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The demand for accurate estimation of aboveground biomass (AGB) at high 
spatial resolution is increasing in grassland-related research and management, 
especially for those regions with complex topography and fragmented landscapes, 
where grass and shrub are interspersed. In this study, based on 519 field AGB 
observations, integrating Synthetic Aperture Radar (SAR; Sentinel-1) and high-
resolution (Sentinel-2) remote sensing images, environmental and topographical 
data, we estimated the AGB of mountain grassland in Southwest China (Yunnan 
Province and Guizhou Province) by using remote sensing algorithms ranging from 
traditional regression to cutting edge machine learning (ML) and deep learning 
(DL) models. Four models (i.e., multiple stepwise regression (MSR), random 
forest (RF), support vector machine (SVM) and convolutional neural network 
(CNN)) were developed and compared for AGB simulation purposes. The results 
indicated that the RF model performed the best among the four models (testing 
dataset: decision co-efficient (R2) was 0.80 for shrubland and 0.75 for grassland, 
respectively). Among all input variables in the RF model, the vegetation indices 
played the most important role in grassland AGB estimation, with 6 vegetation 
indices (EVI, EVI2, NDVI, NIRv, MSR and DVI) in the top 10 of input variables. For 
shrubland, however, topographical factors (elevation, 12.7% IncMSE (increase in 
mean squared error)) and SAR data (VH band, 11.3% IncMSE) were the variables 
which contributed the most in the AGB estimation model. By comparing the input 
variables to the RF model, we found that integrating SAR data has the potential to 
improve grassland AGB estimation, especially for shrubland (26.7% improvement 
in the estimation of shrubland AGB). Regional grassland AGB estimation showed 
a lower mean AGB in Yunnan Province (443.6 g/m2) than that in Guizhou Province 
(687.6 g/m2) in 2021. Moreover, the correlation between five consecutive years 
(2018–2022) of AGB data and climatic factors calculated by partial correlation 
analysis showed that regional AGB was positively related with mean annual 
precipitation in more than 70% of the grassland and 60% of the shrubland area, 
respectively. Also, we found a positive relationship with mean annual temperature 
in 62.8% of the grassland and 55.6% of the shrubland area, respectively. This 
study demonstrated that integrating SAR into grassland AGB estimation led to a 
remote sensing estimation model that greatly improved the accuracy of modeled 
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mountain grassland AGB in southwest China, where the grassland consists of a 
complex mix of grass and shrubs.
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1. Introduction

Grassland is one of the most widely distributed terrestrial 
ecosystems, accounting for more than 40% of the world’s land surface 
(Scurlock and Hall, 2002). It plays an important role in providing 
human livelihood through the livestock production of grazing animals 
and additional ecosystem services such as regulating the terrestrial 
carbon cycling, maintaining biodiversity and preventing soil erosion 
(Flombaum and Sala, 2007; Wang et al., 2010; Niu et al., 2014; Mu 
et al., 2016). Grassland aboveground biomass (AGB) is one of the key 
indicators for evaluating in grassland growth status, utilization, and 
related environment assessment (Ali et  al., 2016). Therefore, the 
accurate and timely estimation of grassland AGB is crucial for research 
and optimizing management.

Traditional surveys of grassland AGB is directly measured by 
harvesting the aboveground materials, drying, and weighing in 
laboratories, which has high estimation accuracy but is limited to 
small areas due to its time-consuming nature and the labor involved 
(Sinha et al., 2015). With continuous launches of advanced satellites, 
leading to images with various spatial extent and temporal scales, 
coupled with the development of computing technology, remote 
sensing has become an efficient and low-cost approach which is widely 
applied in grassland monitoring at regional levels or global scales (Jin 
et al., 2014; Quan et al., 2017; Yang et al., 2018). The main principle of 
remote sensing based AGB estimation is to model the relationship 
between remote sensing parameters and field AGB observations, and 
subsequently apply the model to extrapolate AGB estimates to a 
regional scale. More specifically, there are three main categories of 
remote sensing-based grassland AGB estimation models or methods: 
empirical relationships with VIs, machine learning (ML) models and 
process-based model.

Establishing relationships between VIs and recorded AGB is the 
most common and direct approach for regional grassland AGB 
assessment. Many studies have reported that there is a strong 
correlation between the VIs, including normalized difference 
vegetation index (NDVI; Wei et al., 2021), enhanced vegetation index 
(EVI; Ge et al., 2018), soil adjusted vegetation index (SAVI; Ren et al., 
2018), ratio vegetation index (RVI; Guerschman et  al., 2009) and 
biomass in varies satellite images. However, VIs are subjected to the 
influence of environmental condition and the capability of 
characterizing vegetation status in certain circumstance, which can 
introduce errors and uncertainties into AGB estimation (Ali et al., 
2016). In recent years, efforts have been made to improve the 
estimation accuracy by constructing estimation model with multiple 
VIs or introducing specific VIs transformation to enhance the 
sensitivity of VIs to AGB or decrease the influences by environmental 
factors such as soil and other background factors (Li et  al., 2013, 
2016). ML methods, the non-parametric models constructed by both 
remote sensing images and environment data, are to find solutions 

