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Coco: conservation design for
optimal ecological connectivity

Eline S. van Mantgem*, Johanna Hillebrand, Lukas Rose
and Gunnar W. Klau

Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
Despite global conservation efforts, biodiversity continues to decline, causing

many species to face extinction. These efforts include designing protected areas

to function as ecologically connected networks for habitat and movement

pathway conservation. Ecological connectivity is defined as the connectivity of

landscapes and seascapes that allows species to move and ecological processes

to function unimpeded. It facilitates long-term species persistence and

resilience, mitigates the impact of habitat fragmentation due to climate change

and land-use change, and addresses ecological processes that support

ecosystems. Thus, ecological connectivity is key in the design of habitat

conservation networks. To incorporate many complicating factors in this

process, it relies on decision-support frameworks to decide which areas to

include to protect biodiversity while minimizing cost. Various approaches

emerged to deal with the computational complexity involved in habitat

conservation design. However, despite the importance of designing

ecologically connected conservation networks, these widely used decision-

support frameworks do not offer functionality to optimize ecological

connectivity directly during conservation design. Here, we present a fast, exact

method to use connectivity metrics during the biodiversity conservation design

process. Our method is exact in the sense that it always returns optimal solutions

in ourmodel. We extend an existing Reserve Selection problem (RSP) formulation

with vertex-weighted connectivity constraints to include edge-weighted

connectivity constraints. Further, we describe two novel variations of the RSP

to directly optimize over connectivity metrics, one with cost minimization and

one with a fixed cost. We introduce Coco, an open-source decision-support

system to design ecologically connected conservations. Coco provides an

integer linear programming (ILP) method to include connectivity in

conservation design. To this end, we formulate our novel RSP variations as an

ILP. We test Coco on simulated data and two real datasets, one dataset of the

Great Barrier Reef and a large-scale dataset of the marine area in British

Columbia. We compare the performance of Coco to Marxan Connect and

show that Coco outperforms Marxan Connect both in runtime and solution

quality. Further, we compare the results of our proposed methods to the existing

RSP formulation and show that our novel methods significantly increase

connectivity at a lower cost.

KEYWORDS

ecological connectivity, computational ecology, site selection, graph theory, integer

linear programming, conservation design, spatial planning tool
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1 Introduction

Biodiversity loss is one of the biggest problems we currently

face, with many species threatened by extinction. Climate change

and other anthropogenic environmental impacts exacerbate the

degradation of ecosystems and the decline of biodiversity (Rands

et al., 2010). Even with broad public support and an increasing

number of policies and actions for biodiversity conservation,

biodiversity continued to decline between 2011 and 2020 (Lucy,

2022). Around 1 million species face extinction in the coming

decades unless the drivers of biodiversity loss are reduced (IPBES,

2019). However, indicators show an increase in main drivers

responsible for biodiversity loss, i.e., habitat fragmentation due to

land-use change and climate change (Rands et al., 2010). Habitat

fragmentation has a detrimental impact on biodiversity and

ecological processes (Haddad et al., 2015); both island

biogeography (Newmark, 1987) and metapopulation theory

(Hanski et al., 1999) suggest that isolation increases the risk of

species extinction. Additionally, the global average temperature

increase of 1°C has a disastrous impact on ecosystems, making

minimization of this impact of climate change on ecological

processes key (Scheffers et al., 2016). Because of climate change,

many species are shifting range boundaries and will continue to do

so (Littlefield et al., 2019).

To maintain higher biodiversity over time, large, connected

conservation areas, e.g., protected areas and other effective area-

based conservation measures, are needed (Hilty et al., 2020) and

should be expanded to cover at least 30% of the planet by 2030

(Lucy, 2022). These conservation areas form a buffer between

species and the drivers that threaten their survival. They should

represent the complete variety of biodiversity and promote the

long-term survival of the protected species (Margules and

Pressey, 2000).

Thus, conservation design should take ecological connectivity

into account, in addition to natural, physical and biological

patterns. Due to the importance of the connectivity of the

landscape for biodiversity conservation, the study of ecological

connectivity has steadily grown in recent years (Ayram et al.,

2016). Ecological connectivity defines the extent to which the

landscape facilitates or impedes the movement of animals and

plants (Crooks and Sanjayan, 2006). Conserving connectivity

improves the flow of organisms, materials, energy, and

information across landscapes. It facilitates the integrity and

functionality of ecosystems and the maintenance of biodiversity

and ecosystem services (Crooks and Sanjayan, 2006) and is

fundamental to species persistence by accommodating species to

avoid anthropogenic threats (Cushman et al., 2013).

Protecting and restoring ecological connectivity can mitigate

some of the effects of land-use change (Arkilanian et al., 2020) and

improve migration, natural adaptation and persistence of species

under climate change (Heller and Zavaleta, 2009). Thus, ensuring the

permeability and traversability of the landscape enables climate and

land-use driven range shifts (Keeley et al., 2018; Tucker et al., 2018).

Conservation areas are predominantly natural areas with high

biodiversity content (Keeley et al., 2018), mainly designed to

conserve biodiversity. However, ecological connectivity has an
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increasing role in their design. Ecological corridors are geographical

spaces solely designated to maintain or restore ecological connectivity

(Hilty et al., 2020). Ecological networks consist of conservation areas

and ecological corridors designed, implemented and maintained to

restore, conserve or enhance biodiversity (Bennett, 2004; Bennett and

Mulongoy, 2006; Hilty et al., 2020). Manymodelling approaches exist

to help balance the many factors influencing conservation planning.

These approaches regularly focus on habitat networks for single

species (Ayram et al., 2016; Xue et al., 2017; Gupta et al., 2019). In

contrast, there is broad consensus for the need for approaches that

assess connectivity for multiple co-habiting species in the landscape.

Multispecies connectivity analysis aims to identify a network of

habitats and movement pathways that supports the long-term

persistence of multiple species in a landscape (Wood et al., 2022).

There are different methods to integrate multiple species into

conservation design.

