions of declining, stable, and increasing

species differed between threatened and non-threatened ones

[threatened species: 89%, 6%, and 5%, respectively; non-threatened

species: 46%, 43%, and 11%, respectively; Fisher’s exact test, P< 0.0001].

3.1 Extinction risk

3.1.1 Threatened vs. non-threatened species
The RF model classifying species either as non-threatened or

threatened correctly classified 87% of the species based on the 38

explanatory variables used (Table 1). RF model sensitivity and

specificity respectively indicated that 87% of actual non-

threatened species and 82% of actual threatened species were

correctly identified. Cohen’s kappa statistics and TSS further

indicated that the classification of species significantly differed

from a random classification [Cohen’s kappa = 0.51, P< 0.0001;

TSS = 0.70], while the OOB error was 13%. The eight most

important variables influencing extinction risk were in decreasing

order: species historical range size, impact of invasive alien

mammals, distance to closest mainland, altitude distribution of

the species, HFP, human density, proportion of species historical

range in current biodiversity hotspots, and species body mass. Based
Frontiers in Ecology and Evolution 06
on the 95% CI comparison, only historical geographic range size

had a relative importance significantly higher than the other

variables (Figure 2A, see Supplementary Material 2, Figure A4 for

all variables importance values). Based on partial dependence plots,

species with the smallest historical range size, exposed to invasive

alien mammals, living the farthest to mainland and/or at the lowest

altitudes were associated to a greater risk of extinction (Figure 3A).

Although other variables were relatively important in the prediction

of species’ risk extinction based on the RF model, their variation did

not seem to be directly associated to extinction risk (Figure 3A; see

Supplementary Material 2, Figure A5 for all variables).

3.1.2 Population trends
The RF model correctly classified 73% of species according to

population trends, with a OOB error of 27%. In addition, the

percentage of true positive was of 74%, 69% and 64% for

decreasing, stable and increasing species, respectively. On the

other hand, the percentage of true negative was of 80%, 89% and

94% for decreasing, stable and increasing species’ population trends,

respectively. Although goodness-of-fit was lower than for the

previous model, Cohen’s kappa still indicated a species

classification differing from a random classification [Cohen’s

kappa = 0.48, P< 0.0001]. The eight most important variables

predicting population trends were in decreasing order: human

density within the species historical geographic range distribution,

species body mass, HFP, species historical geographic range size,

species habitat breadth, GSI, species altitude distribution, and HDI

(Figure 2B). Based on the comparison of 95%CI, these eight variables
FIGURE 1

Distribution of columbid species according to their current IUCN status and their current population trend. From left to right, columbid species
illustrations correspond to: Bridled Quail-Dove (Geotrygon mystacea), Nicobar Pigeon (Caloenas nicobarica), Victoria Crowned-Pigeon (Goura
victoria), Blue-headed Quail-Dove (Starnoenas cyanocephala), Grenada Dove (Leptotila wellsi), Socorro Dove (Zenaida graysoni), Dodo (Raphus
cucullatus) and Somali Pigeon (Columba oliviae).
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did not seem to significantly differ in terms of importance (Figure 2B,

see Supplementary Material 2, Figure A4 for all variables importance

values). Based on partial dependence plots, risk of population decline

was significantly lower for specieswitha lowbodyweight living inareas

characterized by high human density (Figure 3B). In addition, a higher

risk of decline was associated with species with narrow habitat breadth

and living at low altitudes (Figure 3B). Although other variables were

important in predicting species’ risk of decline based on the RFmodel,

partial dependentplots suggest that they arenot directly associated to it

(Figure 3B; see Supplementary Material 2, Figure A6 for all variables).
3.2 Scientific attention

Our literature survey resulted in 3,537 research articles across the

369 Columbidae species, in scientific disciplines related to

environment, ecology and evolution. From these articles, 405

concerned multiple species. Scientific attention (assessed from the

number of published articles) differed markedly between columbid

species, ranging from 0 to 1363 (median = 1, interquartile = 3). Overall,

10 species (about 3% all species) accounted for 77% of all research

articles published since 1966. The most commonly studies species were

the Common Wood Pigeon (Columba palumbus, 1363 articles), the

Rock Pigeon (Columba livia, 1079), the Mourning Dove (Zenaida

macroura, 309), the European Turtle-Dove (Streptopelia turtur, 121),

the Eurasian Collared-Dove (Streptopelia decaocto, 117), the Common

Ground Dove (Columbina passerina, 115), the Malagasy Turtle Dove

(Nesoenas picturatus, 93), the Zenaida Dove (Zenaida aurita, 79), the

White-winged Dove (Zenaida asiatica, 65) and the Plain-breasted

Ground Dove (Columbina minuta, 46). Among them, only the

Eurasian Turtle Dove is listed as vulnerable with a high risk of

extinction, whereas the nine other species are considered of least-

concern. In contrast, we did not find any article for 151 (41%) species.