that optimize performance metrics for a certain parameter from 
multiple sources based on a “learning process” (Jordan and Mitchell, 
2015). These methods can integrate multiple factors, learn from 
complicated nonlinear data, and provide better simulations than 
empirical regression models (Powell et  al., 2010). Moreover, ML 
models could provide accurate estimations of nonlinear relationship 
from various data, which help increase understanding of the driving 
forces in the ecosystem research (Ramoelo et al., 2015). Over the last 
decades, AGB assessment methods have been developed ranging from 
traditional multiple linear regression (MLR) to ML models such as 
support vector machine (SVM), random forests (RF) and artificial 
neural network (ANN). Nowadays, ML models have been widely 
applied in remote sensing grassland AGB estimation (Morais et al., 
2021). A recent literature review on ML methods used for grassland 
AGB estimation pointed out that the RF model was the most 
frequently used algorithm, followed by partial least squares regression 
(PLSR), but there was no significant difference between the accuracy 
of ML models (Morais et al., 2021). Various conclusions have been 
reported in ML model comparison studies, for examples, Zeng et al. 
(2019, 2021) used four ML model in grassland AGB simulations and 
found that the RF model performed the best, explaining 86% of the 
observed data variation on the Tibetan Plateau, while Zhang et al. 
(2018) reported ANN was better in a sawgrass marsh AGB prediction. 
In addition, considering there is no evidence that the performance of 
the ML algorithms themselves has been improving over time, and 
since the training process and the equations of the ML models cannot 
be observed, the applicability of ML models still needs to be analyzed 
to select suitable models in specific studies (Ali et al., 2016; Yang et al., 
2018). Besides the above mentioned classical ML models, the use of 
deep learning, an advanced ML technique which can automatically 
extract high dimensional ‘hidden’ features through a deeper neural 
network with hierarchical structure, has increased in recent years 
(LeCun et  al., 2015). Convolutional neural network (CNN) is 
considered as the most representative among them, which has been 
widely used in image classification (Wang et al., 2021). CNN model 
usually includes input layer, convolutional layer, pooling layer, fully 
connected layer and output layer. Unlike image classification, the last 
layer of CNN model for regression prediction accumulates the 
previous layer directly without adding soft-max function. However, 
AGB estimation usually lacks enough samples for CNN model 
training, and thus the potential of using CNN for AGB estimation is 
not well established yet (Dong et al., 2020).

Besides the ML algorithms selection, input variables are another 
relevant factor affecting grassland AGB estimation accuracy. 
Independent variables (or explanatory variables) such as 
meteorological, topographical, and geographic variables are the most 
common environmental variables, while the abundance of VIs 
provided by optical remote sensors are the main remote sensing input 
parameters. However, the use of optical data for estimating grassland 
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AGB has several limitations including that the acquisition of high 
quality images is restricted by weather conditions, spectral information 
and VIs saturation occurring in dense vegetation areas, while it also 
lacks the ability to provide vegetation structure information (Lu, 
2007). Synthetic aperture radar (SAR) sensors can penetrate through 
clouds without illumination conditions limitations, and the SAR 
system can provide valuable information about vegetation structure 
though a series of algorithms (Barrett et  al., 2014). Therefore, 
integration of optical and SAR data could overcome several limitations 
and thus could improve the performance of grassland AGB 
estimations (Naidoo et al., 2019). The potential of this integration has 
been proven in a grazed grassland (Wang et al., 2019), and thus it is 
worth to apply the concept in a more complex vegetation, such as 
shrubby grassland.

Located at the intersection of South and East Asia, the Yunnan-
Guizhou plateau including Yunnan and Guizhou provinces is the 
dominant feature of Southwest China. Influenced by South and East 
Asian Monsoons and complex topography, the vegetation of Yunnan-
Guizhou plateau is highly varied, ranging from subtropical forest to 
open grasslands (Chu et al., 2021). The plateau is the main distribution 
area of China’s thermal shrub grassland, which consists of patches of 
grass hills, grass slopes, scrub grassland, dry savanna, and alpine 
meadows, which all are relevant for developing animal husbandry 
(Shen et al., 2016). However, grassland ecosystems in Southwest China 
are relatively understudied in the earth observation field. There is still 
a knowledge gap with respect to the estimation of regional 
aboveground biomass for grassland with complex topography and 
high small-scale heterogeneity.

In this study, our primary objectives were to (1) develop and 
compare the capability of four models including a traditional 
regression model [i.e., multiple stepwise regression (MSR)], two 
classical ML models (i.e., RF, SVM) and a deep learning model (i.e., 
CNN) in grassland AGB estimation in Southwest China. (2) explore 
the potential of integrating SAR (Sentinel-1) and high resolution 
optical remote sensing (Sentinel-2) with gridded environmental and 
topographic data to develop regional grassland AGB estimation model 
to derive the spatial patterns of AGB for the Southwest China 
grassland of 2021, and (3) analyze the spatial and temporal variation 
of grassland AGB in Southwest China and its response to climatic 
factors, by mapping the grassland AGB from 2018 to 2022.

2. Materials and methods

2.1. Study area

The study area includes Yunnan and Guizhou provinces (21°8′–
29°15′N, 97°31′–109°35′E), in which the Yunnan-Guizhou plateau is 
located (Figure 1). These two provinces cover about 570,000 km2 with 
a large elevational span, ranging from less than 100 m to over 
6,000 m a.s.l., with much of the region being mountainous or dotted 
with karst landscapes. The climate belongs to highland monsoon 
climate, with small annual but large daily temperature differences, and 
abundant radiation and rainfall. The mean annual temperature in the 
study area is 24°C, and the mean annual precipitation is approximately 
1,100 mm, with around 80% concentrated in summer and autumn 
based on the data from 22 meteorological stations over the past 
20 years. A highly variable climate and edaphic space provides suitable 

light, soil and climate for diverse vegetation development and creates 
a rich diversity of biological resources. Grassland and shrubland are 
important vegetation types in the region accounting for over 14% of 
the area, with about 40% of Southern China’s grassland area is located 
in Yunnan based on data derived from a national grassland survey 
(Wu et al., 2017). The mainly grassland types include alpine meadows, 
temperate grassland, and mountain grassland, while warm shrubland, 
dry and hot sparse tree shrubland and thermal shrubland are the main 
shrubland types. Grassland and shrubland are distributed over almost 
the entire area except for the southwestern part of the study area, but 
the complex topographic conditions of the area determine the 
fragmented distribution of grassland and shrubland.