Conservation design aims to provide biodiversity and habitat

conservation in response to altered climates and land-use change

(Groves et al., 2012). Its tasks are to identify where to achieve

conservation goals, which locations to prioritize and how to

implement conservation actions (Redford et al., 2003; Wilson

et al., 2007). Conservation frameworks offer guidance for the

planning and management of these conservation efforts. There

are multiple general conservation frameworks, such as Strategic

Foresight (Cook et al., 2014), Evidence-Based Practice (EBP)

(Sutherland, 2008) and Systematic Conservation Planning (SCP)

(Margules and Pressey, 2000), each with specialized core focal

problems (Schwartz et al., 2018). Each framework contains a set

of tools and guidelines, such as Decion Support Systems (DSSs) that

aid in addressing the focal problem of the framework (Schwartz

et al., 2018). DSSs are usually applied to advise planners, managers

and stakeholders. Widely used DSSs being applied globally (Rose

et al., 2021) include Conservation Evidence (Sutherland et al.,

2019), a tool that summarizes documented evidence for EBP,

TESSA (Peh et al., 2013), a policy support tool to guide the

appraisal of ecosystem services at individual sites and the

Ecosystem Management Decision Support system (Reynolds

et al., 2014), a knowledge-based decision support system for

ecological planning and analysis, widely applied to landscape

analysis in the US (Gibson et al., 2017). Marxan (Ball et al., 2009)

is claimed to be the most widely used DSS globally (Gibson et al.,

2017). It is a spatial planning tool for SCP that identifies subsets of

the conservation planning area that achieve the conservation goals

while taking tradeoffs between conservation and socio-economic

objectives into account.

Here, we concentrate on spatial planning in the SCP framework.

In more detail, SCP provides a general framework for locating and

designing conservation areas. It consists of the following six stages

with many feedback loops and revisions about the selected

conservation area: compile data on biodiversity, identify

conservation goals, review existing conservation areas, select

additional conservation areas, implement conservation actions,

and maintain the conservation area (Margules and Pressey, 2000;

Gaston et al., 2002). The purpose of selecting additional

conservation areas is to achieve the conservation goals subject to

specific constraints, e.g., economic, social or biological. To help
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conservation planners and stakeholders, general workflows for the

selection of conservation areas have been described that also

account for connectivity (Wood et al., 2022) and integrate land-

use change and climate change scenarios (Albert et al., 2017;

Arkilanian et al., 2020). The conservation area selection stage

consists of the following phases: species selection, habitat quality

definition, habitat network definition, connectivity analysis, and

ecological network, i.e., conservation area and ecological corridor,

prioritization. The spatial prioritization phase can be very complex

due to conflicting goals and additional constraints. Key tools within

the SCP framework aim to help decision-makers, managers and

planners to quantify the broad goals of the conservation effort

(Schwartz et al., 2018). As such, part of the SCP toolkit aims to

guide spatial planning by, for example, quantifying objectives,

finding cost-efficient solutions and achieving conservation goals.

Additionally, these spatial planning tools can use connectivity data

generated in the previous connectivity analysis as a constraining

factor on feasible solutions.

Heuristic methods exist that provide multipurpose spatial

prioritization of the landscape, (Zonation by Moilanen et al.,

2005), or apply Simulated Annealing (SA) to solve the Reserve

Selection problem (RSP), (Marxan by Ball et al., 2009). Even though

these heuristic methods have proven useful, they give no guarantees

on the solution quality of the resulting habitat conservation areas. In

contrast to heuristic methods, ILP methods provide provably

optimal solutions to optimization problems such as RSP.

Additionally, heuristic methods have even been shown to be

slower than integer linear programming (ILP) approaches that

can find optimal solutions (Beyer et al., 2016; Schuster et al.,

2020). Some ILP approaches consider compactness (Wang and

Önal, 2016) and spatial contiguity (Wang et al., 2020) but lack

computational efficiency to handle large-scale datasets with realistic

numbers of pixels and features.

Despite the importance of integrating ecological connectivity in

conservation design, widely used DSSs, such as Marxan (Ball et al.,

2009) and Zonation (Moilanen et al., 2022), do not include

functionality to optimize ecological connectivity directly. Instead,

they require the addition of connectivity maps for hierarchical
Frontiers in Ecology and Evolution 03
prioritization (Moilanen et al., 2005) or for the inclusion of

connectivity data as additional constraints, (Marxan Connect by

Daigle et al., 2020; Prioritizr by Hanson et al., 2022). Figure 1A

shows the workflow to include connectivity maps in existing spatial

planning tools, such as Marxan and Zonation. The input maps

consist of the planning area divided into pixels. Each pixel has a

value for one or more attributes used in the spatial planning, e.g.,

feature count, presence/absence data, habitat quality and socio/

economic cost. During the connectivity analysis phase, habitat

pixels need to be assigned a value indicating their importance for

connectivity. Habitat pixels are those pixels in the landscape that are

part of habitat patches, selected by the user. First, connectivity

graphs are created based on the characteristics of the landscape and

selected features. The vertices in these graphs represent the habitat

patches, i.e., continuous areas of habitat pixels, in the landscape,

whereas the edges represent some measure of connectivity between

these habitat patches. Then, the selected vertex-weighted

connectivity metrics are run on these graphs to create the

connectivity maps in which each habitat pixel has a connectivity

value. This map is then used as input in spatial planning in addition

to the habitat quality maps. This means edge-weighted metrics

cannot be used or need to be rewritten in a vertex-weighted form,

for example by calculating the difference of the overall metric with

and without each individual vertex, such that a connectivity value

can be assigned to each vertex (Rayfield et al., 2016; Albert

et al., 2017).

Here, we present an exact method to directly optimize

connectivity metrics during the biodiversity conservation design

process. We introduce Coco, an open-source spatial planning DSS

to design ecologically connected conservation networks. Figure 1B

shows the workflow when using Coco. Instead of requiring

connectivity maps, Coco can use connectivity graphs as input and

run connectivity metrics on them. Coco then uses the resulting

(vertex- or edge-weighted) connectivity values in the optimization.

This removes the extra step of having to create connectivity maps.

Additionally, because Coco requires a graph instead of a map,

connectivity metrics generating edge values can also be used,

without the need to be rewritten into a vertex-weighted variant.
A B

FIGURE 1

The workflow when connectivity maps need to be created for spatial planning tools (Panel A) such as Marxan and Zonation compared to the
workflow of Coco (Panel B). An extra connectivity analysis needs to be performed by the user during the original workflow to generate connectivity
maps from the connectivity graphs as input maps for the spatial planning tools. However, since Coco is able to calculate metrics directly from the
connectivity graphs, no user-performed analysis is needed.
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In addition to treating the result of the connectivity analysis as a

feature map, Coco provides optimal ILP solutions to solve different

variations of the RSP that directly optimize the connectivity metrics.

Consequently, more emphasis is placed on connectivity during the

spatial planning phase of SCP.

