
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Fang Chen,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Qifei Zhang,
Shanxi Normal University, China
Xiangjin Shen,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Rui Zhang

zhangrui@radi.ac.cn

†These authors have contributed equally to
this work and share first authorship

RECEIVED 03 February 2023

ACCEPTED 31 October 2023
PUBLISHED 21 November 2023

CITATION

Wang C, Zhang R, Chang L and Tian Q
(2023) Contrasting response mechanisms
and ecological stress of net primary
productivity in sub-humid to arid
transition regions: a case study
from the Loess Plateau, China.
Front. Ecol. Evol. 11:1157981.
doi: 10.3389/fevo.2023.1157981

COPYRIGHT

© 2023 Wang, Zhang, Chang and Tian. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 21 November 2023

DOI 10.3389/fevo.2023.1157981
Contrasting response
mechanisms and ecological
stress of net primary productivity
in sub-humid to arid transition
regions: a case study from the
Loess Plateau, China

Chunsheng Wang1†, Rui Zhang2*†, Lili Chang3 and Qingjiu Tian1

1International Institute for Earth System Science, Nanjing University, Nanjing, China, 2Key Laboratory
of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station,
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou, China, 3Institute of Geophysics and Geomatics, China University of Geosciences,
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With the intensification of global change, the overall functions and structures of

ecosystems in sub-humid to arid transition regions have changed to varying

degrees. The Loess Plateau, as a typical case of such regions, plays a great role in

the study of net primary productivity (NPP) for estimating the sustainability of the

Earth’s carrying capacity in terrestrial ecosystem process monitoring. In the

research on contrasting response mechanisms and ecological stress of NPP,

the main innovations of this study are as follows. On the basis of the indicator

system constructed from satellite imagery and meteorological data, we

introduced deep multiple regressive models to reveal the relationship between

NPP and the identified driving factors and then creatively proposed ecological

stress (ES) evaluation models from the perspective of vegetation productivity.

The findings are as follows: 1) From 2000 to 2019, the changes in driving factors

presented a clear regional character, and the annual NPP maintained a

fluctuating increasing trend (with a value of 4.57 g·m2·a−1). From the

perspective of spatial distribution, the growth rate of NPP gradually increased

from arid to sub-humid regions. 2) The effects of different driving factors on NPP

changes and specific NPPs varied greatly across different regions. Arid and semi-

arid regions were mainly controlled by precipitation (20.49%), temperature

(15.21%), and other related factors, whereas sub-humid regions were mainly

controlled by solar radiation, such as net surface solar radiation (NSSR) (8.71%)

and surface effective radiation (SER) (7.93%). The main driving factors of NPP

change varied under different soil conditions. 3) The spatio-temporal patterns of
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NPP approximated those of ES, but the effects of the latter significantly differed

across ecological functional regions and land uses. This research on the Loess

Plateau can serve as a valuable reference for future research on realizing

ecosystem restoration and protection in sub-humid to arid transition regions.
KEYWORDS

Loess Plateau, global change, net primary productivity, ecological stress,
response mechanism
1 Introduction

The eco-environment is a dynamic and balanced system of

energy exchange and material circulation between the natural and

human environments; it is also the essential condition for

humankind’s survival and development and the foundation of

socially sustainable development (Celiz et al., 2009; Mamat et al.,

2014; Chang et al., 2019). The drastic changes in eco-environmental

elements caused by global climate change have led to variations in

solar radiation absorption by the underlying surface (Dale, 1997;

Hadi et al., 2014), ultimately affecting the moisture and energy

exchange between the atmosphere–earth systems in this region

(Tapley et al., 2019). The current process of environmental

degradation and ecological destruction has been aggravated by

global climate change and human activities. Furthermore,

environmental disasters and ecological catastrophes caused by

environmental degradation and ecological destruction remain

unmitigated, thereby posing major challenges to sustainable

development. Therefore, mitigating the adverse effects of global

climate change and human activities by changing the vulnerability

of human–earth systems has become an important goal of global

sustainable development (Guo et al., 2011; Wang et al., 2014).

The dramatic changes in hydrothermal conditions resulting

from global change have dramatically affected some ecologically

transitional regions, such as arid, semi-arid, and sub-humid regions

(Carpenter et al., 1992). Both observations and modeling studies

indicate that drying trends may occur most significantly in semi-

arid and arid regions. The largest expansion of drylands has

occurred in semi-arid regions since the early 1960s, which

accounts for more than half of the total dryland expansion. The

area of semi-arid regions in 1990–2004 is 7% larger than that during

the years of 1948–1962 (Huang et al., 2016). The dryland expansion

rate resulted in the drylands covering half of the global land surface

by the end of this century (Feng and Zhang, 2015). As a result of

global warming, dryland expansion further intensifies hydrological

cycles, in which climatologically wet regions become wetter and dry

regions become drier (Castello and Macedo, 2016; Schmeller et al.,

2018). The largest expansion of drylands that has occurred in semi-

arid regions since the early 1960s accounts for more than half of the

total dryland expansion (Bouras et al., 2019). The ecosystems in

such regions are fragile and sensitive to strong interactions between

human activities and climate change (Hussain et al., 2018). The key
02
consideration in reasonably monitoring ecological changes is to

scientifically understand the driver-response mechanisms and

spatio-temporal variations in ecological vulnerability (Ding

et al., 2016).

Initially, climate change research in sub-humid to arid

transition regions mainly focused on long-term scale variations,

the relationship between climate change and human activities, and

the development trends of climate change (Lyu et al., 2019; Tang

and Hailu, 2020). The influence of radiation factors is mainly due to

seasonal variations, the intervention effects of the climate system,

and estimation methods. In recent years, research on the

distribution and variation trend of net surface solar radiation and

surface effective radiation has gained popularity. Affected by global

change, climate variability has increased globally in the middle-high

latitudes as the meteoric water line moves northward. In arid and

semi-arid regions, the soil texture is relatively loose (Ragab and

Prudhomme, 2002). Soil is the world’s most extensive terrestrial

carbon sink system. Soil moisture conditions affect water uptake by

plant roots and leaf transpiration, subsequently affecting dry matter

accumulation. As rainfall intensity and total rainfall continue to

increase, some areas now suffer from erosion, which is extremely

detrimental to vegetation growth. Overall, climate change is mainly

affected by changes in solar–terrestrial thermal radiation over the

years, gradually intensifying in modern times due to human

engineering activities (Maher, 2016; Gang et al., 2018; Li et al.,

2019). Consequently, the scope of research on solar radiation,

climatic factors, soil moisture factors, and land use in sub-humid

to arid transition regions has become more extensive.