2.2. Data acquisition

2.2.1. Field data
Field data surveys were conducted during the growing season of 

2021. In order to match the ground samples with the satellite data, 
we regularly set five sample plots of 1 m × 1 m at each sample points 
for grassland and set one sample plots of 5 m × 5 m for shrubland with 
an interval distance of over 1 km between the plots so as to assure the 
representativeness of the samples. AGB of grassland and shrubland 
were acquired by harvesting all aboveground portions of vegetation 
within the sample plots, and weighing dried biomass. Moreover, the 
geographic coordinate pairs of each sample plot were also accurately 
recorded by a Trimble GeoXH 3,000 handheld GPS with decimeter-
level position accuracy for acquiring the corresponding features of 
satellite data. A total of 519 samples including 298 samples for pure 
grassland and 221 samples for shrubland were collected across the 
study area, covering cover all the typical types of the grassland and 
shrubland (Figure 1).

2.2.2. Remote sensing data
Sentinel-2 (S2) images covering the study area were acquired and 

processed through Google Earth Engine (https://code.earthengine.
google.com/, GEE). In order to maintain consistency with ground 
measured data, all available imageries of S2A in the July and August, 
2021 were collected, as well as supplemental images in May, June, 
September, and October whenever the region was not covered by 
clouds. Sentinel-2 covers 13 spectral bands from visible and near-
infrared to short-wave infrared with a revisit period of 5 days and a 
spatial resolution from 10 to 60 m. It also contains three bands in the 
red-edge range, which is effective for monitoring vegetation 
information. We  obtained the reflectance of 11 raw bands and 
calculated 11 vegetation indices based on the 11 bands as the 
input variables.

Sentinel-1 (S1) consists of two satellites, A and B, carrying a 
C-band synthetic aperture radar (SAR) that provides continuous 
imagery during day, night, and all types of weather. The polarization 
mode of S1 includes the single polarization mode (HH or VV) and the 
dual polarization mode (HH + HV or VV + VH). VH and VV are 
commonly used for the estimation of vertical parameters. Moreover, 
to match with the data from field measurements, we used data of S1 
with 10 m spatial resolution in early August for AGB estimation.

Topography factors were obtained from digital elevation model 
(DEM) data with 12.5 m spatial resolution, which is the elevation 
data collected by ALOS (Advanced Land Observing Satellite) 
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phased array type L-band synthetic aperture radar (PALSAR). 
ALOS DEM elevation data has a horizontal and vertical accuracy 
of 12.5 m, which can be downloaded on https://search.asf.alaska.
edu/. Based on the elevation data, slope and aspect were calculated 
for each pixel.

Environmental data was collected from three sources: the derived 
products of MODIS (MOD11A2.006) provides the terra land surface 
temperature with 1 km spatial resolution; A downscaled precipitation 
product with 1 km spatial resolution developed by Elnashar et  al. 
(2020) was used to extract the annual mean precipitation; Water Vapor 
Pressure (Water VP) was from S2.

Landcover types data was obtained from the latest ChinaCover 
dataset with 10 m spatial resolution (provided by the State Key 
Laboratory of Remote Sensing Science, Aerospace Information 
Research Institute, Chinese Academy of Sciences, China. The data was 
updated in 2020, but not released yet; Wu et al., 2017), from which 
we  extracted the grassland and shrubland to represent the great 
definition of grassland in this study.

2.3. Feature selection

Five types of features were used as input variables for machine 
learning models for the estimation of shrubland and grassland AGB 
(Table 1), including remote sensing spectral bands (Blue, Green, Red, 
Edge 1, Edge 2, Edge 3, Near Infrared (NIR), Edge 4, Water vapor, 
short-wave infrared 1 (SWIR 1) and SWIR 2) and VIs calculated by 
spectral bands (SR, NDVI, MSR, DVI, SAVI, EVI, NIRv, kNDVI, 
EVI2, GCC, and Clred Edge) from Sentinel-2, C-band SAR (VV and 

VH) from Sentinel-1; three topography factors (elevation, aspect and 
slope) from ALOS, and three environmental factors [Water VP, annual 
mean precipitation (Precipitation) and land surface temperature 
(LST)] from MODIS and downscaling algorithms. All the features 
corresponding to each sample points were extracted and then used in 
the model training and validation combined with ground measured 
AGB of grassland and shrubland.

2.4. Grassland aboveground biomass 
estimation models

Four models for predicting the aboveground biomass are used in 
our study: multiple stepwise regression (MSR), random forest (RF), 
support vector machine (SVM), and convolutional neural 
network (CNN).

MSR is a statistical analysis method used to determine the 
quantitative relationship of interdependence between two or more 
variables. It understands and interprets the relationships between 
AGB and the features from satellite data intuitively, and is sensitive to 
the abnormal values as well (Wu et al., 2016).

RF is a compositional supervised learning method that can 
be considered as an extension of decision trees. The RF regression 
model builds multiple unrelated decision trees by randomly 
drawing the input features to obtain prediction in a parallel 
manner. It is the most-used method for grassland AGB prediction 
(Wang et al., 2019; Zeng et al., 2019). Each decision tree yields a 
prediction result from the extracted samples and features, and the 
regression prediction result of the whole forest is obtained by 

FIGURE 1

The location of the study area and the distribution of shrubland and grassland, as well as field data sample points.
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combining the results of all trees and taking the average, to reduce 
the risk of overfitting. A Bayesian optimization procedure is 
applied to determine the number of trees and the number of 
selected predictors for each tree.

SVM maps input features to a high-dimensional space through 
functions and uses kernel functions to effectively overcome the 
dimensional catastrophe caused by mapping. It is based on the 

principle of finding a regression plane such that all the data of a set are 
closest to that plane. The method is suitable for small-sample, 
nonlinear prediction problems and has good generalization ability 
(Zhang et al., 2015).