First, we describe the existing formulation to include vertex-

weighted values as connectivity features in RSP. We differentiate

between vertex-weighted connectivity metrics and edge-weighted

connectivity metrics and introduce RSP formulations for both.

We continue to introduce two novel variations of RSP that allow

direct optimization over connectivity metrics. One variation

minimizes cost while maximizing the connectivity metric, and the

other maximizes the connectivity metric for a fixed cost. We give all

RSP variations as ILPs. We perform benchmark tests on 12

simulated datasets and we test Coco on two real datasets, one

smaller dataset and one large-scale data set. We run Coco on the

smaller dataset as used by Daigle et al. and show that Coco

outperforms Marxan Connect (MC) (Daigle et al., 2020), both in

runtime and solution quality, i.e., meeting the required

conservation targets at a lower cost. We run Coco on a large-scale

dataset of the marine area in British Columbia, Canada, as used in

an analysis of the conservation potential (Ban et al., 2013). For our

experiments, we use betweenness centrality (BC) (Freeman, 1977)

as a vertex-weighted connectivity metric example and equivalent

connectivity (EC) (Saura et al., 2011) as an edge-weighted

connectivity metric example. We explain the ecological

importance of both BC and EC, and give their formal graph-

theoretical definitions. We show that in all cases directly

optimizing over connectivity metrics results in higher

connectivity values at a lower cost, while maintaining the same

feature occurrence.
2 Materials and methods

2.1 Reserve selection problem

Coco can solve different variants of RSP, which aims to select

specific sites for conservation from a set of potential sites. Various

formulations of RSP exist (Williams et al., 2005), e.g., as a Maximal

Covering problem (Church et al., 1996; Arthur et al., 1997) or a

probabilistic model (Billionnet, 2011).

Here, our basis is a cost-based RSP formulation (Rodrigues

et al., 2000), variations of which are widely used (Ball et al., 2009;

Beyer et al., 2016; Daigle et al., 2020; Hanson et al., 2022). A grid

overlay or existing geographical, administrative or ecological

boundaries divides the landscape into smaller discrete spatial

units, i.e., pixels. Each pixel has an associated cost, e.g.,

acquisition cost, percentage of the total landscape, or socio/

economic cost. Further, it contains information on the occurrence

of each feature, e.g., species, in that pixel. The goal is to minimize

the cost while keeping the occurrence of each feature above a

specified threshold, i.e., the target. More formally, let N be the set of

pixels. For each pixel i ∈ N, we introduce a decision variable xi
indicating whether pixel i is in the solution (xi = 1) or not (xi = 0)

and a variable ci indicating the cost associated with pixel i. Further,
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let K be the set of selected features, then for each pixel i ∈ N and

each feature k ∈ K, we define rik as the occurrence of feature k in

pixel i. Additionally, for each feature k ∈ K we let Tk be the target to

reach for feature k. The cost-based RSP is then defined as follows:

min  o
N

i=1
cixi (1)

s : t : o
N

i=1
rikxi ≥ Tk    ∀k ∈ K (2)

xi ∈ 0, 1f g    ∀i ∈ N (3)

The objective function (1) minimizes the cost of all selected

pixels, while constraint (2) enforces the occurrence target for each

feature to be met. Constraint (3) indicates that all xi are binary

decision variables, i.e., they can only be 0 or 1. Note that our problem

formulation (1)–(3) of RSP is already given as an ILP and bears a

strong similarity to a multidimensional knapsack problem. The

number of possible selections grows exponentially with an

increasing number of pixels, quickly rendering it impossible for a

computer to try them all out. It is actually easy to show that RSP is

NP-hard because of its similarity to knapsack-like problems. This

means that it is highly unlikely that an algorithm exists that always

returns an optimal selection of pixels in time polynomial in the input

size. See (Garey and Johnson, 1979) for a more detailed explanation

of the theory behind NP-hardness and the Supplementary

Information 2 section of this article for a formal NP-hardness

proof of RSP. Nevertheless, despite its theoretical intractability,

even large instances of this knapsack-like problem can be solved

to provable optimality by ILP solvers in a short computation time

which we also observe in our experimental results.
2.2 Graph-based connectivity metrics

Many connectivity metrics exist to quantify connectivity each

with their own strengths and weaknesses (Rayfield et al., 2011; Saura

et al., 2018). Simple metrics, like Euclidian distance, while easy to

understand and calculate, might be too simplistic to simulate the

complex interactions of species movement and landscape structure

(Moilanen and Nieminen, 2002). More complex metrics, while

ecologically more realistic, might be too computationally

expensive (Mancini et al., 2022). Structural connectivity expresses

the connectivity between two pixels based on physical features and

habitat arrangements of the landscape (Keeley et al., 2021).

Structural connectivity metrics can, for example, be based on the

presence of corridors or stepping stones (Freeman, 1977), on

distances (Klein and Randić, 1993), or on habitat availability in

the landscape (Kindlmann and Burel, 2008). Functional

connectivity indicates the degree to which a landscape impairs or

facilitates the movement of focal species, considering each species’

perception separately (Arkilanian et al., 2020; Keeley et al., 2021).

Functional connectivity metrics include metrics based on

movement probability between patches, and immigration rates

(Kindlmann and Burel, 2008). Many ecological connectivity
frontiersin.org
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metrics exist (Pascual-Hortal and Saura, 2006; McRae et al., 2008;

Prugh, 2009; Keeley et al., 2018). Selecting suitable connectivity

metrics depends on expert opinion, data availability and

conservation goals. The conservation goals heavily depend on the

amount of existing human modification of the conservation

planning area (Belote et al., 2019; Locke et al., 2019). As such, the

amount of human modification is a factor to take into account when

selecting suitable connectivity metrics (Keeley et al., 2021).