Overall, scientific attention was negatively associated with IUCN status

[Jonckheere-Terpstra test, JT= 13864, P = 0.006].
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Research laboratories in North America and Europe contributed

themost to research on columbid species, accounting for, respectively,

about 43% and 32% of articles published in peer-reviewed journals.

Scientific attention by country was positively correlated with GSI and

HDI, but negatively with HFP (Supplementary Material 2, Table S5).

Based on geographic distribution of species, species inhabiting close to

“hotspots” of research on columbid species were the most studied

(Figure 4, 5). The geographic distribution of scientific attention was

also positively correlated withGSI andHDI, and, contrary to scientific

attention per se, to HFP (Figure 4). Accordingly, the vast majority of

unstudied specieswere located in the southernhemisphere, whilemost

of the 10 most studied species were totally or partially located in the

northern hemisphere (Figure 5).

Based on RF models, explanatory variables accounted for 45%

of the observed variation in scientific attention among columbid

species. The most important variables were species historical

geographic range size, proportion of species range in current

biodiversity hotspots, species body mass, GSI, HFP, HDI, human

density within species range, and species habitat breadth

(Figure 2C). In terms of relative importance, the historical range

size of species did not differ from the proportion of species range in

current biodiversity hotspots, species body mass of species, GSI, and

species habitat breadth, as evidenced by their 95%CI (Figure 2C).

The importance of other variables was lower (Supplementary

Material 2, Figure A4). Partial dependence plots show that species

with important range size, high body mass, occurring in countries

with highest values of GSI, and located in ecosystems highly

impacted by human activities (high HFP value) have been the

most studied (Figure 4). Although no clear association was observed

with the proportion of species range within hotspots of biodiversity,

there was a trend for species exclusively occurring in biodiversity of

hotspots to be less studied than others (Figure 4). In addition, we

observed a positive trend relating scientific attention to species habitat

breadth (Figure 4). Although the others variables were more or less

important to explain scientific attention variation based on RFmodel,
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The relative importance of each explanatory variables implied in RF models with (A) IUCN status, (B) population trend and (C) scientific attention as
explained variables. Only the ten most important variables are presented here. See Supplementary Material 2, Figure A4 for all explanatory variables.
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their variations were not directly associated to scientific attention (see

Supplementary Material 2, Figure A7 for all variables).
3.3 Extinction risk predictions biased by
scientific attention

Bootstrapped sensitivity and specificity [95% CI] of the

extinction risk model respectively indicated that 78% [46%;
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100%] of actual non-threatened species and 87% [78%; 95%] of

actual threatened species were correctly identified when randomly

using 80% of original dataset as training data, and the remaining

20% as tested data. Moreover, bootstrapped TSS [95% CI] was

significantly different from zero (0.649 [0.328; 0.902]) showing that

random training datasets classified species better than a random

classification. Besides, these values were not significantly different

from those calculated from the global model, thus suggesting an

absence of overfitting.
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FIGURE 3

Partial dependence plots illustrating (A) the probability to be threatened and (B) the probability to have decreasing population trend in relation to the
top eight predictors according to relative importance (Figures 2A, B). See Supplementary Material 2, Figure A5–A6 for partial dependence plots of all
explanatory variables.
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Among the 352 extant columbid species, the prediction of

extinction risk of 50 species (14%) was inconsistent with their

actual status (see Supplementary Material 2, Table A5 for a detailed

list). On the one hand, the model predicted a higher extinction risk

than that indicated by the IUCN red list for eight of them (16%),

with estimated probabilities to be classified as “threatened” by the

model being above or equal to 50%. On the other hand, the model
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suggested to downlist most of these species (42, 84%) as “not

threatened”. However, their average estimated probability to be

classified as “threatened” by the model was 30% ± 13% (SD), and

only ten of them had an estimated probability to be classified as

“threatened” inferior to 20%. Importantly, we found that

mismatches predictions in term of extinction risk were

significantly related to scientific attention. Species with
FIGURE 4

Partial dependence plots illustrating scientific attention in relation to the top eight predictors according to relative importance (Figure 2C). See
Supplementary Material 2, Figure A7 for partial dependence plots of all explanatory variables.
FIGURE 5

