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Editorial on the Research Topic

Insights in chemical ecology: 2022

Chemical ecology is a multi-disciplinary science that continues to expand into numerous

different research fields on the chemicals that mediate ecological interactions among

organisms. The goal of this Research Topic is to highlight recent accomplishments in the

field of chemical ecology. It contains three articles that cover a wide range of current topics

that provide new insights, novel developments, and future perspectives in chemical ecology

such as induced plant resistance against herbivores, insect adaptations to climate change,

and nutritional needs in social insects.

An exciting field of chemical ecology in the past 3–4 decades has been studies on the role

of plant volatiles mediating interactions between insect herbivores and their natural enemies

(i.e., tri-trophic level interactions). Plants are known to increase their defenses not only

in response to feeding damage by insect herbivores but also to their oviposition (Meiners

and Hilker, 2000; Bruce et al., 2010; Fatouros et al., 2012). In fact, oviposition by insect

herbivores can induce direct defenses in plants that reduce the performance of the newly

hatched neonates (Kim et al., 2012; Geiselhardt et al., 2013; Bandoly et al., 2015; Rondoni

et al., 2018), and can induce plant volatiles that attract the natural enemies of the herbivores–

an indirect mechanism of defense (Meiners and Hilker, 2000; Bruce et al., 2010). These

direct and indirect defenses are often regulated by phytohormones such as jasmonic acid

and salicylic acid (Meiners and Hilker, 2000; Mumm et al., 2003; Little et al., 2007; Bruessow

et al., 2010). Most of this research comes from studies with annual plants; however, less

is known on the mechanisms mediating oviposition-induced defenses in woody perennial

plants. Dávila et al. studied the response of the willow Salix babylonica to oviposition by the

specialist willow sawfly,Nematus oligospilus, and its impact on insect performance. Using gas

chromatography coupled with mass spectrometry (GC-MS) and high-performance liquid

chromatography coupled with mass spectrometry (HPLC-MS), they measured the effects of

sawfly oviposition on volatile emissions and phytohormones, respectively. They found that

oviposition reduces neonate larval growth and increased the proportion of prepupae, which

extended the sawfly’s developmental times. Oviposition increased jasmonic acid levels and

changed the volatile profiles in willows by increasing emissions of (E/E)-α-farnesene and

(Z)- and (E)-β-ocimene. This study provides new advances into oviposition-induced defense

responses in woody perennial plants.
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The impact of climate change on species interactions has

received increasing attention from researchers in recent years.

Climate change can affect biodiversity by changing species’

spatial ranges, phenology, and their interactions (Bellard et al.,

2012; Halsch et al., 2021), which are likely to manifest more

strongly at higher than lower elevations (Pepin et al., 2015).

These changes could affect pollinators such as bumble bees.

In their article, Maihoff et al. investigated whether cuticular

hydrocarbons (CHCs) of alpine bumble bees are linked to the

species’ elevational niches. For this, the authors used GC-MS

to analyze interspecific and intraspecific variation in CHCs of

bumble bees along an elevational gradient. They also conducted

a field experiment to test whether CHCs of Bombus lucorum

change when translocated from the foothill of a cool and

wet mountain region to a higher elevation and a warm and

dry region. The authors found distinctive, species-specific CHC

profiles, as well as inter- and intraspecific variation in the

CHC profiles of bumble bees; however, these profiles were not

linked to the elevational distribution of species and individuals.

Bumble bees translocated to a warm and dry region tended

to express longer CHC chains than bumble bees translocated

to cool and wet foothills, possibly due to acclimatization to

regional climate; although this was not associated with elevation,

indicating that temperature alone did not explain these results. The

authors conclude that, although bumble bee species have specific

CHC profiles, their function in response to climatic conditions

remains elusive.

Optimal foraging theory predicts that insects should forage to

maximize their rate of energy intake (Stephens and Krebs, 1986).

For social insects, such as ants, foraging workers must meet not

only their own nutritional needs but also those of their nestmates.

Worker ants require primarily carbohydrates for energy, while

the queen(s) and brood also require proteins for egg production

and larval development, respectively (Markin, 1970; Sorensen and

Vinson, 1981; Weeks et al., 2006). To achieve this, worker ants

utilize a wide range of food sources, including sugary honeydew,

insect prey, floral and extrafloral nectar, pollen, seeds, plant foliage

to cultivate mutualistic fungi, animal excreta and carrion, among

others, to meet their nutritional needs (Hölldobler and Wilson,

1990). However, little is known about the volatile cues used

by foraging ants to locate food sources (Knaden and Graham,

2016). Renyard et al. used the Western carpenter ant, Camponotus

modoc, to test whether food sources rich in carbohydrates (aphid

honeydew, floral nectar) and in proteins (bird excreta, housemouse

carrion, cow liver with or without fly maggot infestation) attract

worker ants, and whether attraction of ants to plant inflorescences

(i.e., fireweed, thimbleberry, hardhack) is mediated by shared floral

odorants. In Y-tube olfactometer bioassays, ants were attracted to

both carbohydrate (thimbleberry, fireweed) and protein sources

(bird excreta). Headspace volatiles of these attractive sources were

analyzed by GC-MS, and synthetic odor blends were tested in Y-

tube olfactometer bioassays. Ants were attracted to the synthetic

blends of thimbleberry and fireweed but not of bird excreta. This

study shows that C. modoc worker ants use food odor profiles when

foraging for carbohydrate and protein resources.

In conclusion, this Research Topic includes articles that

apply chemical ecology to study insect-plant interactions, insect

adaptation to climate change, and insect foraging behavior. These

articles employ various analytical techniques, such as GC-MS

and HPLC-MS, for the identification of volatiles emissions and

to quantify phytohormone levels. These techniques together with

experiments on insect performance and preference can be powerful

tools for the study of chemically-mediated interactions between

organisms and their environment. We hope these articles will

inspire, inform, and provide direction and guidance for future

studies in this multi-disciplinary field of research.
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