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Biochar has been considered as a cost-effective amendment to improve the soil

water content and thus to mitigate the effects of drought on plants. However,

less is known about the mitigating effects of biochar application on the negative

effect of longer drought duration on trees. We investigated the effects of drought

duration in combination with biochar application on the growth, tissue non-

structural carbohydrate (NSC) concentrations, needle photosynthesis, and d13C
content of 1-year-old Pinus massoniana saplings in a greenhouse experiment.

We found that the height and total biomass of P. massoniana saplings were

significantly decreased with increasing drought duration, which was likely

attributed to the suppressed photosynthetic capacity. The longer drought

duration (e.g., 1 month) significantly decreased needle photosynthesis and

increased the value of needle d13C but did not deplete tissue NSC

concentrations at the expense of growth, suggesting that plants prioritize

carbon storage over growth in response to a long duration of drought.

Surprisingly, the application of biochar significantly decreased the survival of P.

massoniana saplings and aggravated the negative effect of drought duration on

the growth of P. massoniana, which is probably attributed to the increased soil

pH value of >7.5, as P. massoniana is adapted to mildly acid to neutral soils. Our

results suggest that the effect of biochar application might be species specific,

and it can aggravate the negative effect of drought duration on plants that are

less tolerant to alkaline soils.
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Introduction

Extreme drought events have rapidly increased worldwide

(IPCC, 2021), such as in Europe (Spinoni et al., 2018) and

subtropical China (Hu et al., 2021). Induced drought intensity,

duration, and frequency have resulted in widespread forest dieback

and tree mortality (Allen et al., 2010; Spinoni et al., 2015; Choat

et al., 2018; O'Donnell et al., 2021). The subtropical forests in South

China have a relatively high carbon uptake and an extensive carbon

reserve (Yu et al., 2014). Thus, tree mortality in such ecosystem may

have substantial impacts on carbon balance. Despite a large number

of studies about drought intensity and frequency (Duan et al., 2019;

Chen et al., 2020), only a limited number of works about drought

duration and frequency have been conducted (Yang et al., 2022). In

particular, the growth and physiological dynamics of trees in

subtropical China under prolonged drought duration have been

less studied.

Widespread forest dieback and tree mortality have been observed

under prolonged drought (Allen et al., 2010; Choat et al., 2018). The

physiological dynamics, such as photosynthesis and carbon

assimilation, are highly related to the survival of trees under

drought (Ouyang et al., 2021; Sapes et al., 2021; Yang et al., 2022)

—for example, leaf photosynthesis and leaf stable carbon isotope

(d13C) have been used to infer a plant’s response to atmospheric

demand for water (Farquhar et al., 1989; Lawson and Blatt, 2014) and

can also help characterize species-specific plant water use strategies

(Moreno-Gutierrez et al., 2012; McAusland et al., 2016). The

concentration of non-structural carbohydrate (NSC) can play an

important role in enhancing drought resistance, given its great effect

on energy supply and cellular turgor maintenance (O'Brien et al.,

2014; Wiley, 2020). Thus, studying physiological dynamics in trees

under drought is helpful in understanding drought-induced tree

mortality (Adams et al., 2017).

Biochar has been considered as an ideal amendment to improve

the soil quality with active functional groups, high porous structure,

and cation exchange capacity (Godlewska et al., 2017; Kavitha et al.,

2018). Moreover, biochar could increase the soil’s water holding

capacity (Verheijen et al., 2010; Fischer et al., 2019), and thus the

application of biochar may mitigate the effects of drought on plants

—for example, the application of biochar application at a rate of 15 t

ha−1 can slightly increase the soil’s water holding capacity (Paneque

et al., 2016). The improved water use efficiency and growth of

Abelmoschus esculentus L. Moench have been observed with biochar

application under drought stress (Batool et al., 2015). On the other

hand, biochar addition may inhibit the growth of plants by

influencing the soil nutrients and soil microbial processes

(Kuppusamy et al., 2016; Cai et al., 2021; Liang et al., 2021a)—for

instance, it has been observed that the application of biochar could

significantly decreased the AM fungal abundance in the soils

(Warnock et al., 2010; George et al., 2012). Thus, the application

of biochar may be a double-edged sword for the growth of plants,

especially in drought stress.

Pinus massoniana Lamb. (Masson pine) is a native tree species

in southern China. P. massoniana prefers to grow in well-drained,

mildly acidic to neutral soils (Chai and Feng, 1984). In this study,

we carried out a greenhouse experiment to investigate the
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interactive effects of drought duration and biochar application on

the growth and physiological dynamics of P. massoniana saplings.