Maps illustrating the geographical distribution of the top 10 studied species and not studied species. The two most important research hotspots
correspond to the regions of North America (USA + Canada) in the left, and of Western Europe in the right. They represent about 70% of the
scientific production in natural sciences among the first 50 countries according to the Nature index database (https://www.nature.com/nature-
index).
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mismatches prediction were in fact less studied than those

with predictions consistent with the IUCN red list [Chi-square

test, X2
(1) = 7.336, P = 0.007]. The only species classified as data

deficient in the IUCN red list, Columba oliviae, was classified as

“not threatened” by the model, with a probability of 79%.
4 Discussion

Since Walker (2007), the number of identified species of

Columbidae has increased from 317 to 370 species. Meanwhile,

the proportions of extinct (4.30% in the present study and 3.70% in

Walker, 2007), threatened (19.24% and 18.61%, respectively) or

non-threatened species (75.88% and 77.29%, respectively) have

however remained stable. Walker (2007) described the geographic

distribution of columbid species across the world according to their

extinction risk and associated threats, as listed in the IUCN red list.

We went further by quantitatively assessing to what extent various

biological, ecological, environmental and socio-political drivers

influence extinction risk and population trends of columbid

species as well as interspecific variation in levels of scientific

attention. In addition, we showed, for the first time, that low

scientific attention can be responsible for incorrect estimation of

the conservation status of columbid species.
4.1 Extinction risk

4.1.1 Ecological and biological drivers
Overall, our results tend to agree with previous findings

(Walker, 2007) about the main drivers of extinction risk.

However, we show that the use of both IUCN status and

population trends are complementary in the identification of

these drivers. Using both of them allowed us to identify several

biological and ecological traits that make columbid species more

prone to extinction. First, range-restricted species appeared more

prone to extinction than more geographically widespread ones.

Such relationship might seem obvious when using IUCN status as a

proxy of extinction risk, because geographic range size is considered

in its assessment (Fisher and Owens, 2004). However, geographic

range size of columbid species was also positively associated with

risk of population decline, thus confirming this factor as an

important predictor of global extinction risk. Although the impact

of geographic range size on extinction risk is complex, small range

size is often associated with restricted ecological niche and small

population size. Indeed, the number of habitats or resources

required for survival and reproduction of individuals and, hence,

population growth, often covary with geographic range size

(Gaston, 2003; Peterson et al., 2011; Saupe et al., 2015).

Moreover, large-range species are overall less likely to be affected

by human disturbance or destruction of their natural environment,

or by stochastic events, in their entire geographic range at once

(Gaston, 2003; Fisher and Owens, 2004). However, some particular

migrating columbid species, despite having a large range size, might

be vulnerable to disturbance or damage occurring in their breeding,

wintering or stop-over areas, as shown in the case of the
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Woodpigeon (C. palumba; Schumm et al., 2022; but see

Bendjoudi et al., 2015) or the Turtle Dove (S. turtur; Eraud et al.,

2013; Schumm et al., 2021). The negative relationship between

extinction risk and geographic range size has been evidenced in a

large range of terrestrial and marine vertebrate species (Davidson

et al., 2012; Di Marco et al., 2014; Böhm et al., 2016; Buechley et al.,

2019), and at different geological time scales (Harnik et al., 2012).

Second, island columbid species appeared to be more prone to

extinction than continental ones, and even more so the further the

distance of islands to mainland. Indeed, in addition to usually

having smaller geographic range size than continental species,

island-species have evolved in isolation, under particular selection

pressures (e.g., relaxed predation and parasitism), making them

particularly vulnerable to disturbances such as overexploitation and

any kind of negative interactions with invasive species (Purvis et al.,

2000a; Purvis et al., 2000b; Boyer, 2010; Loehle and Eschenbach,

2012). Introduced pathogens may also have a significant negative

impact on the persistence of isolated populations. For instance, a

pathogenic strain of Trichomonas gallinae, which might have been

introduced in Mauritius Island, increased adult and nestling

mortality in the endangered Pink Pigeon, Neosoenas mayeri

(Swinnerton et al., 2005; Bunbury et al., 2007; Bunbury et al.,

2008). In mammals and birds, 95% of known extinctions

concerned island-species (Loehle and Eschenbach, 2012).