To solve different variations of the RSP on a given planning

area, we mathematically represent the area as a graph G = (V, E). A

graph G consists of a set V of elements called vertices and a set E of

relations between pairs of vertices in V called edges. Each vertex v ∈
V represents exactly one discrete, indivisible spatial unit, i.e., pixel i

∈ N. The size of each pixel depends on the chosen resolution for the

pixels of the landscape. The set of edges E represents connectivity

links between the pixels. These connectivity links indicate either

structural or functional connectivity. Graph-based connectivity

metrics can be either vertex-weighted, e.g., BC and in-degree, or

edge-weighted, e.g., EC and Euclidian distance. Vertex-weighted

metrics assign a weight to each vertex v ∈ V, i.e., each pixel. Edge-

weighted metrics assign a weight to each edge e ∈ E, or to each pair

of vertices (vi, vj) ∈ V in the graph. Ecologically, edge weights can

represent functional or structural distances between pixels. Coco

currently offers a handful of connectivity metrics, such as BC and

EC (Section 3.2). However, Coco can be expanded to include any

metric that can be represented as either a vertex-weighted or edge-

weighted connectivity metric. Since grids are a special graph type,

Coco can include grid-based metrics as well.
2.3 Connectivity data in Coco

Coco is able to run several variations of the RSP to include

connectivity in the conservation area selection. Coco is written in

Python and calls the ILP solver Gurobi to solve the ILP

formulations of the user-selected RSP variation on the data. Coco

is open-source and freely available on https://github.com/

esvanmantgem/coco under a GPLv3 license. Coco requires input

very similar to Marxan (Ball et al., 2009). It needs the pixels of the

area, including cost and feature occurrence data for each pixel

where the feature is present.

In addition, Coco requires connectivity data. Including

connectivity in RSP requires the integration of the results of the

connectivity analysis into the RSP formulation. For this,

connectivity data provides the information to generate a directed

or undirected graph G = (V, E) needed for use in the connectivity

metrics. The connectivity data can be a (weighted) connectivity

matrix or a (weighted) edge list per feature. Both data formats

contain information about the edges connecting vertices and

possible weights on the edges. The connectivity data can either

represent the complete graph of the planning area or a subgraph,

such as the networks created in the habitat network definition phase

of the conservation area selection stage. Optionally, in case pixel

attributes, i.e., vertex weights, are used in metrics, data containing

the attribute values for each pixel, i.e., the weights of the vertices,

should be provided. The connectivity data can provide one
Frontiers in Ecology and Evolution 05
connectivity matrix or edge list containing the collapsed

information for all features k ∈ K, or k datasets, one dataset per

feature. As such, Coco can optimize connectivity metrics while

taking each feature into account individually. It calculates the user-

selected connectivity metrics on the connectivity data before

starting the ILP solver to find an optimal solution. Tools like

Circuitscape (McRae et al., 2008), Grainscape (Chubaty et al.,

2020), and Conefore (Saura and Torné, 2009) offer functionality

to create the connectivity data.
2.4 Including Connectivity in RSP

Since not all features are present in every pixel, we define Pk ⊆ P

as the set of pixels containing feature k. For each feature k, we

generate a graph Gk = (Vk, Ek), such that Vk contains a vertex vi for

each pixel i ∈ Pk and Ek contains an edge eij for each link in the

connectivity data of feature k. Additionally, let V be the set of all

vertex-weighted metrics and E the set of all edge-weighted metrics

to be considered. Given a graph Gk = (Vk, Ek), vertices vi, vj ∈ V and

edge (Vi, Vj) ∈ E, we define wmik to be the value of vertex-weighted

metricm∈ V applied to the connectivity data of feature k and vertex

vi. Similarly, we define wmijk to be the value of edge-weighted metric

m ∈ E applied to the connectivity data of feature k and edge eij =

(vi, vj).

2.4.1 RSP with connectivity features
A straightforward way of including the connectivity values, i.e.,

evaluation of the connectivity metrics, in RSP is to model them

using connectivity features (Daigle et al., 2020). We call this strategy

RSP with Connectivity Features (RSP-CF). We ensure that each

connectivity feature, i.e., each connectivity metric m∈ V ∪ E per

feature k, reaches a predefined target Tmk. For this, we sum the

connectivity values wmik or wmijk resulting from the evaluation of

each metric m for each feature k for each vertex Vi or edge eij,

respectively. We add constraint (4) for vertex-weighted connectivity

metrics in V and constraint (5) for edge-weighted connectivity

metrics in E:

o
υi∈Vk

wmik xi ≥ Tmk    ∀m ∈ V, ∀k ∈ K (4)

o
eij∈Ek

wmijk xixj ≥ Tmk    ∀m ∈ e, ∀k ∈ K (5)

For vertex-weighted metrics, we only need to include the metric

evaluation of vertex vi if pixel xi is in the solution. Thus, we multiply

wmik by the decision variable xi. While constraint (4) for vertex-

weighted metrics is an ILP, formalizing constraints (5) for edge-

weight metrics as an ILP is slightly more complicated. The

connectivity values resulting from the edge-weighted metric

evaluation correspond to edges eij ∈ Ek with vi, vj ∈ Vk. We must

ensure we only include edge values if both vertices incident to the

edge are in the solution. Thus, we multiply the connectivity value

wmijk by the decision variables xi, xj of both vertices vi, vj, leading to

the non-linear term wmijkxixj. To linearize this part of the constraint,

we introduce a binary variable zij that is 1 if and only if both xi and xj
frontiersin.org
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are 1, i.e., is 1 only if both pixels i and j are in the solution. To

enforce this, we add constraints (10)-(12) and replace constraint (5)

with constraint (9). The complete ILP formulation to include

connectivity as a feature is as follows:

min o
N

i=1
cixi (6)

s : t : o
N

i=1
rikxi ≥ Tk         ∀k ∈ K (7)

o
υi∈Vk

wmik xi ≥ Tmk  ∀m ∈ V, ∀k∈K (8)

o
eij∈Ek

wmijk zij ≥ Tmk  ∀m ∈ E, ∀k ∈ K (9)

zij ≥ xi + xj − 1           ∀z (10)

zij ≤ xi                ∀z (11)

zij ≤ xj                ∀z (12)

xi, zij ∈ 0, 1f g          ∀x, z (13)
2.4.2 RSP with cost-connectivity
To improve the connectivity in the resulting conservation area, we

formulate a variant of RSP that allows direct optimization over the

connectivity metrics while still minimizing cost, RSP Cost-Connectivity

(RSP-CC). To optimize directly over the connectivity metrics, we need

to adjust the objective function (1). We want to minimize the cost of

the selected pixels and maximize connectivity values resulting from the

evaluation of each connectivity metric m ∈ V ∪ E for each feature k.

Further, we introduce parameters a and b to balance the weight of the

cost against the profit of the connectivity values.

min ao
N

i=1
cixi

+ max b o
m∈V

o
k∈K

o
υi∈Vk

wmik xi + o
m∈E

o
k∈K

o
eij∈Ek

wmijk zij

 !
(14)

To rewrite this objective formulation as an ILP, we need to

maximize or minimize the entire objective function. Maximizing a

function over its arguments is mathematically equivalent to

minimizing the function over the same arguments with a sign

change, i.e., the negative. As such, we can rewrite the connectivity

ma x im i z a t i o n a s min −b(ovi∈Vk
 wmik +oeij∈Ek

 wmijk) f o r

all metrics.