To quantify the status of the eco-environment, we introduced

the concept of “ecological stress” (ES) in this study. ES is caused by

disturbance—whether from human activities or natural events—

that affects the standard structure and function of ecosystems

(Dakos and Soler-Toscano, 2017). These disturbances often

exceed ecosystem resilience, resulting in irreversible changes or

even the collapse of entire ecosystems (Mumby and Van Woesik,

2014; Karaouzas et al., 2018). In a broad sense, ESs can be

summarized as the factors causing ecosystem change, reaction, or

dysfunction. The ecological stress index (ESI) is a function of

ecosystem sensitivity and adaptability to environmental changes

(Seddon et al., 2016; Zhu et al., 2021). On the one hand, we refer to

“sensitivity” as the degree to which a system is affected by

disturbances during normal operation. For example, an ecosystem
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that is highly sensitive to changes in temperature may experience

significant changes in the distribution and abundance of species if

the climate warms or cools rapidly (Shi et al., 2018). On the other

hand, we define “adaptability” as the ability of ecosystems to restore

or maintain their structures from external disturbances (Zhang

et al., 2021). Within a certain period, the variability tendency of an

ecosystem can be used to measure its degree of deviation from the

steady state. Increased variability indicates that a system is adapting

to environmental changes and experiencing greater ES (Guan

et al., 2017).

Net primary productivity (NPP) is an important index for

measuring the functions and fluctuations of ecosystems (Huang,

2019; Xiao et al., 2019). The NPP of vegetation is the remaining

portion of the total organic dry matter produced by photosynthesis

on per unit time and unit area by green plants after deducting

autotrophic respiration; it includes the production of plant

branches, leaves, and roots and the dead fraction of plants

(Naeem et al., 2021). As a key quantity to characterize vegetation

vigor, NPP serves as the basis of not only energy and material

cycling in organisms but also energy and material flow in

ecosystems. NPP is also a crucial parameter of terrestrial

ecological processes and is used to estimate the sustainability of

the Earth’s carrying capacity (Sun et al., 2015). Many scholars in

China and abroad have used different methods to study the impacts

of ES on NPP. This approach allows us to demonstrate the ability of

the ecosystem to respond to changes in solar radiation, climatic

factors, soil moisture factors, and land uses and determine the

magnitude and range of such changes.

Several important places in China require NPP research. The

Loess Plateau in sub-humid to arid transition regions, which

features crisscrossing ravines and gullies (Chen et al., 2007), is a

unique geographical unit in China and the world (Li et al., 2009).

The eco-environment problems in the Loess Plateau are

complicated. Under the influence of global change (Jorda-

Capdevila et al., 2019; Weber et al., 2019), the heat and moisture

exchanges in the region have been dramatically altered, and the

exchange process has become more complex. The eco-

environmental drivers that have caused such an impact (Zheng

et al., 2019; Feng et al., 2020), including biological productivity and

other factors, have resulted in varying degrees of responses (Hessel

et al., 2003; Yurui et al., 2021). In this process, the driving factors

play varying roles in NPP at different time scales. Therefore, a

systematic, long-term, and predictable evaluation system for the

Loess Plateau from an overall perspective must be established using

existing remote sensing technology. Understanding the influence of

global change mechanisms on NPP change is important because it

allows us to grasp the trends of NPP change and take practical

actions to mitigate its negative impacts.

The objectives of our study are as follows: 1) to explore the

spatio-temporal pattern and evolution process of NPP in sub-

humid to arid transition regions; 2) to elucidate the response

mechanism between NPP and driving factors consisting of land

use and radiation, climate, soil, and moisture factors; and 3) to

determine the ES of ecological functional regions and land use in

the study area.
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2 Study area and data

2.1 Study area

The Loess Plateau (33°43′–41°16′N, 104°54′–114°33′E) has an
area of 6.4 × 105 km2 (Huang et al., 2008). It covers most parts of the

provinces of Gansu, Shaanxi, and Shanxi; the autonomous region of

Ningxia Hui; and parts of Qinghai, Henan, and Inner Mongolia

(Figures 1A, B). The plateau has a complicated topography, varying

in elevation from 61 to 5,181 m. Several large tributaries of the

Yellow River, such as the Wei River and Fen River, run through the

study area (Figure 1B). The climate in the area has typical

continental characteristics and can be subcategorized as arid,

semi-arid, and sub-humid continental climatic zones from

northwest to southeast (Figure 1C). Both annual mean

temperature and annual total precipitation showed a spatial

distribution gradient pattern of high southeast and low northwest,

decreasing from 19.29°C to 1.94°C and 838.07 to 132.45 mm.

During the summer months, most of the annual precipitation

(55%–78%) occurs in the form of heavy rainstorms (Zhao et al.,

2013). The part of the Loess Plateau covered by the study area has

six landform types: Gully Region, Irrigated Region, Rocky

Mountain Region, Tibba and Desert Region, and Valley Plain

Region (Figure 1D). The spatial precipitation distribution shows a

high southeast and low northwest distribution, corresponding to a

decrease from 838.07 to 132.45 mm (Feng et al., 2016). The natural

vegetation has low coverage, and the complex edaphic and

hydrothermal conditions of the plateau contribute to the

complexity of its ecological environment, further aggravating the

ES in the area (Sun, 2002; Zheng, 2006).
2.2 Data sources

2.2.1 Remote sensing datasets
Among the numerous data download platforms, Google Earth

Engine (GEE) has a data catalog of remote sensing images and

geospatial and other environmental datasets that are available to the

public and can be freely accessed online (Xiong et al., 2017;

Tamiminia et al., 2020). Cloud-based computing platforms have

allowed remote sensing data to become more accessible (Ramıŕez-

Cuesta et al., 2018; Zhao et al., 2019; Jiao and Mu, 2022). In

terrestrial ecosystem monitoring, MODIS has been widely used in

ecological environment remote sensing monitoring and ground

physiological parameter inversion (Zhang et al., 2003). MODIS is

carried on Terra and Aqua satellite platforms for monitoring the

terrestrial ecosystem from the NASA Earth Observing System

(EOS) program. MODIS provides near-global coverage in 1–2

days and has 36 spectral bands covering the spectral range from

0.4 to 15 mm, which can study the ecological pressure on the Loess

Plateau as a large-scale and long time series (Justice et al., 2002;

Xiong and Barnes, 2006). The global land data assimilation system

(GLDAS) ingests satellite and ground-based observational data

products. It generates optimal fields of land surface states and

fluxes using advanced land surface modeling and data assimilation
frontiersin.org
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techniques, which are used to process the soil moisture

data products.

MODIS multiband data can provide information on surface

conditions and biogeographic characteristics; it can also be used to

observe NPP on the Loess Plateau (Remer et al., 2005; Ghimire

et al., 2018). We extracted the soil moisture and bare soil

evaporation data for NPP correlation analysis. Then, the images

selected for downloading and processing included MYD09GA,

MOD11A2, MCD12Q1, MCD43A3, and MOD17A3HGF of

MODIS (Table 1) and SoilMoi0_10cm_inst and ESoil_tavg of

GLDAS (Table 2). Tables 1, 2 also demonstrate the inversions

and applications of the above products. Therefore, MODIS was

primarily involved in the construction of solar radiation and land
Frontiers in Ecology and Evolution 04
use, while GLDAS was applied to the soil moisture factors. In the

case the data sources for different driving factors are not consistent,

we resampled the images with resolutions of 250 and 1,000 m to a

uniform resolution of 500 m for NPP calculations.

2.2.2 Atmospheric data
The dataset downloaded from the China Meteorological Data

Service Center (CMDSC) (http://data.cma.cn/) included daily

observation data, such as temperature, evaporation, and

precipitation, obtained by the National Meteorological

Information Center through the domestic communication system

at the China Ground International Exchange Station (Lam et al.,

2005; Ying et al., 2014). The study area has 86 meteorological
TABLE 1 MODIS image products of different levels and their applications.