However, smaller geographic range size of most insular species

might be the most important variable in explaining species

extinction risk (Manne et al., 1999). Among columbid species, all

known extinct species inhabited islands, excepted for the Passenger

Pigeon (Ectopistes migratorius), suggesting that being an island-

species is at least as much important as geographic range size,

especially when adding other sources of extinction such as

overexploitation, invasive species or climate change (Courchamp

et al., 2003; Courchamp et al., 2014; Wood et al., 2017). For

instance, the two largest known and now extinct columbid

species, the iconic Dodo, Raphus cucullatus, and the Rodrigues

Solitaire, Pezophaps solitaria, were both endemic to Mauritius

islands and flightless. Their extinction was probably due to a

combination of factors, including large body size, island

endemism, low population growth, small population size and

small geographic range size, making them particularly vulnerable

to habitat destruction, hunting and invasive species (Duncan et al.,

2002; Fisher and Owens, 2004; Hume, 2006; Hilbers et al., 2016).

Our results indeed suggest that the extinction risk of columbid

species increases with their body mass, as shown in diverse taxa

(Gaston and Blackburn, 1995; Davidson et al., 2009; Fritz et al.,

2009; Böhm et al., 2016). The influence of body size could actually

be multifactorial, and be exacerbated by other external factors like

overexploitation. Indeed, larger species are often preferred as game

species (Duncan et al., 2002; Whytock et al., 2016; Ripple

et al., 2017).

Although hunting has been recognized among the most

important threats within Columbidae, concerning 77% of

threatened species (Walker, 2007), and that inferential statistics

performed in this study (see Supplementary Material 2, Table A1–

A2) showed that threatened species are significantly more exposed

to it, our models did not identify hunting-related drivers (i.e.,
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subsistence use and sport hunting) as important variables

explaining extinction risk. This does not mean that the impact of

hunting exposure is null, but that other variables provide a better

discriminant classification into RF models to evaluate extinction

risk of columbids. It is obvious that hunting has a direct influence

on the mortality rate of harvested populations, and, hence, can be a

contributing driver to extinction risk for some species (e.g., the

European Turtle Dove, Streptopelia turtur, Lormée et al., 2020),

especially when it is not regulated or not performed in a sustainable

way. However, the assessment of extinction risk requires a more

comprehensive approach, considering various drivers and threats,

as discussed in management recommendations for the European

Turtle Dove (Bacon et al., 2023). The global influence of hunting

might thus be lower than that of other threats, such as habitat loss

and invasive species. However, its impact on game populations

might be exacerbated when combined with such threats (Romero-

Muñoz et al., 2019; Romero-Muñoz et al., 2020; Bogoni et al., 2022).

For instance, the extinction of the iconic Passenger Pigeon was

caused by both unregulated commercial hunting and significant

destruction of its breeding habitat (i.e., a decrease estimated about

53%; Stanton, 2014). Furthermore, a more precise metrics of

hunting pressure would probably be more informative than mere

exposure to hunting (Bellard et al., 2022) and could have enhanced

the performance of our RF models. Unfortunately, such

information is unavailable for a large majority of game columbids.

Habitat breadth also appeared to influence extinction risk,

confirming a general trend (Norris and Harper, 2004; Devictor

et al., 2008; Clavel et al., 2011; Callaghan et al., 2019). Although

ecological specialization does not always limit the capacity of

species to persist (Benito et al., 2020), it might be evolutionary

disadvantageous in environments exposed to changes and

perturbations (Davies et al., 2004; Colles et al., 2009; Clavel et al.,

2011; Ducatez et al., 2014; Morelli et al., 2020). Indeed, specialist

species often tend to be associated with small population size,

restricted geographic range size and limited use of resources and

habitats, what may make them particularly vulnerable when

exposed to environmental changes and disturbances (McKinney,

1997; Davies et al., 2004; Colles et al., 2009).
4.1.2 Anthropogenic drivers
Not surprisingly, our analysis points to alien invasive species as

an important factor affecting the risk of extinction of columbid

species (Walker, 2007). Exotic species are indeed a major threat to

biodiversity, as a result of predation, parasitism, competition,

hybridization with native species and the disturbance of native

ecosystems (Mack et al., 2000; Sax and Gaines, 2008; Walsh et al.,

2012). Invasive mammals, especially rodents (e.g., rats Rattus sp.)