The following ILP formulation for RSP includes connectivity

optimization:

min  ao
N

i=1
cixi − b  o

m∈V
 o
k∈K

  o
vi∈Vk

wmik xi + o
m∈E

 o
k∈K

  o
eij∈Ek

wmijk zij

 !

(15)
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s : t : o
N

i=1
rikxi ≥ Tk  ∀k ∈ K (16)

(10), (11), (12), (13) (17)
2.4.3 RSP with cost budget and connectivity
In specific circumstances, it might not be necessary to minimize

cost, e.g., when expanding an existing conservation area to include

an additional selected area that is a specified maximum percentage

of the entire planning area or with a fixed cost. In cases like this,

setting a maximum cost C is sufficient. For this, we also define an

ILP formulation to optimize directly over connectivity metrics

without minimizing cost and instead include the cost as a

constraint, RSP with Cost Budget and Connectivity (RSP-CBC).

max o
m∈V

 o
k∈K

  o
υi∈Vk

wmik xi + o
m∈E

 o
k∈K

  o
eij∈Ek

wmijk zij (18)

s : t : o
N

i=1
cixi ≤ C (19)

 o
N

i=1
rikxi ≥ Tk  ∀k ∈ K (20)

(10), (11), (12), (13) (21)

Here, the objective function (18) maximizes the connectivity

values resulting from the evaluation of the connectivity metrics

while making sure the cost of the selected pixels, cixi does not exceed

the maximum allowed cost C, constraint (19).
3 Results

3.1 Experimental results

We ran several experiments to test the performance of Coco,

both regarding runtime and solution quality, i.e., cost and metric

values. We ran all experiments on an AMD EPYC 7742 64-Core

Processor, 128 threads, and 1TB RAM. We tested the different

variations of the RSP on 12 simulated datasets and two real datasets.

We ran all different versions of RSP with both BC, EC, and BC+EC

and evaluated the solution quality in terms of cost and metric

values. We generated the datasets to increase in size, both the

planning area size and the number of features, to additionally test

the runtime performance of Coco. To compare against MC (Daigle

et al., 2020), we ran Coco on their dataset of the Great Barrier Reef

(Great Barrier Reef Marine Park Authority, 2001) and compared

our findings to the results of MC. Since they report findings using

BC, we only ran BC as a metric for these experiments. Further, we

created a large-scale dataset based on data from the marine area in

British Columbia (British Columbia Marine Conservation Analysis

Project Team, 2011). We ran the different variations of the RSP

using the vertex-weighted BC and the edge-weighted EC as metrics.

In both cases, the experimental results reported in this manuscript
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illustrate the performance and functionalities of Coco. The results

are not suitable to inform policy-making or usable as a guideline for

the conservation design of the planning areas.
3.2 Betweenness centrality and equivalent
connectivity

Currently, Coco has several different connectivity metrics

implemented, such as degree centrality, betweenness centrality

(Freeman, 1977) and equivalent connectivity. Due to its modular

software architecture design, it is straightforward to expand Coco

and add additional connectivity metrics. To illustrate the

functionality of Coco, we focus on betweenness centrality (BC)

Freeman (1977) and equivalent connectivity (EC) (Saura et al.,

2011) in our experimental results. Both BC and EC are widely used

metrics in conservation design (Gupta et al., 2019; Daigle et al.,

2020). Where BC can indicate how well a pixel functions as a

stepping stone for both long-range and short-range movement in

the conservation area, EC prioritizes high-quality pixels with a high-

probability of connectivity, important for the prioritization of high

quality habitat patches. BC quantifies the degree to which pixels

promote movement between other non-adjacent pixels and, as such,

is very suited as a metric for long-range connectivity (Rayfield et al.,

2016). More formally, BC is a measure of centrality in a graph based

on shortest paths. The shortest path between two vertices of a

connected graph is the path between two vertices such that the sum

of the weight of the edges is minimal. A shortest path exists for

every pair of vertices in a connected graph. The BC of a vertex

indicates how many of the shortest paths in a graph go through the

vertex. More formally, given a graph G = (V,E) and a vertex υ, the

BC of vertex υ is defined as follows:

BC(υ) = o
s,t∈V

s (s, tjυ)
s (s, t)

Here, s(s, t) indicates the number of shortest paths from s to t

and s(s, t | v) the number of shortest paths from s to t going through

v. BC is a vertex-weighted metric since it calculates values per

vertex. Note that the edge weights used to calculate the shortest path

can represent structural and functional distance.

EC is an edge-weighted metric based on the equivalent

connectivity area (ECA) metric (Saura et al., 2011). The ECA is

derived from the probability of connectivity (PC) (Saura and

Pascual-Hortal, 2007), a habitat availability index that quantifies

functional connectivity over the entire conservation area (Saura

et al., 2011). It improves several limitations of the PC and provides

better interpretability. Saura et al. define the ECA as follows:

ECA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i=1
o
N

j=1
aiajpij

s

Since we generalize the attributes ai, aj to correspond to other

habitat characteristics than area alone, we refer to the ECA as EC

(Saura et al., 2011). The EC is an edge-weighted connectivity metric

calculated on a graph G = (V,E). Let habitat attribute values ai and aj
be vertex-weights on vertices vi, vj ∈ V representing pixels i and j.
Frontiers in Ecology and Evolution 07
Further, let pij be an edge-weight on edge eij ∈ E connecting vertices

vi and vj representing the links between the pixels. Because the

calculation of the EC results in a value on an edge, depending on the

weight of two adjacent vertices and on the weight of the edge

connecting them, the EC is an edge-weighted metric. To use the EC

in spatial prioritization software such as Zonation which is only able

to use input maps containing vertex-weighted connectivity metric

values, Albert et al. define dEC as the patch importance based on EC

(Albert et al., 2017). Each patch is treated as a single vertex in the

graph for the connectivity analysis. However, each pixel in the patch

is an individual pixel for spatial prioritization. For each patch i, they

calculate dECi =
EC−ECi

EC , where ECi is the EC of the area with patch i

removed. However, since Coco is able to optimize edge-weighted

connectivity metrics directly, we calculate the contribution to the

EC for each individual link between two pixels in the connectivity

graph. For this, we define the EC(eij) as follows:

EC(eij) = aiajpij (22)

Here, ai and aj represent the values of a habitat attribute of

pixels i and j, such as area size, species occurrence, or habitat

quality. Further, pij indicates the probability of (functional or

structural) connectivity between pixels i and j, quantifying the

connectivity of the link between pixels i and j. Thus, the EC

increases when the probability of connectivity pij increases,

prioritizing higher-quality vertices with a higher probability

of connectivity.