Images Source Applications Resolution (m) Level Inversion

MYD09GA

NASA Earth Observing System (EOS) program

Surface reflection 500 Level 2 NSSR

MOD11A2 Surface temperature and emittance 1,000
Level 2
Level 3

SER

MCD12Q1 Land cover product 500 Level 3 Land use

MOD17A3HGF Net primary productivity 500 Level 3 NSSR

MCD43A3 Surface reflection 500 Level 4 NPP
NSSR, net surface solar radiation; SER, surface effective radiation; NPP, net primary productivity.
B

C D

A

FIGURE 1

Overview of the Loess Plateau. (A) Location of the plateau, (B) distribution of major river systems and topography, (C) major climate regional
distribution, and (D) landform of the plateau.
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stations, ranging in altitude from 333 to 2,850 m. The

meteorological data were obtained daily from 2000 to 2019. First,

the missing values from the meteorological data were excluded,

which are not involved in the calculation of the climatic factors.

After that, the daily data were accumulated or calculated to the

monthly data. On this basis, the temporal resolution of the

meteorological data for each station was set to annual based on

the calculations of yearly data. Meanwhile, using ArcGIS Pro

geographic information software, kriging interpolation analysis on

the data of each station was conducted to eliminate the effects of

missing values. To harmonize with other driving factors, the

resolution of climatic factors was set to 500 m. The distribution

of the observation stations is presented in Figure 1C.
2.3 Driving factors

To comprehensively evaluate the response mechanism and ES

of NPP, we established an indicator system that consisted of

different driving factors: solar radiation, climatic factors, soil

moisture factors, and land use based on system science theory

(Eckholm, 1975; Walter et al., 2013; Lin et al., 2020). In the process,

the resampling methods take into account the contributions of

different factors to standardize the spatial resolutions of various

driving factors to a uniform resolution for subsequent data

processing and analysis. Detailed descriptions of the indicator

system are provided in Figure 2 and Table 3.

1) Solar radiation: the drastic change in solar radiation affects

the moisture and energy exchange between the atmosphere and
Frontiers in Ecology and Evolution 05
earth systems. As shown in Eqs. (1) and (2), we selected net surface

solar radiation (NSSR) (Figure 3A) and surface effective radiation

(SER) (Figure 3B) to quantify the changing processes of radiation

factors (Qu Scotto et al., 1988; Kaufman et al., 1997). NSSR refers to

the balance between the amount of sunlight absorbed by the Earth’s

surface and the amount of sunlight reflected back into the

atmosphere (Alados et al., 2003).

RNSSR   =  R↓
S(1   –   albedo)   +  R

↓
L   –  R

↑
L (1)

where RNSSR is the instantaneous NSSR; R↓
S and R  ↓L are the

downward atmospheric short-wave and long-wave radiation,

respectively; R↑
L is the upward atmospheric long-wave radiation;

and albedo is the land surface albedo. SER represents the difference

between long-wave radiation and atmospheric inverse radiation,

i.e., the actual heat loss of the ground through long-wave radiation

exchange (Sievenpiper, 2005).

RSER   =   dT4
a (0:56   –   0:092

ffiffiffiffi
ed

p
)(0:10   +   0:90St) (2)

where d is the Stefan–Boltzmann constant, Ta is the air

temperature in K, ed is the mean vapor pressure (mm), and St is

the percentage of sunshine.

2) Climatic factors: we assessed six climatic factors, four

associated with temperature and two associated with the

hydrologic cycle (Stevens et al., 2018; Hoegh-Guldberg et al.,

2019). We interpolated the meteorological factors by kriging with

a spatial resolution of 500 m. The selected climate indexes,

including average annual temperature (AAT; Figure 3C), average

annual ground temperature (AAGT; Figure 3D), and average
TABLE 2 GLDAS image products of different levels and their applications.

Images Source Applications Resolution (m) Units Inversion

SoilMoi0_10cm_inst
The global land data assimilation system (GLDAS)

Soil moisture 250 kg·m−2 Soil moisture

ESoil_tavg Soil moisture 250 kg·m−2 Bare soil evaporation
FIGURE 2

Indicator system constructed for comparing the response mechanisms of net primary productivity (NPP).
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annual precipitation (AAP; Figure 3E), can be calculated annually

(Leifeld and Menichetti, 2018; Su et al., 2020). In addition, we

selected extreme high temperature (EHT; Figure 3F), extreme low

temperature (ELT; Figure 3G), extreme precipitation (EP;

Figure 3H), and extreme evaporation (EE; Figure 3I) to better

understand the changes in extreme climate events. Here, the units

of EHT and ELT are days, and the units of EP and EE are

percentages (%).

3) Soil moisture factors: soil moisture is directly related to the

dynamic changes in plant photosynthesis and respiration; it is the

water resource used by vegetation for growth. Especially in

transition regions, soil moisture provides favorable conditions for

the sustainable growth of plants. Thus, soil moisture is more

important than the impact of a single precipitation event on

plants. Furthermore, soil moisture profoundly affects the

structures of vegetation communities and ecological functions.

Therefore, understanding the spatio-temporal variations in soil

moisture is crucial for regulating vegetation productivity and

controlling terrestrial carbon uptake. Soil moisture conditions can

be divided into soil moisture (SM; Figure 3J) and bare soil

evaporation (BSE; Figure 3K).

4) Land use: land use change is an important factor affecting

global climate change (Figure 3L). It directly affects the energy and

material exchange between the atmosphere and land surface and the

physical properties and energy balance of the land surface (Chen

et al., 2001). Thus, land use change has an important influence on

climate change (Ostwald and Chen, 2006; Wang et al., 2011). Land

use changes with large-scale vegetation characteristics indirectly

affect the albedo of the Earth’s surface and further cause changes in

the physical characteristics of the Earth’s surface, such as long-wave
Frontiers in Ecology and Evolution 06
radiation from the surface to the atmosphere and soil moisture,

which can represent changes in NPP of terrestrial ecosystems.
3 Methods

This section describes the problem of multiple linear regression

from the perspective of deep learning. Thus, deep multiple

regression models are introduced to reveal the relationship

between the driving factors and NPP. Then, an ES evaluation

model established from the perspective of NPP is discussed.
3.1 Response relation model

We used the deep multiple regression model to solve the

problem of NPP fitting by multiple drivers (Sun et al., 2016;

Zhang et al., 2019). The algorithm used in this study was the

stacked denoising auto-encoder (SDAE), which was developed

based on a denoising auto-encoder (DAE) that could learn the

original data’s characteristics through encoding and decoding and

identify the more complex variation characteristics of the driver

factors (Fazio et al., 2020). The SDAE is a typical deep learning

model (Figure 4) with a learning process that is divided into two

parts: an encoding process and a decoding process. When

parameters are inputted into the stochastic gradient descent

(SGD) algorithm, they are updated in the opposite direction of

the gradient, and then relevant errors are derived until convergence

is reached. The auto-encoder can realize the feature transformation

of the original input through unsupervised learning, especially since

various types of information in the real world have certain noise

levels. The top layer of the SDAE can join classifiers or regressions

to achieve supervised learning tasks. Furthermore, the SDAE can

reconstruct the original input data from multiple driving factors

with noise. Past works have shown that this approach is robust and

can perform various tasks.