We recorded the survival, growth, tissue levels of NSC, needle net

photosynthesis, and needle d13C to test our hypotheses that (1) the

photosynthesis and tissue NSC—thus, the growth—of P.

massoniana saplings decrease along with increasing drought

duration and (2) the application of biochar alleviates the negative

effects of drought duration on P. massoniana saplings.
Materials and methods

Study site

The experiment was carried out in a greenhouse at Taizhou

University (121°23′ E and 28°39′ N) in Taizhou, Zhejiang Province,

China. The mean temperature was 22°C (0–45°C), and the mean

relative humidity was 80% (25–98°C, measured using a humidity/

temperature datalogger, UNI-T, UT330B) inside the greenhouse

during the experiment period.
Experimental design

The experiment had four levels of drought treatments fully

crossed with two levels of biochar treatments, and this was

continued for 14 months from April 10, 2021 to June 21, 2022.

Each treatment had eight replicates, with 64 pots in total. The

1-year-old P. massoniana saplings with naked roots used in the

present study were obtained from a field nursery in Hechi, Guangxi

Province, China.

On March 1, 2021, saplings with similar height (33.2 ± 0.3 cm)

were planted in pots (one sapling per pot). Each pot (11 cm in

diameter and 10 cm in height) with holes at the bottom was filled

with a 1:1 (v:v) mixture of local soil and river sand. The local soil

was collected in the mountainous area of Taizhou, containing 0.62 ±

0.17 (mean ± SE) g kg−1 total nitrogen and 0.13 ± 0.03 g kg−1 total

phosphorus. All the pots were watered every 2 days for 1 month.

On April 10, 2021, after 1 month of recovery growth, the saplings

were transplanted into larger pots with holes at the bottom (24 cm in

diameter, 25.5 cm in height, and 9 L in volume) and were randomly

arranged according to different biochar treatments, and then these

were watered every 2 days. The substrate of the larger pots was also a

1:1 (v:v) mixture of local soil and river sand as mentioned above. In

the biochar treatments, two levels of biochar treatments were

included, i.e., without biochar (no biochar was applied into the

pots) and with biochar (biochar was applied into the pots). The

biochar was purchased from a market in Zhengzhou, Henan

Province, China. The biochar was derived from maize straw that

was pyrolyzed at 550°C in a muffle furnace, containing 375.30 ± 67.99

(mean ± SE) g kg−1 total carbon and 1.36 ± 0.15 g kg−1 total nitrogen,

pH 9.76 ± 0.57. The application of biochar was at a rate of 1% (w/w)

as frequently used in many studies (Jain et al., 2020; Yao et al., 2021),

and the biochar was mixed with the substrate.

On May 5, 2021, we started the drought treatments and

continued it for about 13 months. Four levels of drought
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treatments were included, i.e., D1 (watering once every week, 60

times), D2 (watering once every 2 weeks, 30 times), D3 (watering

once every 3 weeks, 20 times), and D4 (watering once every 4 weeks,

15 times) throughout the experimental period. For each watering,

plenty of water was applied, and the excess water could spill out from

the bottom of the pots. The soil water condition was not measured

because we only focused on the duration between two watering

events (Yang et al., 2022). The extra 50 mL of nutrients (1 g/L,

Osmocote Plus, 20-20-20+TE, ICL Belgium, N.V.) was applied to the

pots at 2 days after the simultaneous application of four drought

treatments during the experiment, for five times and 250 mL in total.

On June 21, 2022, before the last watering (four drought

treatments watered simultaneously), individual sapling height and

photosynthesis were measured. Then, the saplings were harvested

and oven-dried at 65°C for 72 h, and the dry weight of the needles,

stems, and roots were separately measured. After that, the oven-

dried samples of needles, stems, and roots were ground into fine

powder and then stored at room temperature for analysis of NSC

and d13C content. A composite soil sample was collected from each

pot, sieved (2 mm), and air-dried for pH analysis.
Non-structural carbohydrate analysis

The total non-structural carbohydrate is defined as the sum of

soluble sugars and starch within a sample (i.e., organ or tissue). The

NSC concentrations were measured according to the method of

Wong (1990) as modified by Hoch et al. (2002). In short, 10–12 mg

of fine sample powder was boiled in 2 mL distilled water for 30 min.