CNN is a deep learning method that deduces features of the 
next layer by using convolution kernel with shared weights, which 
greatly reduces the number of parameters that need to be trained. 

TABLE 1 Features from remote sensing data as inputs of machine learning models for aboveground biomass estimation of grassland and shrubland.

Type Name Equation or description Source

Spectral band Blue Central band:497 nm Sentinel-2

Green Central band:560 nm Sentinel-2

Red Central band:665 nm Sentinel-2

Edge 1 Central band:704 nm Sentinel-2

Edge 2 Central band:740 nm Sentinel-2

Edge 3 Central band:783 nm Sentinel-2

NIR Central band:835 nm Sentinel-2

Edge 4 Central band:865 nm Sentinel-2

Water vapor Central band:945 nm Sentinel-2

SWIR 1 Central band:1614 nm Sentinel-2

SWIR 2 Central band:2202 nm Sentinel-2

C-band SAR VH Dual-band cross-polarization, vertical transmit/horizontal receive Sentinel-1

VV Single co-polarization, vertical transmit/vertical receive Sentinel-1

Topography factor Aspect The direction in which the slope is projected on a horizontal plane ALOS

Elevation The vertical distance above sea level ALOS

Slope The ratio of the vertical height to the horizontal distance ALOS

Vegetation index SR /NIR red Sentinel-2

NDVI ( ) ( )− +/NIR Red NIR Red Sentinel-2

MSR −
+

/

/

1
1

NIR Red
NIR Red

Sentinel-2

DVI −NIR red Sentinel-2

SAVI ( ) ( ) ( )+ ∗ − + +/1 L NIR red NIR Red L Sentinel-2

EVI ( ) ( )∗ − + ∗ − ∗ +. / .2 5 NIR Red NIR 6 Red 7 5 Blue 1 Sentinel-2

NIRv ∗NDVI NIR Sentinel-2

kNDVI 2NDVItanh
Sentinel-2

EVI2 ( ) ( )∗ − + ∗ +. / .2 5 NIR Red NIR 2 4 Red 1 Sentinel-2

GCC ( )+ +/G reen Red G reen Blue Sentinel-2

Clred Edge / 1NIR Edge Sentinel-2

Environmental factor Water VP Water Vapor Pressure. Sentinel-2

Precipitation Annual mean precipitation Downscaled product

LST Land surface temperature MOD11A2

All features are at 10 m spatial resolution, except the Edge 1–4, SWIR 1, 2 (20 m), Water vapor (60 m), elevation and derived aspect and slope (12.5 m) and LST and Precipitation are at 1 km 
spatial resolution.
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Based on the AGB of samples and their corresponding remote 
sensing features, we built a simplified CNN model and added a 
one-dimensional convolution layer. The input shape was defined 
by our independent variables. We added flatten and dense layers 
and optimized them using the Adam algorithm. ReLU (Krizhevsky 
et al., 2017) and root mean square error (RMSE) were used as the 
activation and function.

The workflow to establish the best AGB estimation model in 
this study is shown in Figure 2. Specifically, firstly, considering 
grassland is a mix grassy vegetation and shrubs in the study area, 
we  developed and compared the performance of four models 
(MSR, RF, SVM and CNN) in two scenarios: directly modelling 
AGB of grassland and shrubland together, or modelling them 
separately. Secondly, we tested the best feature selection for AGB 
estimation, especially the potential application of Sentinel-1 SAR 
data. Moreover, a timeseries of grassland AGB was calculated to 
analyze how climatic factors impact grassland AGB variation in 
Southwest China.

2.5. Prediction accuracy

The field sample plots were divided into two subsets with 
approximately three-fourths of the plots used for model training (N is 
214 and 158 in grassland and shrubland, respectively) and the others 
used for model validation (N = 84  in grassland and N = 63  in 
shrubland). In this study, the coefficient of determination (R2), root 

mean square error (RMSE) and mean absolute percentage error 
(MAPE) were calculated for evaluating the performance of prediction 
models. In addition, the 1:1 line was used to measure how far the 
ground-measured AGB values deviated from the predicted AGB 
values. A detailed description of the assessment indicators is shown 
as follows:

 
( )

=

=

 
− 

 = −
−

∑

∑

2

1
2

2
1

1



n
i ii

n
i ii

y y
R

y y
 

(1)

 =

 
= − 

 
∑

2

1

1


n
i i

i
R M S E y y

n
 

(2)

 

%

=

−
= ∑

1

100 

n
i i

ii

y yM A P E
n y

 

(3)

where n is the number of sample plots, yi  and yi  are the field 
measured and predicted AGB of plots i. yi  is the mean measured 
AGB of all plots.

FIGURE 2

The technical flowchart of grassland AGB estimation in this study.
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2.6. Partial correlation analysis

Partial correlation analysis is a process of eliminating the effect 
of the third variable when two variables are simultaneously 
correlated with the third variable and only analyzing the linear 
correlation between the two variables, which is commonly applied 
to assess the influences of climate change to the variation of 
grassland AGB (Guo et al., 2021; Xu et al., 2022). We applied it to 
determine the respective effects of temperature and precipitation 
on the differences of AGB distribution, with the indicator 
calculated as follows:

 
( )

−
=

− −2 21 1

xy xz yz
xy z

xz yz

r r r
r

r r
 

(4)

where ( )xy zr  is the partial correlation coefficient between variable x 
and variable y after excluding the influence of variable z. rxy , ryz  and 
rxz  represent the Pearson correlation coefficients between each pair 
of AGB, temperature and precipitation, respectively, which is 
calculated as follows:
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where xi  and yi  are the value of variable x and y in the year i; x  
and y  represent the mean value of variable x and y from 2018 
to 2022;

Additionally, a t-test is applied to test the significance of the partial 
correlation coefficient at a significance level of 0.05.