and cats (Felis catus), are the most damaging group of alien species

across all ecosystems. Both are responsible of more than 30% of all

known contemporary extinctions, especially on islands (Doherty

et al., 2016). Invasive species can predate native columbid species

(Rodriguez-Estrella et al., 1991; Tidemann et al., 1994; Zarzoso-

Lacoste et al., 2016; Lamelas-López et al., 2020), compete with them

for resources (James and Clout, 1996; Bond et al., 2019), or transmit

pathogens (Stimmelmayr et al., 2012). Based on IUCN data, 9% of
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all columbid species have been reported to be exposed to invasive

rats, 8% to cats, and 12% to other mammals (IUCN, 2021). Among

non-threatened species, 3% of species have been reported to be

exposed to invasive mammals, compared to 35% for threatened

species and 77% for extinct species. However, the precise impact of

invasive mammal species on the demography of columbid species of

patrimonial interest in the wild remains to be quantitatively

assessed in order to assess to what extent it compares in

importance with hunting pressure or habitat loss and thus

provide a more comprehensive and integrative approach to the

management of species/populations.

Although global warming is supposed to increase extinction risk

among species living at high altitude (Williams et al., 2003; Shoo

et al., 2005; Sekercioglu et al., 2008; Bässler et al., 2010; La Sorte and

Jetz, 2010), we found no evidence for a positive relationship between

extinction risk and elevation in columbids. The consequences of

global warming on extinction risk at higher elevation might not be

felt yet (Bellard et al., 2012) in columbid species, or might have been

hidden in our analysis by variation in habitat breadth and more

intense human activities at lower elevations. Indeed, landscape

heterogeneity tends to decrease with increased elevation, and

species found at elevation tend to have a higher degree of

ecological specialization than those found at lower elevation (Reif

et al., 2013; Rivas-Salvador et al., 2019). Lower elevations are also

associated with higher anthropogenic transformation, inducing

various negative effects on local biodiversity (Ellis et al., 2010; Reif

et al., 2013; White and Bennett, 2015; Smith et al., 2019). Further

attention should then be given to the influence of elevation on the

demographic trends of columbid species in relation to climate

change and habitat modification.

Several other drivers of anthropogenic origin appeared to

contribute, directly or indirectly, to increase the extinction risk of

columbid species, such as low levels of governmental stability and

poor socioeconomics and/or the loss and disturbance of natural

habitats through the development of HFP. HFP provides an index

of human conversion of natural terrestrial ecosystems based on the

measure of eight different anthropogenic pressures related to

urbanization, agriculture and human density (Venter et al., 2016),

and can therefore be regarded as a proxy of habitat degradation or

loss. Yearly variations in HFP have been found to be a good

predictor of extinction risk in terrestrial mammals (Di Marco

et al., 2018). Although some columbid species flourish in

landscapes modified by humans, such as the widespread Feral

Pigeon, Columba livia domestica (Carlen et al., 2021), the Zenaida

Dove, Zenaida aurita (Wolff et al., 2018), or the invasive Eurasian

Collared-Dove, Streptopelia decaocto (Luna et al., 2018), most

species rely on their natural habitats to persist. For instance, the

occupancy of the Kereru, Hemiphaga novaeseelandiae, an endemic

New Zealand Pigeon, has been affected by habitat loss resulting

from European settlement in New Zealand (Carpenter et al., 2021).

FollowingWalker (2007), the present study confirms that the loss of

natural habitat is the greatest cause of extinction and populations

decline in columbid species.

Governmental and socioeconomic factors were also found to

affect the extinction risk of columbid species, with species

inhabiting in developing countries being more exposed to
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extinction risk. Public policies can have negative or positive

influences on biodiversity, through supporting or not reliable

environmental and conservation projects and by protecting or not

most vulnerable species and/or sensitive ecosystems (Chapron,

2014; Ripple et al., 2016). For instance, the Pink Pigeon, Nesoenas

mayeri, have been downlisted twice, in the IUCN red list, from

critically-endangered to vulnerable thanks to conservation projects

lead by conservationists, private foundations and the Mauritian

government (Tatayah, 2019). Globally, the socioeconomic level of

countries tends to influence positively the persistence of species

(Forester and Machlist, 1996; Dietz and Adger, 2003). For instance,

Bösch (2021) showed that the level and speed of countries’

economic-institutional development tend to be negatively

associated with illegal logging, and hence, with habitat loss and

biodiversity decline. The same is true for wildlife trafficking and

hunting pressure, especially in developing countries where wildlife

can be the sole source of proteins for isolated and/or low-income

communities (Robinson and Bennett, 2002; Fa et al., 2003; Fa et al.,

2009; Borgerson et al., 2016; Lescuyer and Nasi, 2016). Legal and

illegal hunting can be practiced to obtain food or increased social

status, or as a recreational or traditional activity (Phelps et al., 2016;