Then, after centrifugation, invertase and isomerase (Sigma-Aldrich,

St Louis, MO, USA) were added into a 200-mL aliquot of the extract

to degrade sucrose and convert glucose into fructose. The

concentration of soluble sugars was determined photometrically

at 340 nm using a multiscan spectrum (Readmax 1900, Shanpu,

Beijing, China). The total amount of NSC was measured by taking

500 mL of the extract (including sugars and starch) incubated with a

fungal amyloglucosidase from Aspergillus niger (Sigma-Aldrich, St.

Louis, MO, USA) for 15 h at 49°C to digest starch into glucose. The

starch concentration was calculated as total NSC minus soluble

sugars. The NSC concentrations are expressed on a dry mass basis.
Measurements of gas exchange

The net photosynthetic rate was measured between 9:00 and

11:00 h with a LI-6400XT portable photosynthesis system (Li-Cor

Inc., Lincoln, NE, USA) at the following chamber conditions:

2 × 3-cm chamber, LED lamp, 40%–70% relative humidity, 400

pm CO2 concentration, 1,500 umol m−2s−1 photosynthetically

active radiation, 25°C leaf temperature, and 500 umol s−1 flow rate.
Stable carbon isotope analysis

The 13C abundance in needles was analyzed in an elemental

analyzer (Elementar Vario MICRO cube, Hanau, Germany)
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coupled with a stable isotope ratio mass spectrometer (Isoprime

100, Stockport, UK).

d13C (‰) = [(Rsample − Rstandard)/Rstandard] × 103

where Rsample and Rstandard are the molecular abundance ratios

of the carbon isotopes (13C/12C) of the sample and the standard,

respectively. The precision of duplicate measurements was <0.2%.
Soil pH analysis

Soil pH was measured with a soil to water ratio of 1:2.5 (w/v).
Data analysis

To investigate the changes in height at different growth stages,

one-way ANOVA was used to determine the height on April 10 and

August 23, 2021 and on March 1 and June 21, 2022, respectively. The

relative height increment was calculated based on the height

measured on April 10, 2021 and June 21, 2022. To investigate the

interactive effects of drought duration and biochar on variables, two-

way ANOVA was used to determine the effects of drought duration,

biochar, and their interactions on sapling biomass and height,

concentrations of tissue NSC, needle photosynthesis, and d13C of P.

massoniana saplings as well as the soil pH. All data were checked for

normality using the Kolmogorov–Smirnov test and for homogeneity

of variance using Levene’s test. The data for NSC in both needles and

stems, soluble sugars in stems, and starch in both roots and stems that

did not meet the assumption were transformed into log (x + 1) prior

to analysis. All statistical analyses were performed using SPSS

software version 22.0 (IBM Corp., Armonk, NY, USA).
Results

The growth response

The survival of P. massoniana saplings was significantly

decreased along with increasing drought duration ranging from

D1 to D4, especially under the application of biochar (Figure 1A).

Across the biochar addition, the height of P. massoniana saplings

increased with the increasing progress of the experiment; however,

it was significantly higher under D1 (122% increment) than the

other three drought treatments and showed the lowest value under

D4 (70% increment) in the second year (Figure 1B).

The biomass of P. massoniana saplings was significantly affected

by drought duration, showing a significant decrease in total

(Figure 2A) and its component biomass (Figures 2B–D) along with

increasing drought duration. Biochar addition significantly decreased

the total biomass and needle biomass (Figures 2A, B) but had no

effect on the biomass of both stems and roots (Figures 2C, D). There

was no significantly interactive effect of biochar and drought duration

on the biomass of P. massoniana saplings (Figure 2).
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The non-structural carbohydrate response

Increasing drought duration did not decrease the NSC concentration

in needles (Figure 3A) nor roots (Figure 3C) but significantly increased

the NSC concentration in stems (Figure 3B). The concentration of

soluble sugars in roots was lower under D4 than in any of the other three

drought duration treatments (Figure 3F). Increasing drought duration

significantly decreased the ratio of soluble sugars to starch in roots

(Figure 3L). Biochar addition significantly decreased the concentrations
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of NSC in roots (Figure 3C) and soluble sugars in needles (Figure 3D)

and roots (Figure 3F) but increased the soluble sugars in stems

(Figure 3E). Biochar addition significantly decreased the concentration

of starch in stems (Figure 3H) but had no effect on that in needles

(Figure 3G) nor in roots (Figure 3I). Neither biochar addition nor

drought duration had significant effects on the ratio of soluble sugars to

starch (Figure 3J). Biochar addition significantly increased the ratio of

soluble sugars to starch in stems (Figure 3K). Drought duration and its

combination with biochar had no effect on the concentration of starch in
A B

DC

FIGURE 2

Total biomass (A), needle biomass (B), stem biomass (C), and root biomass (D) of P. massoniana saplings under the treatments of drought duration
and biochar addition. The mean ± SE and F values of the two-way ANOVAs are given. B and D represent biochar and drought durations,
respectively. Different letters indicate significant differences among the drought durations. *P < 0.05, **P < 0.01 and ***P < 0.001.
A B