3. Results

3.1. The differences of ground survey of 
grassland and shrubland AGB

Overall, the biomass of shrubland was about 3 times higher 
than that of grassland, but the variation was large. According to 
ground sample plots, the measured AGB of shrubland had a wider 
range (from 648.9 to 3742.9 g/m2), with a mean AGB of 1829.2 g/
m2, while the grassland AGB ranged from 202.4 to 1289.6 g/m2 
with an average of 672.5 g/m2 (Table 2). Meanwhile, the AGB of 
shrubland also showed a larger standard deviation (751 g/m2) than 

that in grassland (265.8 g/m2), but their coefficient of variation 
(CV) was similar; 41 and 40% in shrubland and grassland, 
respectively. The high STD and CV were indicative of the high 
spatial heterogeneity in the study area.

3.2. Performance of grassland AGB 
estimation models

The four grassland AGB estimation models (MSR, RF, SVM and 
CNN) showed comparable results in the two modelling scenarios 
(Scenario 1: modelling all samples of grassland and shrubland together 
or Scenario 2: separately modelling them; Figure 3). We chose best 
model and better modelling scenarios through the following steps. (1) 
In general, the performance of CNN (testing R2 ranging from 0.7 to 
0.82) and RF (testing R2 ranging from 0.64 to 0.8) models were 
significantly better than MSR (testing R2 ranging from 0.33 to 0.42) 
and SVM (testing R2 ranging from 0.45 to 0.64). (2) As compared to 
Scenario 1 (R2 was 0.7 and 0.64 for CNN and RF, respectively), both 
CNN (R2 was 0.72 and 0.82 for grassland and shrubland, respectively) 
and RF (R2 was 0.75 and 0.8 for grassland and shrubland, respectively) 
algorithms performed better in Scenario 2. (3) Since the R2 were very 
close for CNN and RF in Scenario 2, the comparisons of RMSE 
suggested that RF (131.2 and 267.8 g/m2 for grassland and shrubland, 
respectively) was superior over CNN (152.4 and 315.4 g/m2 for 
grassland and shrubland, respectively), reducing RMSE 14 and 15% 
for modeling AGB of grassland and shrubs, respectively. In summary, 
separately modelling grassland and shrubland by RF model was the 
best approach for AGB estimations in this study.

Since the RF was the most suitable model in this study, the 
importance of input variables for RF was calculated (Figure 4). Some 
differences between grassland and shrubland for the top  10 most 
important factors were found. Compared with shrubland, the VIs 
were more important for monitoring grassland AGB using RF. There 
were 6 indices (EVI, EVI2, NDVI, NIRv, MSR, and DVI) in the top 10 
factors, with EVI being the most important factor for predicting 
grassland AGB. Short-wavelength infrared bands (SWIR1 and 
SWIR2) were more important than the visible and near-infrared 
bands. Furthermore, Water VP and LST were also important in RF 
model for estimating grassland AGB. For shrubland, elevation was the 
most important biogeographical parameter affecting AGB (12.7% 
IncMSE), while VH was the least important variable (11.3% IncMSE), 
which was not reflected in the estimate of grassland AGB. The 
important VIs in shrubland were GCC, SR, DVI, EVI2, kNDVI, which 
was distinct from grassland. Additionally, Edge 3 was the most 
important spectral band for shrubland AGB estimation.

TABLE 2 The statistical descriptions of the measured AGB for the training set, validation set and all data of grassland and shrubland.

Types Datasets Number Max (g/m2) Min (g/m2) Mean (g/m2) STD (g/m2) CV (%)

Shrubland Training 158 3742.9 650.9 1879.43 774.87 41

Validation 63 3186.86 648.9 1703.14 677.08 40

All 221 3742.9 648.9 1829.17 751.03 41

Grassland Training 214 1289.63 202.35 681.88 278.77 40

Validation 84 1269.3 217.00 663.27 252.96 38

All 298 1289.63 202.35 672.50 265.80 40

Max, Min, Mean, STD, and CV represent the maximum, minimum, mean, standard deviation and coefficient of variation for AGB of different datasets.
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3.3. Selection of input variables

High resolution optical images (Sentinel-2), SAR images 
(Sentinel-1), environmental and topographic data were major features 
to predict AGB of grassland by using the ML model. Since the RF 
model was superior among all eight ML models, the testing of the best 
combinations of input variables was carried out for regional AGB 
estimation. As shown in Table 3, all feature groups correlated strongly 
with validation AGB of grassland and shrubland, with R2 ranging from 
0.60 to 0.75 and 0.54 to 0.8 for grassland and shrubland, respectively. 
Although it was obvious that the AGB model performed the best when 

all features were used as input variables, with the addition of SAR data 
into the AGB model of shrubland leading to the greatest improvement, 
increasing the accuracy expressed by the value of R2 from 0.57 to 0.68, 
while RMSE decreased from 454.1 to 332.7 g/m2.

Other than the remote sensing images of the Sentinel series, 
we  also explored effects of spatial resolution variation on AGB 
estimation accuracy. MODIS data with 250 m resolution was used to 
instead of Sentinel without any other modifications to the RF model. 
This resulted in R2 values sustainably decreasing from 0.75 to 0.47 and 
0.8 to 0.53 for grassland and shrubland, respectively (Figure  5; 
Table  3), demonstrating that the remote sensing source with 
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FIGURE 3

Scatter plot between measured and predicted AGB using the various prediction models in two modelling scenarios [Scenario 1: modelling all samples 
of grassland and shrubland together (A–D); Scenario 2: separately modelling grassland (E–H) and shrubland (I–L)].
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better-detailed imaging was much more suitable for AGB estimation 
in this mountain grassland.