We conducted a single-correlation analysis of the NPP and

driving factors in the Loess Plateau. The variables included

radiation factors, climatic factors, soil moisture factors, and land

use. Normalized deviation (ND) and root mean square error

(RMSE) were employed to evaluate the single-correlation

coefficients, with the calculation procedure given by Eqs. (3) and

(4), respectively. Relative contribution rate (RCR) is the degree to

which a variable contributes to the total amount of change in the

whole process of change, and it is used to analyze the degree to

which each variable contributes to the whole dataset. As shown in

Eq. (5), the higher the relative contribution of the independent

variable, the more it explains the dependent variable.

ND = oi, t zi, t − ẑ i, t
�� ��
oi, tzi, t

(3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N(T−t0)oi, t(zi, t − ẑ i, t)
2

q
1

N(T−t0)oi, t zi, t
�� �� (4)
TABLE 3 Key parameters of the driving factors.

Driving factors Full name
Spatial

resolution

Solar radiation
NSSR Net surface solar radiation

500 m

SER Surface effective radiation

Climatic factors

AAT Average annual temperature

AAGT
Average annual ground
temperature

AAP Average annual precipitation

EHT Extreme high temperature

ELT Extreme low temperature

EP Extreme precipitation

EE Extreme evaporation

Soil moisture
factors

SM Soil moisture

BSE Bare soil evaporation

Land use
Land
use

Land use
NSSR, net surface solar radiation; SER, surface effective radiation; AAT, average annual
temperature; AAGT, average annual ground temperature; AAP, average annual precipitation;
EHT, extreme high temperature; ELT, extreme low temperature; EP, extreme precipitation;
EE, extreme evaporation; SM, soil moisture; BSE, bare soil evaporation.
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RCR   =  
S(NPPd)j j
S(NPP)j j (5)

where zi,  t is the real value; ẑ i,  t is the predicted median value for

item i at time t, with the sums integrating all items and all time

points in the prediction period; T is the total time; t0 is the initial

time; jS(NPP)j denotes the absolute value of the trend in NPP; and d
represents each driving factor.

We also introduced the multiple-correlation coefficient to

study the comprehensive correlation between NPP and

significant correlation drivers (Lu et al., 2017). A complex
Frontiers in Ecology and Evolution 07
correlation represents a correlation of a single element with

several variables (Wang et al., 2019). In practical applications,

complex correlation analysis is often associated with multiple-

correlation analysis. Here, the multiple-correlation coefficient is

expressed as Rxy , as shown in Eq. (6). It is also known as the

product moment coefficient of correlation, a statistical indicator

that expresses the degree and direction of linear correlation

between two variables. The multiple-correlation coefficient is a

dimensionless statistical indicator that takes values in the range

[−1, 1]. The larger the Rxy , the closer the correlation between NPP
B C

D E F

G H I

J K L

A

FIGURE 3

Driving factors consisting of solar radiation, climatic factors, and land use. (A) NSSR, (B) SER, (C) AAT, (D) AAGT, (E) AAP, (F) EHT, (G) ELT, (H) EP,
(I) EE, (J) SM, (K) BSE, and (L) land use. NSSR, net surface solar radiation; SER, surface effective radiation; AAT, average annual temperature; AAGT,
average annual ground temperature; AAP, average annual precipitation; EHT, extreme high temperature; ELT, extreme low temperature; EP, extreme
precipitation; EE, extreme evaporation; SM, soil moisture; BSE, bare soil evaporation.
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and the driving factors, which is also tested for the t significance

test.

Rxy =
on

i=1½(xi − �x)(yi − �y)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x)2 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − �y)2
qr (6)

where Rxy is the correlation coefficient between NPP and each

driving factor for the Loess Plateau; xi and yi are the drivers and

NPP values in year i, respectively; and �x and �y are the average values

of the drivers and NPP of n years, respectively. When p < 0.05 of the

t significance test, the NPP shows a significant correlation with

driving factors.
3.2 Ecological stress evaluation model

The Loess Plateau is in the sub-humid to arid transition region.

Under the action of the driving factors, each factor in the ecosystemwill

have a reaction, and the comprehensive response results of each factor

have a final impact on the eco-environment of the plateau (Walter

et al., 2013; Yao et al., 2019). On the basis of the driving factors of the

eco-environment, we comprehensively evaluated the stress level of the

Loess Plateau’s eco-environment under the action of different driving

factors. Subsequently, we established a comprehensive quantification

process of system sensitivity and adaptability.

In this study, we set NPP as an ecosystem function

characteristic quantity. Therefore, the interannual fluctuation in

NPP represents the adaptability of the ecosystem from 2000 to

2019, thereby reflecting the degree of dispersion of NPP to the mean

value (Jorda-Capdevila et al., 2019). Ecosystem adaptation is

expressed as the slope of the linear fitting trend line of the

interannual change in NPP from 2000 to 2019. To calculate and

analyze the regional differences in vulnerability, we standardized the
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calculation results of sensitivity and adaptability. The ESI formula

can be expressed as:

V = S –A (7)

S = o
n
i=1 Fi − �Fj j

�F
(8)

A  ¼  
noxy − (ox)(oy)

n(ox2) − (ox)2
(9)

where V is the ESI of the ecosystem; S is the sensitivity of the system;

A is the adaptability of the system; i denotes year i; Fi represents the value

of NPP in period i; �F represents the average NPP in period N; x is the

time series of the ecosystem; and y is the interannual variability of NPP.
4 Results

4.1 Spatio-temporal variation analysis of
the driving factors and NPP

4.1.1 Analysis of the driving factors in the
past 20 years

To facilitate the statistical analysis, we assigned 86 meteorological

stations for the values of NSSR and SER. The abovementioned factors

were analyzed in July of each year (Figures 5A, B). The results

indicate that the RNSSR values of all meteorological stations fluctuated

in the past 20 years, with the RNSSR values of different regions showing

great variations. In particular, 33 stations have an RNSSR increase

greater than 0.05 W·m−2·a−1, while 21 stations have an increase

between 0 and 0.05 W·m−2·a−1. The maximum increase is

0.3628 W·m−2·a−1. SER is the actual heat loss of the ground

through long-wave radiation exchange; here, RSER was calculated
FIGURE 4

Structural network diagram of the SDAE. SDAE, stacked denoising auto-encoder.
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on the basis of the AAT and AAP. The results revealed the RSER

values on a downtrend; however, there were two stations in the study

area where RSER decreased by more than 5 W·m−2·a−1, while 38

stations showed an increase of more than 5 W·m−2·a−1.