Stirnemann et al., 2018). Indeed, wildlife meat consumption is not

always associated with poverty and can also be a sign of wealth (Fa

et al., 2009). This is for instance the case in the Pacific islands where

poor people hunt both the Pacific Pigeon, Ducula pacifica, and the

Tooth-billed Pigeon, Didunculus strigiristris, to sell their meat to

high-income populations (Phelps et al., 2016; Stirnemann

et al., 2018).
4.2 Scientific attention

In strong contrast with the ubiquity of the family Columbidae

throughout the world, the order Columbiformes is among the least

studied orders in the Aves class (8th/25, Ducatez and Lefebvre,

2014). The same trend has been observed, at a lower geographical

scale, in the Caribbean region (Devenish-Nelson et al., 2019). One

reason for the low attention given to columbids could be that this

family does not include any charismatic species (Seddon et al., 2005;

Devenish-Nelson et al., 2019), excepted for the iconic Dodo and

Passenger Pigeon that became textbook cases due to their extinction

history (Kyne and Adams, 2017).

Scientific attention on columbid species appeared to be

geographically biased and independent of species extinction risk,

as shown by the negative association between scientific attention,

the proportion of species in biodiversity hotspots and the influence

of both HDI and GSI (Livingston et al., 2016; Tydecks et al., 2018;

Melles et al., 2019). In addition, we found that island-endemic

columbid species were on average less studied than continental

species, and even more so the farther they are from mainland (see

also Brooks et al., 2008). Contrary to Ducatez and Lefebvre (2014),

we did not find any association between scientific attention and

clutch size or generation time, probably due to low variability in

these two variables among columbids.

Most of the research on columbid species is actually done by

North-American and European researchers working on local
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species, accounting, respectively, for about 43% and 32% of all

articles published in peer-reviewed journals, whereas species living

between Fiji and Indonesia, the most important hotspot for

threatened columbid species and diversity (Walker, 2007), are

among the least studied ones. The same geographical bias has

been found in several studies focusing on diverse taxa (Ducatez

and Lefebvre, 2014; Tydecks et al., 2018; Melles et al., 2019). It can

be partly explained by logistic constraints, local poverty, political

instability, geographic isolation and lack of local expertise in

developing countries (Clark, 1985; de Lima et al., 2011; Amano

and Sutherland, 2013; Wilson et al., 2016; Reboredo Segovia et al.,

2020; Vallès et al., 2021).

Widespread columbids, in terms of geographic distribution or

in terms of number of different habitats used, and relatively large-

bodied species (>100g according to Figure 4) seemed more studied

than others, as highlighted by Ducatez and Lefebvre (2014), who

focused their research on bird Orders. More widespread species are

presumably more accessible and have thus more chance to be

studied than less widespread ones (Morales and Traba, 2016;

Yarwood et al., 2019), while large species are usually easier to

locate and observe than more discrete and smaller species (Ripple

et al., 2017; Yarwood et al., 2019). Furthermore, we found that

scientific attention on columbid species was positively associated

with human density and human footprint, suggesting that columbid

species inhabiting areas with high human density and highly

urbanized were preferentially studied. As explained by Ibáñez-

Álamo et al. (2017), species living close to humans, such as feral

pigeons (e.g., Perez-Sancho et al., 2020), may receive more attention

because of economic and public health issues (Lindahl and

Magnusson, 2020) and/or because they are easier to study.

Similarly, some applied research has been conducted on columbid

species living close to humans in relation to negative impacts on

crops (e.g, Murton and Jones, 1973; van Niekerk and van Ginkel,

2009; Firake et al., 2016; Verga et al., 2021). However, columbid

species causing damages on crops may also experience higher

extinction risk due retaliatory actions, including hunting and

poisoning, by farmers (Marrero et al., 2004; Cuesta Hermira and

Michalski, 2022).
5 Conclusion and perspectives

Our results quantitatively confirmed earlier findings on the

main factors influencing extinction risk and population decline in

columbids (Walker, 2007) and revealed large disparity in scientific

attention given to columbid species, with the most threatened ones

being the least studied. In this respect, species for which predicted

extinction risk status were inconsistent with actual status were also

the least studied. We therefore recommend to pay more attention to

these species, and more generally to specialist species, restricted-

range species, particularly insular ones, and/or large species, in

relation to habitat disturbance and loss, in order to better estimate

direct and specific extinction risk. In addition, investigations on

urban populations of columbid species may help understanding

interspecific variation in adaptive potential in relation to

urbanization and global change.
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Secondly, we strongly recommend to investigate the relative