3.4. Spatial distribution of grassland and 
shrubland AGB

The AGB of grassland and shrubland across our study area in 2021 
was predicted by best by the RF model (Figure 6). AGB of grassland 
and shrubland showed a similar spatial distribution with lower values 
distributed in the northwest and higher AGB in the central region, 
especially in the west of Guizhou province. The predicted mean 
grassland AGB was 596.1 g/m2 (STD was 209.5 g/m2) and most AGB 
values were concentrated in the ranges between 400 g/m2 and 900 g/
m2 (as shown by the pixel frequency in the figure), which covered over 
half of the grassland area. The mean AGB was lower in Yunnan 
province (mean ± STD = 443.6 g/m2  ± 224.8 g/m2) than in Guizhou 
province (mean ± STD = 687.6 g/m2 ± 258.5 g/m2). The shrubland had 

higher mean AGB (1728.3 g/m2) and STD (470.8 g/m2) than grassland. 
The range of the predicted AGB for shrubland was 107.3–3473.6 g/m2 
with over 70% of the shrubland area having AGB between 900 and 
2,100 g/m2. The mean shrubland AGB in Guizhou province 
(mean ± STD = 1244.2 ± 466.8 g/m2) was also higher than that in 
Yunnan province (mean ± STD = 2303.9 ± 502.7 g/m2).

We further analyzed the influences of topography (elevation and 
slope) on the spatial patter of AGB in the southwest mountainous area 
(Figure  7). The mean AGB of grassland and shrubland tended to 
decrease with increasing elevation. However, a lower mean AGB was 
found in the grassland elevation below 1,000 m, which might 
be affected by human activities like grazing and mowing. There were 
different influences of slope for the distribution of grassland and 
shrubland AGB. Slope barely affected the distribution of grassland 
AGB and the mean AGB was almost uniform (714.5 g/m2 in the slope 
range of 30–35 degrees and 850.7 g/m2 in the slope range of 20–25 
degrees) across all ranges. By comparison, mean AGB of shrubland 
was highest in the flat area (2768.6 g/m2 in the slope less than 5 degree) 
and tended to decrease as the slope gets steeper (1755.9 g/m2 in the 
slope more than 35 degree).

3.5. Effects of precipitation and 
temperature on spatial AGB distribution

Precipitation and temperature are the most important climate 
factors affecting grassland growth. By using the RF model, 
we estimated AGB for five consecutive years (2018–2022) and then 
applied partial correlation analysis to calculate spatial correlations of 
AGB with mean annual temperature (MAT) and mean annual 
precipitation (MAP) in grassland and shrubland of this area. The 
results suggested a large spatial distribution variation regarding the 
influence of climatic factors on AGB (Figure 8). Generally, the positive 
relationship between AGB and MAP existed in a large proportion 
(70.3%) of the grassland, and 62.8% of which showed positive response 
to MAT (Table 4). In terms of spatial distribution, grasslands with 
significant positive correlation between two climate factors (MAP and 
MAT) and AGB were mainly concentrated in the central part of the 
study area (the boundary region of these two provinces), which 
accounted for over 29.4 and 29.5% area, respectively. Opposite effects 
of MAT and MAP on AGB were detected mainly in the southern and 
western regions. For shrubland, AGB showed a positive or significant 
positive correlation with MAP and MAT across 60.1 and 55.6% of the 
shrubland area, respectively, mainly in the central region.

Moreover, we calculated the AGB responses to climatic factors 
along the temperature and precipitation gradient along 2°C (MAT) 
and 200 mm (MAP) steps. The results shown in Figure 9 indicated that 
there was a parabolical correlation between MAT and AGB of both 
grassland and shrubland (R2 = 0.86, p < 0.05 and R2 = 0.97, p < 0.05 for 
grassland and shrubland, respectively). More specifically, AGB of 
grassland and shrubland showed significant increasing trends below 
19 and 18°C, respectively, (purple line in Figure 8A,C), and gradually 
decreased when temperature above 19 and 24°C, respectively (green 
line). Meanwhile, generally positive linear correlations between MAP 
and AGB of grassland and shrubland were observed (R2 = 0.55, p < 0.05 
and R2 = 0.57, p < 0.05 for grassland and shrubland, respectively); 
however, turning points were observed in the relationships. Below 
MAP of 1,300 and 1,200 mm for grassland and shrubland, respectively, 

FIGURE 4

Importance (increase in mean squared error, %IncMSE) of input 
variables for random forest model in AGB estimation for grassland 
and shrubland.

TABLE 3 Performance of various feature groups for AGB estimation using 
random forest.

Feature 
groups

Shrubland Grassland

R2 RMSE 
(g/m2)

MAPE 
(%)

R2 RMSE 
(g/m2)

MAPE 
(%)

Optical bands 0.54 469.3 18.7 0.60 170.4 22.5

Optical bands 

and VIs

0.57 454.1 17.0 0.67 156.2 19.4

All bands and 

VIs

0.68 332.7 13.3 0.70 148.7 16.9

All bands, VIs 

and DEM

0.77 273.4 10.9 0.72 138.3 13.1

All bands, VIs, 

DEM and 

environmental

0.80 267.8 10.2 0.75 131.2 11.3

Optical Bands represents the bands reflectance of Sentinel-2; VIs represents the vegetation 
indices calculated based on Sentinel-2; All Bands are the group of Optical Bands and 
Sentinel-1 bands; DEM is a topography factor including aspect, elevation and slope; 
Environmental includes the environmental factors Water VP, Precipitation and LST.
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AGB significantly increased with MAP; when MAP was above these 
values, AGB exhibited slightly decreasing trends with precipitation 
(Figures 8B,D).