Over the 20 years from 2000 to 2019, the change rates of AAT,

AAGT, and AAP were 0.0337°C·a−1, 0.0623°C·a−1, and 4.0701 mm·a−1,

as shown in Figures 5C–E, respectively. Among 86 stations, only five

showed a decline in AAT over 20 years. Conversely, the AAT increase

was greater than 0.02°C·a−1 at 44 stations, with the largest increase

being 0.1394°C·a−1. The change trend of AAGT was similar to that of

AAT; only a small number of stations showed a downtrend, and 57

stations had a rate of change greater than 0.02°C·a−1.
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In the last 20 years, the AAP values and change rates in the west

and south of the study area were generally greater than those in other

regions. The temperature and precipitation fluctuations in the Loess

Plateau increased along with changes in ground temperature,

evaporation, and relative humidity. Under extreme climatic factors,

we calculated the frequency of each extreme factor and the

corresponding extreme value. The comprehensive EHT (Figure 5F)

and ELT (Figure 5G), similar to the overall temperature in the study

area, increased. The extreme low-temperature weather was gradually

reduced, and the extreme high temperature in the study area did not

show an uptrend. However, the change in extreme weather across

different regions was obvious. The maximum value of EP (Figure 5H)
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FIGURE 5

Changes in the driving factors consisting of solar radiation, climatic factors, soil moisture factors, and land use. (A) NSSR, (B) SER, (C) AAT, (D) AAGT,
(E) AAP, (F) EHT, (G) ELT, (H) EP, (I) EE, (J) SM, (K) BSE, and (L) land use. NSSR, net surface solar radiation; SER, surface effective radiation; AAT,
average annual temperature; AAGT, average annual ground temperature; AAP, average annual precipitation; EHT, extreme high temperature; ELT,
extreme low temperature; EP, extreme precipitation; EE, extreme evaporation; SM, soil moisture; BSE, bare soil evaporation.
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generally showed a downtrend, although its frequency was increasing.

By contrast, EE (Figure 5I) first decreased and then increased.

On the Loess Plateau, the retention capacity of soil moisture

(Figure 5J) in the study area increased, whereas evaporation from

bare land decreased (Figure 5K). From 2000 to 2019, the land use

structure (Figure 5L) of the plateau did not change significantly.

Among them, the areas of cultivated land, grassland, water, and

unutilized land decreased, while the areas of forestland and

construction land increased. This phenomenon demonstrates the

overall change in characteristics of land use on the plateau. The

proportions of cultivated land, forestland, grassland, water,

construction land, and unutilized land in the total area changed

from 32.79%, 14.76%, 42.18%, 1.43%, 1.97%, and 6.87% in 2000 to

32.13%, 15.41%, 41.52%, 1.41%, 2.94%, and 6.59% in 2019,

respectively. Overall, the changes in land use and macro-

ecological conditions in the Loess Plateau were mainly driven by

human activities and climate change in the early stage and then

exacerbated by the impact of ecological engineering.

4.1.2 Spatio-temporal variations in NPP
The annual NPP (ANPP) in the Loess Plateau was the lowest in

2000 at 179 g·m2·a−1 and the highest in 2018 at 304 g·m2·a−1. The

annual average NPP (AANPP) value over 20 years was 246 g·m
2·a−1,

in which the AANPP value for 2000–2009 was lower than that for

2010–2019. After 2007, ANPP generally maintained an uptrend,

increasing significantly from 2000 to 2019 (Figure 6A). This

phenomenon represents an overall uptrend over 20 years, with an

annual growth rate of 4.57 g·m2·a−1. This result also indicates that

the carbon sequestration capacity of vegetation was enhanced. The

proportion of areas with NPPs of 100–200, 200–500, and greater

than 500 g·m2·a−1 increased from 31.45%, 19.27%, and 1.34% in

2000 to 46.93%, 30.29%, and 4.63% in 2019, respectively

(Figure 6B). In summary, the NPP values show an uptrend.

From the perspective of spatial distribution, the ANPP in the

northwest of the Loess Plateau, including Gansu Province and

Ningxia Hui Autonomous Region, was less than 200 g·m2·a−1,

accounting for approximately 10.35% of the study area. Meanwhile,

the natural forest in Southern Shaanxi Province had the highest NPP
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in the Loess Plateau (Figure 7A). The growth rate of NPP (GRNPP) in

the plateau gradually increased from arid to sub-humid regions

(Figure 7B). Notably, 87.34% of the Loess Plateau revealed an

increasing trend, while 37% of the region increased significantly,

with a GRNPP of 6.97 g·m
2·a−1. These areas are mainly distributed in

Shaanxi Province, most of Qinghai Province, Southern Gansu

Province, and the Southern Ningxia Hui Autonomous Region.

Only 12.66% of the Loess Plateau decreased insignificantly. These

areas are mainly distributed in deserts and bare land in arid areas with

sparse vegetation cover and harsh environments.
4.2 Relationships between driving factors
and NPP

We ran the deep multiple regression models in a Windows 64-bit

operating system with 16 GB running memory, a quad-core Intel

CORE I5 9th Gen CPU, and a GeForce GTX 1650TI graphic card.

The running environment was Python 3.7.13, and the framework was

TensorFlow. The training process included two parts: unsupervised

hierarchical pretraining and supervised fine-tuning. The SDAE

contained many hyperparameters. We expected the selection

process to have a great influence on the result. In this study, on the

basis of experience and simple pre-experiments, the values of the

hyperparameters, such as cycle index, block size, learning rate, and

denoising factors, were pre-set. The specific parameter values are

shown in Table 4. Incorporating past adjustment experiences into the

parameter adjustment in this study helped to improve the

convergence speed and ensure simple optimization. To obtain the

values in the layer-by-layer pretraining and fine-tuning stages, we

conducted 100 experiments with multiple sets of hyperparameters.

Each momentum term had 10 different values [0.1:0.1:1].

We conducted experiments with the dataset to determine the

relationships between driving factors and NPP. We also used ND

and RMSE to evaluate single-correlation coefficients. ND is the

deviation of the fitted NPP from the sample NPP in the framework,

thus reflecting the degree of deviation of the evaluated sample from

the normal sample. RMSE is the arithmetic square root of MSE; it is
A B

FIGURE 6

Temporal variations in NPP. (A) Annual average NPP of the Loess Plateau in 2000–2019 and (B) area distribution of NPP in different intervals
between 2000 and 2019. NPP, net primary productivity.
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often used to evaluate the degree of variability of the data. The

smaller the value of RMSE, the better the accuracy of the prediction

model in describing the experimental data.

As shown in Table 5, the ND and RMSE of solar radiation and

land use have higher values than those of climate. The poor

performance of the land use evaluation methods may be

attributed to their inability to detect sharing patterns of different

time series. Higher values of ND and RMSE indicate poor

regression results for soil moisture factors. The poor results can

be attributed to the complex soil moisture conditions and lagging

NPP response. The results for climatic factors are slightly better,

indicating a strong relationship between climatic factors and NPP.
4.3 Analysis of the ecological stress on the
Loess Plateau

In general, the ecosystem vulnerability in the Loess Plateau

shows an obvious spatial differentiation pattern. Following the

natural breakpoint method, we divided the ESI into five levels:

non-stress (−0.99 to −0.30), mild stress (−0.30 to −0.10), moderate

stress (−0.10 to 0.10), severe stress (0.10 to 0.30), and extreme stress

(0.30 to 0.99). We partitioned the ESI to better analyze the ES in

subsequent studies, after which we analyzed the overall spatial

distribution and interannual variation in the ESI.
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1) Spatial distribution characteristics of ES: the average ESI in

2000–2019 in the study area showed a downtrend from

northwest to southeast. As shown in Figure 8A, most parts

of the study area, accounting for 69.35% of the total area,

have non-stress and mild ESs. These areas have low

ecological sensitivity and high ecological adaptability and

are primarily concentrated in the natural forest in Northern

and Southern Shaanxi Province. The area of extreme ES

accounts for approximately 9.17%. Although the distribution

of this area is relatively scattered, it is primarily distributed in

deserts and bare land in arid areas. In other words, the study

area is generally in a state of weak ES.