FIGURE 1

Survival of P. massoniana saplings under the treatments of drought duration and biochar addition (A). Height and relative height increment of
P. massoniana saplings under drought duration (B). Biochar addition had no effect on height and relative height increment, and thus saplings without
biochar and with biochar were pooled. The mean ± SE of the two-way ANOVAs is given. D represents drought duration. Different letters indicate
significant differences among the drought durations.
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all tissues (Figures 3G–I) but significantly affected the ratio of soluble

sugars to starch in roots (Figure 3L).
The net photosynthesis and carbon
isotope response

Increasing drought duration significantly decreased the net

photosynthesis (Figure 4A) but significantly increased the value of

d13C in needles (Figure 4B). However, neither biochar addition nor

its combination with drought duration had a significant effect on

the net photosynthesis (Figure 4A) and the value of d13C in

needles (Figure 4B).
Soil pH

Drought duration had no significant effect on soil pH (Figure 5).

However, biochar addition and its combination with drought

duration had a significant effect on soil pH, showing a greater

increase in soil pH under biochar addition (Figure 5).
Frontiers in Ecology and Evolution 05
Discussion

Increasing drought duration had a negative effect on the

survival of P. massoniana saplings (Figure 1A). We found that

the relative height increment and the biomass of P. massoniana

saplings were significantly decreased with increasing drought

duration (Figures 1B, 2). Similar findings have been reported by

many previous studies involving intense drought intensity and a

long drought duration (Schönbeck et al., 2020; Ouyang et al., 2021;

Yang et al., 2022)—for example, the decreased total biomass of

Quercus pubescens (Ouyang et al., 2021) and Quercus castaneifolia

(Zoghi et al., 2019) under extreme drought intensity and of Robinia

pseudoacacia (Yang et al., 2019), Metrosideros polymorpha

(Westerband et al., 2019), and both Quercus petraea and Fagus

sylvatica (Yang et al., 2022) under increasing drought duration. The

decline in growth under longer drought duration (e.g., the

treatment of D4) was likely due to the direct water limitation

which inhibited cell expansion and division (Eilmann et al., 2011;

Martinez-Sancho et al., 2022). Alternatively, the leaf d13C value has

been used to reflect the ratio of intercellular to atmospheric CO2

concentrations when the carbon is fixed (Farquhar et al., 1982;
A B

D E F

G IH

J K L

C

FIGURE 3

Concentrations of non-structural carbohydrates, soluble sugars, and starch and ratio of soluble sugars to starch in needles (A, D, G, J), in stems
(B, E, H, K), and in roots (C, F, I, L) of P. massoniana saplings under the treatments of drought duration and biochar addition. The mean ± SE and F
values of the two-way ANOVAs are given. B and D represent biochar and drought durations, respectively. Different letters indicate significant
differences among the drought durations. *P < 0.05, **P < 0.01 and ***P < 0.001.
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Farquhar et al., 1989). Under a long drought duration, low water

availability generally promotes stomatal closure, decreases the

intercellular CO2 concentrations, and subsequently increases the

value of d13C (Sarris et al., 2013; Martinez-Sancho et al., 2022).

Thus, the saplings might indirectly increase the stomatal closure to

reduce water loss under longer drought duration at the expense of

the growth for survival, and the decreased net photosynthesis and

less negative value of d13C under a long drought duration seemed to
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prove it in the present study (Figures 4A, B). Our results highlight

the importance of drought duration in further manipulating the

drought experiment.