The reason why we focussed on BC and EC during our

experiments is twofold. First, since the characteristics of BC and

EC complement each other, they are often used together to explore

different scenarios in conservation design (Rayfield et al., 2016;

Albert et al., 2017). Second, since BC is a vertex-weighted metric

and EC an edge-weighted metric, they are suitable to show the

ability of Coco to optimize directly over both vertex-weighted

metrics and edge-weighted metrics, in contrast to other spatial

prioritization software such as Marxan, Zonation and Prioritizr.
3.3 Simulated data

To extensively test the different RSP formulations implemented

in Coco we generated 12 datasets that simulate conservation

planning areas. Each dataset consists of a feature map of a

specified resolution, a connectivity graph based on the feature

map and in some cases a quality map needed for the EC. We

generated features maps of resolutions 400x400, 500x500 and

1000x1000. First, we initialized 2D grid layouts of the size of the

resolution. Then we generated feature population centers by

assigning random pixels in the grid a value based on random

uniform distribution. To simulate the habitat clusters, we used a

gradient function that assigns decreasing feature counts for pixels

around the population centers with varying gradient size. Next we

generated connectivity graphs based on the feature maps. We

selected a subset of habitat pixels with a specified minimal feature

occurence as vertices for the connectivity graph. We then used these

vertices to create a complete graph using the Euclidean distance in

the 2D grid layout as edge-weights. Lastly, we used a Perlin noise
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function (Perlin, 1985) to sample habitat quality data for use in

the EC.

We generated 8 occurrence datasets of sizes 400x400 and

500x500 with 15 features. To find the limits of Coco we generated

a large 1000x1000 dataset with binary presence/absence data for 15,

30, 50, and 70 features. Additionally, we generated quality maps for

6 datasets. We ran RSP-CF, RSP-CC and RSP-CBC with BC on all

datasets. For the 6 datasets with quality maps we additionally ran all

RSP variants with EC and BC+EC.

During all runs, the feature counts were slightly above the

predefined targets. This is to be expected as the total feature count

should be higher than the target, but as low as possible to minimize

cost. This includes the connectivity feature in the RSP-CF runs. In

all cases, the RSP-CC and RSP-CBC gave better quality solutions

than the RSP-CF in terms of achieved total connectivity value.

Table 1 shows the test results of Coco on the simulated datasets.

Overall, we saw an average 202%, 84% and 121% increase in

connectivity value for the RSP-CC runs for BC, EC and BC+EC

respectively. With an average cost increase of 0.67%, 0.84% and

0.97% the achieved average connectivity value per planning unit

increased by 211%, 124%, 44%. In no case did the average

connectivity value of the RSP-CC decrease when compared to the

RSP-CF. Next, we ran all datasets with RSP-CBC. Again, for all

datasets, all feature counts were slightly above the targets, similar to

the results found when running RSP-CF. Similar to the results of

RSP-CC, all runs with RSP-CBC resulted in higher quality

solutions, i.e., higher connectivity values, when compared to RSP-

CF. For each dataset and each metric, we used the cost reported by

the RSP-CF as the max cost for RSP-CBC to ensure a fair

comparison. In all cases the RSP-CBC outperformed the RSP-CF

in terms of solution quality. On average we found an 40%, 37% and

127% increase in total connectivity value, leading to an average

increase of 103%, 64%, 22% per planning unit. All benchmark
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datasets and a complete table with all results and running times are

available in the git repository and as Supplementary Information

3, respectively.
3.4 Great Barrier Reef

To evaluate the performance of MC (Daigle et al., 2020), the

authors used data of the Great Barrier Reef (Great Barrier Reef

Marine Park Authority, 2001). As features, they used 25 bioregions

previously identified by Fernandes et al. (Fernandes et al., 2005). As

connectivity data, they calculated resistance values for each feature

of the planning area. However, instead of using 25 connectivity data

sets, i.e., one per feature, they calculated the mean value of each

pixel and provided one connectivity edge list for all features. Using

this edge list, they calculated the BC for each pixel. They removed all

connectivity values below the median value and used the remaining

values as a connectivity feature, resulting in 26 features. The

planning area used for the experiments by Daigle et al. consists of

321 pixels. The connectivity data resulted in a graph of 321 vertices

and 24365 edges. For a direct performance comparison of Coco

against MC, we ran Coco RSP-CF with the same data and parameter

settings as MC. Since we only use the vertex-weighted BC as a

metric, this model is the same as the model of MC. Regarding

runtime, Coco spent less than 0.5 sec. to find an optimal solution,

while MC needed about 13 sec. to run the heuristic (Table 2).

To compare the solution quality of the underlying SA heuristic

of MC and the exact ILP of Coco we ran all RSP variants on the

data. Table 2 shows the experimental results of the solutions for

both MC using the RSP-CF variant and for Coco using all three RSP

variants. We compared the total cost of the selected conservation

area, which is equal to the number of pixels since the cost for each

pixel was 1. While both methods reach all predefined feature targets,

the smaller solution area of Coco contains 13% more feature

occurrences than the larger area found by MC. This extends to

the connectivity feature, as Coco reports a total connectivity value of

the solution area of 83200, compared to 75645 reported by MC.

Since the number of pixels influences the total connectivity value,

we additionally calculated the average gained connectivity value per

selected pixel, BC/pu, to be able to make a fair comparison. The gain

in BC/pu as found by Coco is 18% higher than the the BC/pu of MC.

This means, that Coco finds a solution with more protected

features, higher connectivity and a lower cost, i.e., in a smaller area.

In addition to a direct comparison of the SA heuristic of MC

and the exact ILP method of Coco, we tested the RSP-CC and RSP-

CBC on the data. Running RSP-CC on the data increased the cost

slightly to 57, while the total connectivity value of the selected area

increased significantly, from 83200 to 102774, resulting in a 40%

increase in BC/pu. Again, all feature targets were reached.

To gain insight into the optimal connectivity value for the area

size found by MC, we also ran RSP-CBC with a fixed cost of 59.