importance of sources of mortality of pigeons and doves in the wild

in order to gain a more complete picture of the threats weighing on

them. In this respect, it would be of interest to assess the relative

importance of legal and illegal hunting compared to that of

predation by exotic invasive predators in the decline of species.

Columbids are indeed particularly appreciated by hunters, but are

also exposed to various introduced potential predators in various

regions. Although the impact of invasive mammal predators is

widely acknowledged as an important threat to native wildlife,

precise quantitative assessment is often lacking, particularly for

columbid species. To that end, cooperation among hunters,

scientists, wildlife officers and agencies should be encouraged,

particularly where hunting traditions are an important part of

local culture. Although difficult to implement, the regulation of

invasive predators or their total eradication may have immediate

positive impacts on native populations and ecosystems (Le Corre

et al., 2015, Miller-ter Kuile et al., 2020).

Based on the influence of socioeconomic factors revealed here,

we also recommend to develop coordinated efforts to better inform

governments, public agencies and the general public of the key

ecological role played by columbids and of the importance of

conserving populations and associated habitats. In that respect,

both extinct and extant columbid species could be used more widely

in education programs about the erosion of biodiversity. Finally, fair

transnational cooperation and capacity building in conservation-

oriented research on columbids should be encouraged, especially

between small island developing states and developed countries.
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Luna, Á., Romero-Vidal, P., Hiraldo, F., and Tella, J. L. (2018). Cities favour the
recent establishment and current spread of the Eurasian collared dove Streptopelia
decaocto (Frivaldszky 1838) in Dominican republic. BioInvasions Rec. 7, 95–99. doi:
10.3391/bir.2018.7.1.15
frontiersin.org

https://doi.org/10.1016/j.biocon.2010.10.021
https://doi.org/10.1007/s10531-019-01768-x
https://doi.org/10.1111/j.0030-1299.2008.16215.x
https://doi.org/10.1016/S0301-4797(02)00231-1
https://doi.org/10.1016/S0301-4797(02)00231-1
https://doi.org/10.1098/rstb.2013.0198
https://doi.org/10.1038/s41467-018-07049-5
https://doi.org/10.1073/pnas.1602480113
https://doi.org/10.1111/acv.12586
https://doi.org/10.1371/journal.pone.0089955
https://doi.org/10.1890/ES14-00332.1
https://doi.org/10.1098/rspb.2001.1918
https://doi.org/10.1098/rspb.2001.1918
https://doi.org/10.1111/j.1466-8238.2010.00540.x
https://doi.org/10.1371/journal.pone.0059396
https://doi.org/10.1111/j.1469-1795.2012.00550.x
https://doi.org/10.1111/j.1469-1795.2009.00289.x
https://doi.org/10.1017/S0376892903000067
https://doi.org/10.1016/j.landurbplan.2014.10.015
https://doi.org/10.1016/j.fcr.2016.01.008
https://doi.org/10.1016/j.tree.2004.05.004
https://doi.org/10.1046/j.1523-1739.1996.10041253.x
https://doi.org/10.1046/j.1523-1739.1996.10041253.x
https://doi.org/10.1111/j.1461-0248.2009.01307.x
https://doi.org/10.1098/rstb.1995.0022
https://doi.org/10.1111/j.1600-048X.2012.05549.x
https://doi.org/10.1111/j.1600-048X.2012.05549.x
https://doi.org/10.1007/s10531-021-02204-9
https://doi.org/10.1111/j.1523-1739.2009.01166.x
https://doi.org/10.1098/rspb.2012.1902
https://doi.org/10.1890/14-2019.1
https://doi.org/10.5281/zenodo.3261807
https://doi.org/10.1038/s41467-020-14771-6
https://doi.org/10.1038/s41467-020-14771-6
https://doi.org/10.1080/08912960600639400
https://doi.org/10.3389/fevo.2017.00041
https://www.iucnredlist.org
https://doi.org/10.1093/auk/118.4.874
https://doi.org/10.1016/j.ecoinf.2010.06.003
https://doi.org/10.3109/19401736.2013.773319
https://doi.org/10.1175/2009BAMS2755.1
https://doi.org/10.1017/S0030605316000041
https://doi.org/10.1007/s10530-020-02343-0
https://doi.org/10.1098/rspb.2010.0612
https://doi.org/10.1016/j.biocon.2014.12.015
https://doi.org/10.1016/j.biocon.2014.12.015
https://doi.org/10.3389/fevo.2021.624959
https://doi.org/10.1505/146554816819683726
https://doi.org/10.1017/S1466252319000100
https://doi.org/10.1093/biosci/biv175
https://doi.org/10.1111/j.1472-4642.2011.00856.x
https://doi.org/10.1017/S0959270919000479
https://doi.org/10.3391/bir.2018.7.1.15
https://doi.org/10.3389/fevo.2023.1141072
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Cambrone et al. 10.3389/fevo.2023.1141072
Mack, R. N., Simberloff, D., Lonsdale, M. W., Evans, H., Clout, M., and Bazzaz, F. A.
(2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecol.
Appl. 10, 689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