2) Characteristics of interannual variation in ES: the effect of ES

presented an uptrend in terms of interannual variation

(Figure 8B). From 2000 to 2019, the ESI of the Loess

Plateau presented a fluctuating decreasing trend, with a

fluctuation range of 0.257 (minimum of −0.176 in 2018 and

maximum of 0.091 in 2000). The average ESI (AESI) is

higher than 0, with a slow change trend before 2007. After

2007, the AESI decreased significantly and fluctuated by

approximately 0.176. This finding is closely related to the

country’s vigorous implementation of the “Pastureland

Rehabilitation” and “Restore Vegetation” policies. The

years with low ESI were mainly characterized by

abundant precipitation and insufficient light in the study

area. The years with high ESI entailed frequent extreme

climate conditions, which are not conducive to the

restoration and growth of vegetation.
5 Discussion

5.1 Response mechanism between the
driving factors and NPP

5.1.1 RCR of the driving factors
The roles played by different driving factors vary during NPP

production. Therefore, the overall contribution rate of NPP also
TABLE 4 Parts of the hyperparameters and their values.

Training process Hyperparameters Values

Pretraining

Cycle index 100

Block size 20

Learning rate 0.01

Denoising factors 0.5

Fine-tuning

Cycle index 50

Block size 20

Learning rate 0.9

Denoising factors 0.5
BA

FIGURE 7

Spatial variation in NPP in the Loess Plateau. (A) Average NPP in each region of the Loess Plateau over 20 years and (B) the growth rate of NPP over
20 years. NPP, net primary productivity.
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differs from the growth patterns. Here, we first analyzed the changes

in NPP in the study area to explore the RCR of each driving factor

to NPP. Among the driving factors, AAP and AAT are the most

widely distributed, with areas accounting for 20.49% and 15.21% of

the total area, respectively. Meanwhile, EHT has the slightest

control range of 2.13%. The control of other factors is relatively

weak except for the following (Table 6):
Fron
1) The areas controlled by AAP and AAT are arid and semi-

arid regions where vegetation types, such as grasslands, are

mainly distributed. Precipitation brings oxygen, nitrogen,

and other elements that promote vegetation growth.

Furthermore, the humid environment increases the

formation of NPP and promotes regional carbon
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accumulation (Cui et al., 2022; Wei et al., 2022). In arid and

semi-arid regions, vegetation takes up water and nutrients at a

faster rate under effective warming. Moreover, AAP and AAT

can directly affect the growth process of surface vegetation.

2) The areas accounting for 11.17% controlled by the ELT and

distributed in Northern Qinghai, Southern Gansu, and Central

Shaanxi are significantly reduced at the lowest temperature,

similar to the frequency trends. The low-temperature stress that

causes chilling injuries can adversely affect plant growth (Sun

et al., 2021; Yuan et al., 2021). At the same time, the

photosynthetic rate is significantly reduced, and growth is

inhibited.

3) The area controlled by the change in land use structure

accounts for 10.82%. The increase in NPP in this region is

related to the significant increase in forestlands. In particular,

the conversion of cultivated land to forestland and grasslands

reduced human disturbance to forests and contributed to their

rapid restoration.

4) The frequency of high-temperature weather in the study area in

2000–2019 was shallow. EHT specifically impacts the

agricultural planting areas distributed in the Taihang

Mountains and Fen River Basin in Eastern Shanxi, Central

Shaanxi, and the Ningxia Plain. However, the overall control

effect is weak.
5.1.2 Effects of driving factors on spatial
distribution

The effects of the driving factors on NPP changes and specific

NPPs varied across different regions. On the Loess Plateau, arid and

semi-arid regions are mainly controlled by precipitation,

temperature, and relevant drivers, whereas sub-humid regions are

mainly controlled by solar radiation and other drivers.
1) The impacts of AAT and AAP on the arid regions of the Loess

Plateau are more significant than those on the sub-humid

regions. As shown in Figure 9A, the positive correlations of

AAT and AAP in the semi-arid regions are 76.51% and
A B

FIGURE 8

Ecological stress on the Loess Plateau. (A) Spatial distribution of annual average ESI on the Loess Plateau over 20 years and (B) characteristics of
interannual variation in average ESI. ESI, ecological stress index.
TABLE 5 ND and RMSE values of the dataset for determining the
relationships between driving factors and NPP.

Driving factors ND RMSE

Solar radiation
NSSR 0.439 0.835

SER 0.275 0.901

Climatic factors

AAT 0.028 0.044

AAGT 0.037 0.058

AAP 0.035 0.061

EHT 0.074 0.093

ELT 0.069 0.075

EP 0.057 0.069

EE 0.081 0.098

Soil moisture factors
SM 0.141 0.359

BSE 0.125 0.247

Land use Land use 0.886 1.064
ND, normalized deviation; RMSE, root mean square error; NPP, net primary productivity;
NSSR, net surface solar radiation; SER, surface effective radiation; AAT, average annual
temperature; AAGT, average annual ground temperature; AAP, average annual precipitation;
EHT, extreme high temperature; ELT, extreme low temperature; EP, extreme precipitation;
EE, extreme evaporation; SM, soil moisture; BSE, bare soil evaporation.
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81.34%, respectively, which are much higher than the 67.29%

and 61.47% in the sub-humid regions.

2) NSSR and SER are significantly and positively correlated in

the sub-humid regions and significantly negatively

correlated in the semi-arid regions (Figure 9B). The main

reason is that the vegetation coverage in the northwestern

region is relatively low. The increase in solar radiation also
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increases surface evapotranspiration, but it decreases soil

moisture content. This phenomenon may have affected the

northwest grasslands. Furthermore, the positive incentive

effect of vegetation, such as forestland in the southeast, on

solar radiation factors is prominent.

3) The interannual variation in EP is less prominent in the sub-

humid regions. EP has a negative correlation in the northwest
A B

DC

FIGURE 9

Correlation analysis of the spatial distributions of the driving factors for the arid, semi-arid, and sub-humid regions. (A) Positive correlation,
(B) significantly positive correlation, (C) negative correlation, and (D) significantly negative correlation.
TABLE 6 Relative contribution rate, distribution regions, and directly controlled effects of different driving factors.