4. Discussion

4.1. Model performances and variables 
selection

Numerous studies have demonstrated that ML models are a 
reliable tool in grassland AGB prediction due to their powerful 
interpretation ability and high efficiency (Zhang et al., 2015; Cheng 
et al., 2022). However, few studies have been conducted in mountain 
grassland due to its complex vegetation structure and topography 
(Cheng et al., 2022). In this study, four models were developed and 
tested for grassland AGB estimation on the Yunnan-Guizhou 
plateau. We found that due to the high landscape heterogeneity in 
this mountain grassland, separately modelling the pure grassland 
and shrubland yielded the best results. Among all AGB estimation 
algorithms, the ML and DL models had better accuracy than the 
traditional regression model. In this study, RF and CNN both 
produced encouraging results for grassland (R2 was 0.75 and 0.7 for 
RF and CNN, respectively) and shrubland (R2 was 0.8 and 0.82 for 
RF and CNN, respectively; Figure 3), with RF and its lower RMSE 
than CNN (14 and 15% lower in grassland and shrubland, 
respectively) achieving the best performance in grassland AGB 
estimation in Southwest China overall. These results were consistent 
with previous studies, suggesting that ML models, which have the 
advantage of accurately estimating complex non-linear relationship 
across variables, were more effective in dealing with multiple factors 
than ordinary regression models (Idowu et  al., 2016; Lyu et  al., 
2021). Among ML models, some case studies have indicated that RF 
model performed better than other ML models in AGB estimation 
of grassland. Wang et  al. (2017) simulated grassland AGB in a 
semiarid grassland and found that the RF model had a higher 
accuracy as compared to SVM model. Tang et al. (2021) also showed 
the RF model was superior to SVM, PLSR and back-propagation 
artificial neural network (BP-ANN) in AGB monitoring of the 
headwater of the Yellow River grasslands. Some recent comparison 
studies on AGB estimation performance of DL and ML models 
suggested CNN algorithm was found to perform better than classical 
ML models (i.e., RF, SVM), due to CNN was more sensitive to 

FIGURE 5

Scatter plot between measured and predicted AGB for grassland and shrubland using the RF based on the MODIS data with 250 m spatial resolution.

A

B

FIGURE 6

Spatial distribution of AGB of grassland (A) and shrubland (B) in 
Yunnan and Guizhou provinces in 2021.
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changes in features (Du et  al., 2021; Zhang et  al., 2022). While 
another case study showed RF would obtain slightly better accuracy 
than CNN if the data was elaborately designed (Dong et al., 2020). 
In our study, attribute to the designed modelling strategy and RF 

model’s strong robust to noise and outliers of heterogeneous 
ecosystems (Anaya et al., 2009; Xu et al., 2019), RF was found to 
be  the most suitable model in AGB estimation of the mountain 
grassland in Southwest China.

A B

FIGURE 7

The variation of grassland and shrubland AGB along the elevation (A) and slope (B).

A B

C D

FIGURE 8

Partial correlation between grassland AGB and mean annual temperature (A), grassland AGB and mean annual precipitation (B), shrubland AGB and 
mean annual temperature (C), shrubland AGB and mean annual precipitation (D) at the significance level of 0.05 from 2018 to 2022.
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Varies environmental factors affecting grassland growth 
including climate, soil and topography are common input variables 
to ML models in grassland related studies (Meng et al., 2020; Wang 
et  al., 2022). However, most of these studies used only a single 
remote sensing data source. Since SAR has advantages in obtaining 
vegetation structure information, we introduced Sentinel-1 SAR 
images in our study area, where the grassland is highly mixed with 
shrubs. In this study, VIs played a more important role in pure 
grassland estimation, and the EVI and SWIR contributed the most 
among VIs in the RF model (Figure 4). Some previous research 
suggested that although EVI did not inevitably outperform NDVI 
in grassland mapping and AGB estimation, EVI was still an 
improvement with regards to obtaining more reasonable values in 
different vegetation density situation (Liu et al., 2014), and SWIR 
was the most relevant index for grassland extraction in mountain 
grassland (Cheng et al., 2022). In contrast, elevation and backscatter 

values from vertical and horizontal (VH) polarization were the two 
most important input variables for the shrubland AGB estimation 
model, which suggested shrubland biomass was greatly influenced 
by topography and vegetation structure in Southwest China. Some 
studies also reported that VH polarization data from Sentinel-1 
SAR image had a higher accuracy than VV polarization data in 
biomass estimation (Liu et al., 2019). Moreover, the AGB estimation 
accuracy (R2) of shrubland significantly improved from 0.57 to 0.68 
while reducing RMSE by 26.7% when Sentinel-1 SAR was 
introduced to the RF model. However, recent case studies have 
reported conflicting outcomes regarding the performance of 
combining SAR in grassland AGB estimation. For example, Wang 
et al. (2019) indicated that the integration of Sentinel-1, Landsat 8, 
and Sentinel-2 improved the estimation of AGB by more than 30% 
compared to using only Sentinel-1 in a native pasture of Oklahoma, 
USA; However, study by Chiarito et al. (2021) showed there was 

TABLE 4 Statistics of area percentage with different Influence of climate factors on AGB for grassland and shrubland: different relationships in different 
areas.

Area percentage (%) Grassland AGB and 
MAT

Grassland AGB and 
MAP

Shrubland AGB and 
MAT

Shrubland AGB and 
MAP

Significant negative 16.5 11.8 15.3 15.5

Negative 20.7 17.9 29.1 24.4

Positive 33.3 40.9 37.0 36.8

Significant positive 29.5 29.4 18.6 23.3

A B

C D

FIGURE 9

Relationship of average AGB of grassland (A and B) and shrubland (C and D) with MAT (2°C) and MAP (200 mm) gradients data from 2018 to 2022.
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only a slight improvement when Sentinel-1 SAR was included in 
alpine meadows in Italy. Finally, While Raab et  al. (2020) even 
reported no positive effect on the model performance by combining 
Sentinel-1 and Sentinel-2 data in semi-natural grasslands of 
Germany. Nevertheless, our research demonstrated the potential of 
combining SAR and high-resolution optical data to provide 
accurate AGB estimation in shrubs mixed mountain grassland.