Coco found an optimal solution with a 46% increase in the total

connectivity value compared to the solution of MC. Additionally,

the total feature occurrences protected by the selected area

increased with 16.8% when compared to the MC solution.
TABLE 1 Results of tests performed with Coco by running BC, EC and
BC+EC on each simulated dataset (12, 6, 6 resp.) for each RSP variant.

BC EC BC + EC

avg total connectivity increase
avg increase connectivity/pixel

RSP-CF min connectivity increase
max connectivity increase

avg runtime

-
-
-
-
25 sec

-
-
-
-
977 sec

-
-
-
-
908 sec

avg total connectivity increase
avg increase connectivity/pixel

RSP-CC min connectivity increase
max connectivity increase

avg runtime
avg cost increase

202%
211%
68%
377%
27 sec
0.67%

84%
124%
16%
136%
259 sec
0.84%

121%
44%
43%
221%
210 sec
0.97%

avg total connectivity increase
avg increase connectivity/pixel

RSP-CBC min connectivity increase
max connectivity increase

avg runtime

40%
103%
3%
82%
64 sec

37%
64%
8%
75%
1742 sec

63%
22%
6%
192%
583 sec
For each metric and each RSP variant it shows the percentage of the average total increase, the
average increase per pixel, the minimum connectivity increase and the maximum connectivity
increase. For RSP-CC the table also shows the average cost. Additionally, it shows the average
runtime. All results per indiviual dataset, as well as the runtime, can be found in the
Supplementary Information 3.
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Figure 2 shows the conservation area of MC (Figure 2A) and the

conservation area of Coco RSP-CBC (Figure 2B). Blue pixels are

pixels not part of either conservation area. Yellow pixels are those

pixels that are selected by both MC and Coco RSP-CBC. These

planning areas are mostly large pixels with high feature values,

especially the two large pixels in the North, one in the middle and

one in the South. The red pixels are those that are selected either by

MC (Figure 2A) or Coco RSP-CBC (Figure 2B). A closer

examination of these pixels shows that, while the red pixels

selected by MC only are more scattered over the entire planning

area, those selected by Coco are more strategically placed to create

connectivity in the area by means of stepping stones between the

pixels with high feature counts. A group of red vertices in the North

connects the two large pixels, a big stepping stone cluster of pixels,

i.e., a group of selected pixels that are very close to each other, is

created in the middle of the area, connecting the South with the

North part. Two smaller stepping stone areas are located in the

middle of the North and middle clusters and the middle and

South clusters.

These more centalized vertices contribute greatly to overall

connectivity of the area as they are at the intersections of many

shortest path routes.
3.5 Marine area in British Columbia

To test Coco on a large-scale dataset, we considered a dataset of

the marine area in British Columbia used in an analysis of its

conservation potential (British Columbia Marine Conservation

Analysis Project Team, 2011; Ban et al., 2013). The British

Columbia Marine Conservation Analysis team divided the study

area into 120,499 square pixels with a side length of two kilometres

each and compiled ecological features and data through a series of

expert workshops. Here, we consider seven features. We
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constructed resistance and quality maps for each feature based on

human-use data. Next, we created a complete graph containing

least-cost paths, i.e., paths with the lowest resistance to movement,

between each pair of pixels. The connectivity data yielded 2483

vertices and 2306444 edges over all graphs for each feature. For a

more detailed explanation of the data preparation, we refer to the

Supplementary Information 1.

We ran all RSP variations using BC, EC, and BC and EC

simultaneously (BC+EC). Table 3 shows the important results.

Runtimes varied from minutes for the BC runs to less than an

hour for the BC+EC runs and, at most 2.5 hours for the EC runs.

With a lower cost we found significantly increased connectivity

values for all three metric variations for RSP-CC when compared to

RSP-CF: with slightly lower cost, the connectivity of the solution

area roughly doubled. Running RSP-CBC with the same cost found

by the RSP-CF resulted in significantly higher connectivity values.

Because of a relatively small cost difference between the RSP-CF and

RSP-CC and connectivity values being very close to the optimal

value, the differences between the RSP-CC and RSP-CBC runs were

only minor. In all tests, the feature targets were exactly reached,

apart from the RSP-CBC runs for EC and BC+EC, that had a 1.5%

increased feature occurrence when compared to the other found

solution areas.

Where BC is suitable for long-range connectivity, EC should

prioritize short-range connectivity. Since we used habitat quality as

the attribute of pixels and least-cost paths as a distance relation, a

higher total EC should create more clustering of high-quality pixels

than a lower total EC. Figure 3 shows the spatial conservation

selection maps of BC and EC simultaneously. Here, the selected

conservation area should be a mixture of both metrics, creating

high-quality habitat clusters with stepping-stone patches between

them. The RSP-CF (Figure 3A) shows some features of both

metrics, containing some stepping-stone patches from the BC and

some habitat clusters from the EC. However, they are still relatively

sparse, leaving an abundance of scattered pixels, RSP-CBC

(Figure 3B) shows a clear improvement Where the RSP-CF run

selected 5 main habitat clusters in the conservation area, the RSP-

CBC run removed the large habitat cluster in the West.

Additionally, part of the planning area. Dark-blue are pixels not

selected by Coco for conservation while yellow pixels indicate the

selected areas for conservation. the smaller scattered selected areas

in the West of the most Northern island are also removed by the

RSP-CBC runs. The greater influence of the connectivity metrics in

the RSP-CBC run enforced more centrally located areas to be

selected, indicating that selecting the extra Western area for

conservation would only increase cost, without increasing the

connectivity of the entire area or even the feature count. A closer

examination of the upper enlarged image shows the influence of EC:

instead of the more scattered habitat pixels selected by RSP-CF,

RSP-CBC created three dense areas as habitat clusters. The lower

enlarged image shows the influence of BC on the solution area:

whereas the RSP-CF selected habitat pixels scattered throughout the

area, a stepping stone path was selected by RSP-CBC to increase the

connectivity between the three big habitat clusters in the middle and

the habitat cluster in the South-East of the conservation area.
TABLE 2 Comparison of MC and Coco in term of cost, the total
connectivity value (BC) and the average BC per pixel for the selected
conservation area. The cost is equal to the size of the conservation area
as it was set to 1 for each pixel. Since MC pre-calculates the metric
values we measured both the total runtime of Coco and the time spent
by the ILP solver in Coco.