Mammides, C. (2019). European Union’s conservation efforts are taxonomically
biased. Biodivers. Conserv. 28, 1291–1296. doi: 10.1007/s10531-019-01725-8

Manne, L. L., Brooks, T. M., and Pimm, S. L. (1999). Relative risk of extinction of
passerine birds on continents and islands. Nature 399, 258–261. doi: 10.1038/20436

Marrero, P., Oliveira, P., and Nogales, M. (2004). Diet of the endemic Madeira laurel
pigeon Columba trocaz in agricultural and forest areas: implications for conservation.
Bird Conserv. Int. 14, 165–172. doi: 10.1017/S0959270904000218

McKenzie, A. J., and Robertson, P. A. (2015). Which species are we researching and
why? a case study of the ecology of British breeding birds. PloS One 10, e0131004. doi:
10.1371/journal.pone.0131004

McKinney, M. L. (1997). Extinction vulnerability and selectivity: combining ecological and
paleontological views.Annu. Rev. Ecol. Syst. 28, 495–516. doi: 10.1146/annurev.ecolsys.28.1.495

Meehan, H. J., Mcconkey, K. R., and Drake, D. R. (2005). Early fate of Myristica
hypargyraea seeds dispersed by Ducula pacifica in Tonga, Western Polynesia. Austral
Ecol. 30, 374–382. doi: 10.1111/j.1442-9993.2005.01479.x

Melles, S. J., Scarpone, C., Julien, A., Robertson, J., Levieva, J. B., Carrier, C., et al.
(2019). Diversity of practitioners publishing in five leading international journals of
applied ecology and conservation biology 1987–2015 relative to global biodiversity
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Ripple, W. J., Chapron, G., López-Bao, J. V., Durant, S. M., Macdonald, D. W.,
Lindsey, P. A., et al. (2016). Saving the world’s terrestrial megafauna. Bioscience 66,
807–812. doi: 10.1093/biosci/biw092

Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M., Wirsing, A. J., and McCauley, D.
J. (2017). Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc.
Natl. Acad. Sci. 114, 10678–10683. doi: 10.1073/pnas.1702078114

Rivas-Salvador, J., Hor ̌ák, D., and Reif, J. (2019). Spatial patterns in habitat
specialization of European bird communities. Ecol. Indic. 105, 57–69. doi: 10.1016/
j.ecolind.2019.05.063

Rivera-Milán, F. F., Bertuol, P., Simal, F., and Rusk, B. L. (2015). Distance sampling
survey and abundance estimation of the critically endangered Grenada dove (Leptotila
wellsi). Condor 117, 87–93. doi: 10.1650/CONDOR-14-131.1

Roberts, B. E. I., Harris, W. E., Hilton, G. M., and Marsden, S. J. (2016). Taxonomic
and geographic bias in conservation biology research: a systematic review of wildfowl
demography studies. PloS One 11, e0153908. doi: 10.1371/journal.pone.0153908

Robinson, J. G., and Bennett, E. L. (2002). Will alleviating poverty solve the
bushmeat crisis? Oryx 36, 332. doi: 10.1017/S0030605302000662

Rodrigues, A., Pilgrim, J., Lamoreux, J., Hoffmann, M., and Brooks, T. (2006). The
value of the IUCN red list for conservation. Trends Ecol. Evol. 21, 71–76. doi: 10.1016/
j.tree.2005.10.010
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