However, the decline in the growth of P. massoniana saplings

was accompanied by unchanged or even increased concentrations

of non-structural carbohydrates (Figure 3). The decline in the trees’

growth can be explained by carbon starvation, hydraulic failure, and

the interaction between the two (Sala et al., 2012; Sevanto et al.,
FIGURE 5

Soil pH under the treatments of drought duration and biochar addition. The mean ± SE and F-values of the two-way ANOVAs are given. B and D
represent biochar and drought duration, respectively. Different letters indicate significant differences among the drought durations. *P < 0.05 and
***P < 0.001.
A B

FIGURE 4

Net photosynthesis (A) and d13C (B) in needles of P. massoniana saplings under the treatments of drought duration and biochar addition. The mean
± SE and F-values of the two-way ANOVAs are given. B and D represent biochar and drought duration, respectively. Different letters indicate
significant differences among the drought durations. **P < 0.01 and ***P < 0.001.
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2014). Carbon starvation occurs when photosynthesis is inhibited

through stomatal closure, which can lead to a shortage of mobile

carbohydrates for growth (Sala et al., 2012; Adams et al., 2013).

Alternatively, under a long drought duration, the formation of

embolisms and xylem damage can directly lead to a decline in the

trees’ growth from hydraulic failure (Hammond et al., 2019), and

when it is prior to the inhibition of leaf photosynthesis, it can

further contribute to the accumulation of mobile carbohydrates. In

the present study, the concentrations of NSC were higher in

aboveground tissues under a longer drought duration, which

might be a passive storage of growth inhibition. Additionally, the

lower soluble sugar levels in roots under a longer drought duration

was likely due to the damage of the top-down transport on the one

hand and the more energy devotion to root growth and water

absorption on the other hand. Although the decreased levels of

soluble sugars in roots occurred under a longer drought duration,

the levels of NSC in roots remained unchanged (Figure 3C). The

unchanged and even increased NSC in tissues indicated that the

response of growth to drought is more sensitive than

photosynthesis, resulting in a higher accumulation of NSC in

needles, and the shortage of NSC could not be the reason for the

decline in growth of P. massoniana saplings in the present study.

Biochar addition impeded the effect of drought duration on the

growth and survival of P. massoniana saplings. Many previous

studies have reported the beneficial effects of biochar under

drought stress (Akhtar et al., 2014; Batool et al., 2015; Paneque

et al., 2016; Cai et al., 2020; Liang et al., 2019; Liang et al., 2021b)—for

example, the dry weight of Quercus castaneifolia in water stress was

significantly increased by biochar addition due to the improvement of

both the soil parameters and leaf photosynthesis (Zoghi et al., 2019).

Biochar addition could alleviate the negative effects of drought stress

on soybean by increasing the leaf photosynthetic rate and stomatal

conductance (Zhang et al., 2020) and on rapeseed by enhancing the

activities of antioxidants, osmoprotectants, and soil fertility (Khan

et al., 2021). In the present study, biochar addition had no effect on

the photosynthesis of P. massoniana saplings (Figure 4A); however, it

significantly increased the soil pH (Figure 5). Thus, the increased soil

pH led to an alkaline soil environment that was not suitable for the

growth of P. massoniana saplings, which was similar with our

previous study of P. massoniana under pulsed watering (Wang

et al., 2022). The result indicated that biochar had negative effects

on the growth of P. massoniana saplings under drought in the present

study, which implied that the beneficial effects of biochar, the

environmentally friendly amendment, might not be applicable for

all plant species. However, our study had limitations, such that only

one type of biochar or tree sapling was considered, as the response of

plants to biochar may vary according to the type of plants as well as

the type of soil biochar amendments.

NSC storage, particularly in the roots, could help trees survive

drought by being transported to the other organs/tissues where

needed because drought might lead to phloem transport

malfunction and, subsequently, the possible cessation of

photosynthesis (Sevanto et al., 2014; Wiley, 2020). We found that

the application of biochar significantly decreased the NSC levels in

the roots of P. massoniana saplings, which was largely caused by the
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decline in soluble sugars (Figure 3F). Soluble sugars can serve as

osmolytes to protect the membranes from desiccation injury (Li

et al., 2013), and the decline in soluble sugars induced by biochar

might affect the water uptake of roots, which subsequently inhibited

the growth of P. massoniana saplings.
Conclusions

We found that the height and biomass of Pinus massoniana

saplings significantly decreased with increasing drought duration as

a result of significantly decreased needle photosynthesis and

increased drought stress (i.e., increased needle d13C values).

Additionally, drought duration did not deplete the tissue NSC

concentrations, suggesting that the growth inhibition was prior to

the consumption of NSC and led to the passive storage of NSC.

However, the application of biochar significantly decreased the

survival rate of Pinus massoniana saplings and aggravated the

negative effect of drought duration on the saplings, which might

be due to the increased soil pH. Our results suggest that the effect of

biochar addition on mitigating the drought’s effects on plants might

be species specific, depending on the species’ biological properties.
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