4.2. Response of grassland AGB to climatic 
variables

Climate factors including precipitation and temperature are main 
drivers of biophysical processes and growth in grassland ecosystems. 
There is a strong positive linear relationship between AGB and MAP 
based on long-term observations in almost all grassland ecosystems 
(Bai et al., 2004; Knapp et al., 2017). However, increasing studies have 
suggested that the response of AGB to MAP would saturate under 
extreme wet conditions and the AGB-MAP linear relationship would 
be modified (Wilcox et al., 2016; Flombaum et al., 2017). For example, 
Hao et  al. (2017) presented that AGB did not show a significant 
increase when growing season precipitation increased to extremely 
high values based on near 40 years long-term inventory data in a 
semiarid grassland. In this study, a general positive linear correlation 
between MAP and AGB was found for both grassland and shrubland. 
However, when MAP exceeded 1,300 and 1,200 mm for grassland and 
shrubland, respectively, AGB showed a slight decreasing trend rather 
than increasing further with MAP. Zeng et  al. (2019) reported a 
similar relationship between MAP and AGB on the Tibetan Plateau. 
The spatial distribution of the MAP-AGB relationship indicated that 
the AGB of grassland (70%) and shrubs (60%) responded generally 
positively to MAP. Shrubland were less sensitive to climate factors 
than grassland, as evidenced by the lower proportion of areas where 
significant responses were found. According to a recent field study in 
central Yunnan province, MAP and MAT did not directly affect 
shrubland biomass and the ratio of root and shoot, but changed the 
relationship between the stoichiometric characteristics and 
environmental factors (Guo et al., 2022).

Clear parabolical correlations between AGB and MAT were 
observed for both grassland and shrubland. The turning point of 
grassland AGB along the temperature gradient was around 19°C, 
while shrubland AGB would gradually decrease when temperatures 
exceeded 24°C, which confirmed that shrubland were more tolerant 
to higher temperatures than grassland. Around 63% of grassland and 
56% of shrubland showed a positive correlation with MAT, which for 
both was lower than the area positively correlated with MAP. This 
suggests that MAP played a more positive role for grass and shrub 
growth than MAT. Since extreme temperatures are occurring more 
frequently in this region under climate change (Yan et  al., 2021), 
increasing drought risks to be  amplified by heatwaves and thus 
threaten ecosystem functioning and human welfare.

4.3. Limitations and future optimization

Our study demonstrated that the integration of SAR and high-
resolution optical remote sensing data into the random forest model 
can yield better performance in mountain grassland AGB estimation 

in Southwest China. The combination of multi-source remote sensing 
data provided an opportunity to monitor AGB from a multi-
dimensional perspective. Additional satellite data, such as satellite-
based hyperspectral and LiDAR data from multi-platforms, can further 
improve the correct inclusion of vegetation biochemical and structural 
features, which would lead to further increases in accuracy of grassland 
AGB estimation in the future. Furthermore, soil percentage in each 
pixel due to land fragmentation should also be noted, as this causes the 
uncertainty of the band reflectance and vegetation indices. The use of 
multi-temporal data could be considered as an approach by acquiring 
the soil information in the pre-growing season and eliminating or 
reducing its effects based on pixel unmixing (Li et  al., 2016). 
Additionally, Sentinel series images were fully available in our study 
area after 2018, and the 5 years of data were able to use in this study is 
still too short for thorough climate related analyses, and may thus 
introduce some uncertainty. In fact, the spatial resolution of climate 
data is relatively coarse (1 km) and it is worth considering the fusion of 
high precision data (Sentinel) and long time series data such as MODIS 
data to produce long time series AGB spatial distribution dataset with 
high precision for a more accurate analysis of the influence of climate 
variables on AGB in the past time. This could enable refined 
management and sustainable development strategies for grassland.

5. Conclusion

AGB is one of the key indicators for grassland ecosystem 
research and management. In this study, we  constructed and 
compared four remote sensing estimation model including a 
traditional regression model (multiple stepwise regression, MSR), 
two classical machine learning models (random forest, RF and 
supporting vector machine, SVM) and a deep learning model 
(convolutional neural network, CNN) to estimate grassland AGB in 
Yunnan and Guizhou Provinces, Southwest China. Our study 
suggests that separately modelling AGB of pure grassland and 
shrubland achieved better results than modelling them together. 
Among all test models, the RF model with input variables from field 
survey, high-resolution optical data (Sentinel-2), SAR data 
(Sentinel-1), environmental data and topographic data led to the 
best performance for AGB estimation of both grassland and 
shrubland. Among all input variables in the RF model, the vegetation 
indices (i.e., EVI, EVI2, and NDVI) were the most important for 
grassland AGB estimation, while topographical factor (i.e., elevation) 
and SAR data (i.e., VH band) contributed the most to the shrubland 
AGB estimation model. We also demonstrated that integrating the 
SAR data into input variables had great potential to improve the 
accuracy of AGB estimation, especially for shrubland, improving 
AGB estimation by 21%. Regional grassland AGB mapping showed 
high spatial heterogeneity, with lower values distributed in the 
Northwest and higher AGB in the central region. The mean AGB of 
grassland was lower in Yunnan Province (443.6 g/m2) than that in 
Guizhou Province (687.6 g/m2) in 2021. The climatic effects on AGB 
variation showed that there was a positive linear correlation with 
MAP, but a parabolical correlation with MAT for both grassland and 
shrubland AGB based on the estimation of grassland AGB in 
Southwest China from 2018 to 2022. This study provides an effective 
and accurate method to estimate mountain grassland AGB and 
offers a new insight to better understanding spatial variation in 
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grassland AGB and its response to climatic factors in 
Southwest China.
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