Indicators RCR (%) Regions Directly controlled effects

NSSR 8.71 Sub-humid regions Plant photosynthesis

SER 7.93 Sub-humid regions Plant photosynthesis

AAT 15.21 Arid and semi-arid regions Development and reproduction

AAP 20.49 Arid and semi-arid regions Development and reproduction

EHT 2.13 No obvious partitions None detected

ELT 11.17 Semi-arid regions Development and reproduction

EP 5.13 Arid and semi-arid regions Development and reproduction

EE 5.24 No obvious partitions None detected

SM 7.15 Arid and semi-arid regions Development and reproduction

BSE 6.02 No obvious partitions None detected

Land use 10.82 Arid and semi-arid regions Development and reproduction
RCR, relative contribution rate; NSSR, net surface solar radiation; SER, surface effective radiation; AAT, average annual temperature; AAP, average annual precipitation; EHT, extreme high
temperature; ELT, extreme low temperature; EP, extreme precipitation; EE, extreme evaporation; SM, soil moisture; BSE, bare soil evaporation.
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and less affects the arid and semi-arid regions (Figure 9C).

The main reason is that extreme rainfall directly affects soil

erosion, soil landslides, and other driving factors.

4) ELT is the main factor inhibiting vegetation growth in high-

altitude areas, such as the arid regions of the Loess Plateau.

As shown in Figure 9D, the significant negative correlation

region in the arid region is 10.51%. In sub-humid regions,

the impact of low temperatures is weak.

5) The impact of land use on the northwest region is

revolutionary. The land use structures of arid and semi-

arid regions have undergone tremendous changes, directly

increasing grasslands, forestlands, and other areas. In the

sub-humid regions, the increase in forestlands, grasslands,

and other areas is slightly lower than that in the northwest.
5.1.3 Characteristics of different soil types
The Loess Plateau has 12 main soil types (Figure 10), among

which loessial soil, cinnamon soil, and chestnut soil are most widely

distributed. The loess region is typically characterized by a thickness

of 50–350 m. In this study, we classified the main soil types in the

Loess Plateau into four categories: loessial soil, cinnamon soil,

chestnut soil, and others. Then, we discussed the NPP of each

factor using these different soil types. The NPP in the Loess Plateau

is in the order of cinnamon soil > loessial soil > others > chestnut

soil. However, the GRNPP was changed over 20 years, i.e., loessial

soil > chestnut soil > others > cinnamon soil (Table 7).
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1) The response of loessial soil to AAP is themost significant. The

regions in the study area showed a positive correlation,

accounting for 34.71% of the total area (Table 8). Extreme

precipitation (>600 mm) can dramatically recharge the

groundwater of loessial soil and thus is negatively correlated

with solar radiation, such as NSSR. The findings indicate good

permeability and water retention but weak antisociality. The

area is also vulnerable to water and wind erosion, as it does

not have any vegetation cover; thus, its soil fertility is low.

2) Cinnamon soil is mainly distributed in the mountainous and

hilly areas of the study area, with deep plow layers, good

water retention, and fertilizer retention. The cinnamon soil

in the study area is mainly distributed in sub-humid areas,

such as the southeast, with excellent hydrothermal

conditions. The area has natural vegetation, with

macrophanerophytes and crops planted in valley plains.

Therefore, the region is significantly correlated with factors

such as solar radiation but negatively correlated with AAP.

Forest plantations play an important role in soil and water

conservation in the gully region of the Loess Plateau.

3) One of the distinct characteristics of the chestnut soil

formation process is the noticeable accumulation of

organic matter and calcium carbonate. The accumulation

of organic matter creates conditions that are conducive to

plant growth. Chestnut soil is different from loessial soil in

that although the former is greatly affected by temperature

and precipitation conditions, its water retention capacity is
FIGURE 10

Major soil types in the Loess Plateau and their spatial distributions.
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higher than that of the latter because of its soil-forming

characteristics. The areas are significantly associated with

AAP and land use.

4) In other areas with sandy soil, the temperature is higher, the

water content is lower, and the vegetation is generally

sparse. The spatial distribution of this series of soils is

relatively dispersed. In this study, we did not find significant

spatial differentiations due to the areas’ smaller sample size

compared with the soil types discussed above.
5.2 Ecological stress in the Loess Plateau

5.2.1 Ecological stress effect on different
ecological functional regions

The Loess Plateau is an independent geomorphic unit with great

particularity. The ESIs of different ecological functional regions in the

region vary. Moreover, the ESIs of the ecological functional regions
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over the 20 years differed significantly. Overall, the ESI can be

presented in the following order (Figure 11A): Tibba and Desert

Region (I) > Gully Region (II) > Rocky Mountain Region (III) >

Irrigated Region (IV) > Valley Plain Region (V). The ESI of V is the

smallest (−0.362), followed by that of IV (−0.174). The ESIs of II and I

are the largest (0.083 and 0.147, respectively).

The vegetation coverage in V is high, and the annual precipitation

is concentrated; meanwhile, IV has the best natural grasslands and

farmlands. The high ESIs in II and I are mainly attributed to the

desert and gully areas with less annual precipitation, much lower

vegetation coverage, and much higher extreme climates than other

areas. Locally, the changing trends of III and IV are non-significant.

The interannual variations in other ecological functional regions are

the same, showing a fluctuating and decreasing state. Topography,

climate, vegetation quantity, and quality affect different ecological

functional regions, while changes in climatic factors lead to significant

spatial differences in climate types. Thus, the maximum and

minimum values of the ESI appear at different times.

5.2.2 Ecological stress effects of different
land uses

The ESIs of different land uses in the study area also vary. The

overall pattern is in the order of construction lands > unutilized lands >

cultivated lands > grasslands > forestlands (Figure 11B). Compared

with the other land use types in the study area, the forestlands have

more precipitation, better vegetation growth (e.g., spruce and cypress),

and lower ESI. The valley basins generally have low ESIs and are

distributed in the central grasslands with pleasant climates and

abundant water resources. The soil types of cultivated lands in the

Loess Plateau include chernozem soil, chestnut soil, and gray cinnamon

soil, which are rich in organic matter and conducive to crop growth

and low ESI. Unutilized lands are mainly mountainous and desert

lands; as they are primarily distributed in areas with scarce rainfall (e.g.,

Northern Shaanxi and Ordos Plateau), the vegetation restoration speed

is relatively slow, and the ESI is high. Meanwhile, construction lands

are facing drought, water shortage, and water pollution problems and

have the highest ESI in the region. Overall, the ESIs of different land

uses in the Loess Plateau show a downtrend. Among them, the ESI of

cultivated land decreased the most, followed by forestlands. Forestlands

and grasslands have better recovery.
5.3 Applications and limitations in the
study of NPP

5.3.1 Applications in sub-humid to arid
transition regions

The dryland subtypes of hyper-arid, arid, semi-arid, and dry sub-

humid regions account for 7%, 13%, 15%, and 6% of the total land

surface, respectively. Semi-arid regions are the largest of all global

dryland subtypes, accounting for more than one-third of the total

dryland area (Carpenter et al., 1992). The global area of semi-arid

regions has been expanding between 1948 and 2008, with their

expansion accounting for half of the total dryland expansion (Huang

et al., 2016). Furthermore, the expansion of semi-arid regions in the

Eastern Hemisphere on all continents accounts for 75% of the total
TABLE 8 Effects of different driving factors on various soil types.