Marxan Connect Coco

total connectivity
RSP-CF avg connectivity/pixel

cost
solver runtime
total runtime

75645
1282
59

13 sec
–

83200
1513
55

0.02 sec
1.12 sec

total connectivity
RSP-CC avg connectivity/pixel

cost
solver runtime
total runtime

–

–

–

–

–

102774
1803
57

0.1 sec
1.2 sec

total connectivity
RSP-CON avg connectivity/pixel

cost
solver runtime
total runtime

–

–

–

–

–

111044
1882
59

0.25 sec
1.37 sec
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4 Discussion

4.1 Observations of experimental results

The experimental results described in the previous section

clearly show that the exact ILP implementation of RSP-CF in

Coco provides higher quality results, i.e., cost and connectivity

values, than the heuristic SA implementation of MC. Moreover, the

ILPs of RSP-CC and RSPCBC implemented in Coco generate

higher connectivity values with lower costs than the ILP

implementation of RSP-CF. As such, RSP-CC and RSP-CBC are

the superior methods in case connectivity plays a crucial role in the

conservation area design. The difference between the RSP-CC and

RSP-CBC solutions was minimal, caused by setting the cost of the

RSP-CBC to the optimal cost found by RSP-CF, which was close to

the minimal cost found by RSP-CC. It shows that RSP-CC offers
Frontiers in Ecology and Evolution 10
solutions close to optimal connectivity with minimal cost and

provides a strong alternative in case a fixed cost is unknown.

Another observation was the difference in runtime between the

vertex-weighted BC and the edge-weighted EC. Edge-weighted

metrics are harder to solve for the ILP solver due to their

inherent non-linear nature making edge-weighted metrics

computationally more expensive; this should be a factor when

selecting edge-weighted metrics for conservation design.
4.2 Limitations and future work

Coco is a spatial planning tool used for the conservation area

selection phase of SCP. Even when it improves on current state-of-

the-art spatial planning tools in terms of solution quality, especially

considering connectivity, this is only a small part of the entire
A B

FIGURE 2

Maps of spatial conservation selections for the Great Barrier Reef. Light-blue (water) and green (land) are not part of the planning area. The dark-
blue pixels are not selected for conservation by either MC or Coco, while the yellow areas are selected for conservation by both. The red pixels are
selected by either MC (A) or RSP-CBC (B) resp.
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conservation management life-cycle. As described in Section 1 and

shown in Figure 1, conservation selection is a very complicated

process involving many strategies, tools and experts. Conservation

management is an iterative process of design, implementation and

monitoring, with feedback loops to incorporate different climate-

change and land-use change projections. As such, many different

tools are needed to succesfully execute conservation efforts. Coco is

a very useful, albeit small part of the entire conservation

management process.

Another difficulty is the evaluation of the selected areas. Even when

using multiple scenarios for land-use change and climate change

projects, there is no known ground truth as to what the influence of
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prioritizing one area over another will be in 50, 100 years. This is a very

complex task, with many hard to predict interactions. Even with the

existence of evaluation tools, such as Conefor (Saura and Torné, 2009),

no absolute guarantees can be given. Another complicating factor is the

selection of features, i.e., how to best represent an ecosystem or

endangered features when selecting a conservation area. Many

different strategies exist ranging from selecting one surrogate species

(Meurant et al., 2018) to multispecies selection strategies (Wood et al.,

2022). Careful consideration and expert knowledge are necessary to

select the preferred strategy for the goals of each conservation effort.

A current shortcoming of Coco is the limited selection of

implemented metrics. However, the modular architecture allows
TABLE 3 Comparison of the different RSP variations in term of cost, the total values and the average metric values per cost for the marine area in
British Columbia, Canada.

BC EC BC + EC

total connectivity
avg connectivity/pixel

RSP-CF cost
runtime in sec

653584
552
1183
67

8120879
6818
1191
1425

682401 8120879
573 6816

1191
1487

total connectivity
avg connectivity/pixel

RSP-CC cost
runtime

1443545
1238
1166
71

16062736
13776
1166
6093

1374704 16067606
1178 13768

1167
3129

total connectivity
avg connectivity/pixel

RSP-CON cost
runtime

1443545
1238
1166
102

17725531
14883
1191
9246

1331285 17865899
1118 15001

1191
1973
aA B

FIGURE 3

Maps of selected conservation areas for the BCMCA data for (A) RSP-CF with BC+EC and (B) RSP-CBC with BC+EC. Green indicates land and light-
blue indicates water, both not part of the planning area. Dark-blue are pixels not selected by Coco for conservation while yellow pixels indicate the
selected areas for conservation.
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for straightforward expansion; we plan the addition of relevant

metrics to make Coco a strong competitor for other decision-

support tools. Another issue is that Coco optimizes the metrics

over the input connectivity graph, optimizing the metrics over the

solution area would very likely yield better results. However, it is

mathematically complex and computationally very expensive and

currently part of ongoing research. As we show in Section 3, Coco

can run multiple metrics simultaneously at equal importance. We

plan on improving Coco by allowing the user to balance the

importance of each metric individually and per feature. We also

found that setting the cost weight requires knowledge of the data

and the metrics used. Further investigation and testing are needed

to make this easier and more intuitive to understand.

Due to the complexity of and competing interests involved in

conservation design, many DSSs apply a scoring function to

planning units, ordering the importance of planning units.

Currently, Coco produces binary solutions in the sense that pixels

are either selected or not. However, it is possible to use ILP to find

multiple optimal solutions, i.e., solutions with the same optimal

objective value, if they exist. Alternatively, suboptimal solutions

within a specified percentage of the optimal objective value could

also be reported. The frequency with which pixels are part of a (sub)

optimal solution could then form a basis for a scoring function,

creating a prioritization of all pixels in the planning area.

Addressing this issue is part of current ongoing research.
5 Conclusions

We introduced Coco, an ILP-based framework to integrate

connectivity in conservation design. Where existing tools can

consider connectivity values as vertex-weighted connectivity

features, i.e., connectivity values on pixels, Coco additionally allows

connectivity values on relations between pixels, i.e., edge-weighted

values. Moreover, we introduced a novel method to integrate

connectivity metrics in conservation design by optimizing directly

over vertex-weighted and edge-weighted connectivity metrics, either

with cost minimization or a fixed cost. We showed that the

conservation areas resulting from optimizing directly over metrics

have significantly increased connectivity values, with lower cost when

minimizing. The modular architecture of Coco allows for

straightforward expansion of the available metrics, making it

adaptable to the needs of individual conservation planning efforts.
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