Loessial
soil

Cinnamon
soil

Chestnut
soil

Others

NSSR − +

SER − +

AAGT + +

AAT + +

AAP + − + +

EHT

ELT −

EP −

EE

SM + −

BSE − +

LU + +
NSSR, net surface solar radiation; SER, surface effective radiation; AAGT, average annual
ground temperature; AAT, average annual temperature; AAP, average annual precipitation;
EHT, extreme high temperature; ELT, extreme low temperature; EP, extreme precipitation;
EE, extreme evaporation; SM, soil moisture; BSE, bare soil evaporation; LU, land use.
TABLE 7 RCR, GRNPP, and distribution regions of different soil types.

Soil type
RCR
(%)

GRNPP

(g·m2·a−1)
Regions

Loessial soil 32.72 6.32
Arid and semi-arid

regions

Cinnamon
soil

18.34 3.28 Semi-humid regions

Chestnut soil 27.49 5.27 Semi-arid region

Other soil
types

21.45 4.59 No obvious partitions
RCR, relative contribution rate.
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expansion of semi-arid areas, while the expansion of semi-arid regions

in the American continent accounts for 25% (Figure 12). In the Eastern

Hemisphere continents, the expansion of semi-arid regions replaces

semi-humid/humid regions where the climate is dry and dominated by

the weakening of the East Asian summer winds. By contrast, climate

change in the humid semi-arid regions of North America is mainly

controlled by the strengthening of the westerly wind belt, which is

associated with the reduction in the sea–land temperature gradient in

the context of global warming. Furthermore, the interaction between

the land surface and the atmosphere is critical to the aridity trends in

semi-arid regions (Feng and Zhang, 2015).

With the accelerated water cycle in the context of global warming,

water dissipation in arid and semi-arid regions has also accelerated.

Bare soil causes evaporation and decreases wet-static energy by

reducing the net radiation from the surface, leading to drier and

warmer conditions. The arid and semi-arid regions, as a whole, have

shown an uptrend of aridification and expansion. Furthermore, the

expansion of global arid and semi-arid regions is expected to

accelerate in the future. We obtained the following conclusions in
Frontiers in Ecology and Evolution 16
this study: arid and semi-arid regions in the Loess Plateau are mainly

controlled by precipitation, temperature, and other related factors,

whereas sub-humid regions are mainly controlled by solar radiation

and other factors. The results have great applications in the study of

regional changes in the global climate.

5.3.2 Limitations and uncertainties
This study comprehensively analyzed the NPP of contrasting

response mechanisms and ecological stress, but there are still some

limitations. First, the data sources for different driving factors were

not consistent, and the spatial resolution and the temporal resolution

were not uniform, which led to some uncertainty in the construction

of driving factors (Ma et al., 2022). Second, there are many factors

affecting NPP, the relationship with other environmental factors and

anthropogenic factors needs to be further explored, and the remote

sensing data products have a certain degree of uncertainty, which

leads to the results of the study receiving varying degrees of influence,

further affecting the accuracy. In addition, the Loess Plateau was

selected as the typical study area for sub-humid to arid transition
A B

FIGURE 11

ESIs in different ecological functional regions and land uses. (A) Ecological functional regions and (B) land use. I, Tibba and Desert Region; II, Gully
Region; III, Rocky Mountain Region; IV, Irrigated Region; V, Valley Plain Region. ESI, ecological stress index.
FIGURE 12

Global distribution of semi-arid regions and their transitions to other climate classifications (adapted from Huang et al., 2016).
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regions. It is worth considering how the results of this research can be

extended and generalized to relevant regions around the globe

(Bouras et al., 2019). Finally, the results of this study were not

validated by field measurement data, which should be further

enhanced to reduce inaccuracies in future studies (Shen et al.,

2022). In future research on ecosystem restoration and

conservation, more consideration should be given to the extent to

which uncertainties in the data sources of different factors contribute

to the results, especially how different remote sensing products can be

assimilated and fed into the model.
5.4 Future works on ecological stress

5.4.1 Ecological stress model construction based
on spectral unmixing

In vegetation-abundant ecosystems, the accurate estimation of

multi-objective vegetation cover, including non-photosynthetic

vegetation (NPV), photosynthetic vegetation (PV), and bare soil

(BS), is an important indicator of carbon stocks and climate change;

it can also contribute to soil and water conservation and explain

wildfire and drought. Estimating the coverage of different elements

on the land surface in a timely and quantitative manner allows us to

understand the current stage of vegetation growth and assess the

vegetation status. Armed with such information, we can reasonably

assess the structural characteristics of the vegetation on the land

surface in the past and future. In this manner, we can contribute to

the rational conservation and development of terrestrial ecosystems.

However, NPV and BS remain indistinguishable in satellite images

of large spatial regions because their spectral reflectance is always

mixed and their spectral features only subtly differ. Thus, in our next

study, we intend to provide better data support for the accurate

inversion of NPP by developing new vegetation indexes, allowing

researchers to precisely distinguish the situation of each element

component. Furthermore, we will focus on the construction of ES

evaluation models based on the three elements of PV, NPV, and BS.

5.4.2 Ecological stress trend forecasting model
In our future work, we plan to use the spectral attention

autoregressive model (SAAM) to predict ES in long time series.

SAAM is a general framework that incorporates a spectral attention

(SA) module; it can also use an embedding function’s spectral

information via attention mechanisms to solve two main problems:

time series governed by global trends and seasonality structures. At

present, SAAM is being trained using long short-term memory

(LSTM) as the embedding function, and a basic framework for the

common parts is being maintained in all of our experiments.

Following this model, we can fully consider the development

trend based on the existing driving factors. This development can

further provide a good foundation through which we can perform

long-time-series ESI forecasts on a global scale.
6 Conclusions

The NPP for estimating the sustainability of the Earth’s carrying

capacity in sub-humid to arid transition regions was investigated in
Frontiers in Ecology and Evolution 17
this research. We introduced deep multiple regressive models to

reveal the relationship between NPP and the identified driving

factors and creatively proposed ES evaluation models from the

perspective of vegetation productivity. Then, we explored the

spatio-temporal pattern and evolution process of NPP and

elucidated the response mechanism between NPP and relevant

driving factors (land use and radiation, climate, and soil moisture

factors). We also determined the ES of ecological functional regions

and land use in the study area. The findings are as follows: 1) From

2000 to 2019, the changes in the driving factors presented a clear

regional character, and the annual NPP maintained a fluctuating

uptrend (4.57 g·m2·a−1). From the perspective of spatial

distribution, the growth rate of NPP gradually increased from the

arid to sub-humid regions. 2) The effects of different driving factors

on NPP changes and specific NPPs varied across regions. Arid and

semi-arid regions were mainly controlled by precipitation (20.49%),

temperature (15.21%), and other related factors, whereas sub-

humid regions were mainly controlled by solar radiation, such as

NSSR (8.71%) and SER (7.93%). The main driving factors of the

change in NPP varied under different soil conditions. 3) The spatio-

temporal patterns of NPP approximated those of ES, but the effect

of the latter significantly differed across ecological functional

regions and land uses. In conclusion, this research on the Loess

Plateau can serve as a valuable reference for future research on

realizing ecosystem restoration and protection in sub-humid to arid

transition regions.
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