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Landslide disasters with dense vegetation and steep terrain, and high concealment 
frequently occur in Southwest China. Current field surveys, unmanned aerial vehicle 
(UAV) photogrammetry, and Interferometric Synthetic Aperture Radar (InSAR) 
technologies all have limitations in complex environments with high vegetation 
coverage. In this study, the landslide in Xinmo Village, Mao County, Aba Prefecture, 
Sichuan Province, was used as the research object. The slope types were divided 
according to the regional stratum occurrence and slope direction, and the dip 
slope was identified as the pre-selected area for the landslide. Nine vegetation 
indexes were constructed based on Landsat 8 Operational Land Imager (OLI) data, 
and Modified Soil Adjusted Vegetation Index (MSAVI) with high correlation was 
selected as the indicator of landslide change to estimate the vegetation coverage. 
The relationship between vegetation anomalies and landslide creep was analyzed 
by superimposing slope structure and vegetation spatial variation characteristics. 
The results showed that from May 2015 to May 2017, the vegetation coverage 
in the landslide main source area, above the deformation body, local collapse 
area, and around the washouts showed a significant decrease; i.e., as the time of 
landslide was approaching, some vegetation in the study area was affected by the 
landslide deformation and the growth condition became worse. Between April 
and May 2017, the vegetation coverage in the area not affected by the landslide 
was less than 0.6 (i.e., bare ground area) decreased abruptly, with change rates 
of 78.4, 87.7, and 89.7%, respectively, which is consistent with the development 
pattern of vegetation in the growing period; while the reduction rate of image 
elements in the vegetation abnormal area was only 20.5%, which judged that the 
vegetation might be affected by landslide creep and the growth and development 
were hindered. The study shows that there is an obvious spatial–temporal 
correlation between vegetation anomalies and landslide deformation during the 
landslide creep phase, which indirectly reflects the evolution process of landslide 
gradual destabilization and provides a theoretical basis for the early identification 
of landslides in high vegetation coverage areas.
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1. Introduction

Landslide is a phenomenon in which a slope’s geotechnical body 
slides downwards as a whole or scattered along a penetrating damage 
surface under the action of factors such as the natural environment 
and human activities (James and Sitharam, 2013; Bogaard and Greco, 
2016). Landslide disasters are also one of the most frequent, 
widespread, and costly geological disasters in the world (Gao et al., 
2017). Between 1998 and 2017, a total of 378 major landslides 
occurred all over the earth which accounts for the deaths of 18,141 
people, 4.8 billion people were affected, and US$ 8 billion resources 
were fully damaged worldwide (Pal et al., 2019). with approximately 
66 million people in Asia living at risk in landslide-prone areas (Tien 
Bui et al., 2019). To effectively reduce the human and economic losses 
caused by landslide disasters, there is an urgent need for effective early 
identification and monitoring of landslides on a global scale.

In recent years, landslide disasters have occurred frequently in 
southwest China, where valley slopes are steep and vegetation is dense 
(Xu et al., 2019). For example, the landslide in Nayong, Guizhou in 
August 2017 (Zheng et al., 2018), the landslide in Xinmo Village, Mao 
County, Sichuan in June 2017 (Yin et al., 2017), and the landslide in Sanxi 
Village, Dujiangyan, Sichuan in July 2013 (Liang et  al., 2014). The 
landslides were characterized by high elevation, high vegetation coverage, 
and high concealment. Landslide hazard areas are difficult to carry out 
through traditional field surveys and UAV photogrammetry technology, 
InSAR technology is affected by high vegetation coverage and cannot 
effectively detect the pre-deformation development characteristics of 
landslides (Xu, 2020). According to relevant research statistics, 80% of 
landslide disasters occur outside the range of identified hidden sites, and 
70% of landslide disasters occur in western mountainous areas that are 
difficult to reach by on-site investigation (Ge et al., 2019). Therefore, for 
highly concealed areas with high vegetation coverage, how to effectively 
predict the location of landslide occurrence is still an important research 
direction for early identification, evaluation, and prevention of landslides.

With the emergence of advanced technologies such as modern 
satellite remote sensing, unmanned aerial vehicle remote sensing, and 
wireless sensor networks, landslide monitoring technologies have 
developed significantly. Landslide monitoring mainly focuses on 
deformation and rainfall, and the monitoring technology methods cover 
optical remote sensing technology (Martha et al., 2010), satellite-based 
InSAR technology (Tofani et  al., 2013), UAV photogrammetry 
technology (Kong et al., 2020), LiDAR technology (Du et al., 2019) and 
machine learning, etc. (Arabameri et  al., 2020). Among them, the 
satellite-based InSAR technology can accurately extract information 
about small deformations on the Earth’s surface, but it is also limited by 
the revisit cycle of satellites, which cannot increase the frequency of 
photography in some areas, covers fewer periods, and cannot detect high 
vegetation coverage areas (Li et al., 2019). UAV technology, as a new type 
of high-precision telemetry, compensates for the accuracy problems of 
satellite-based telemetry, but it is mainly used as a useful supplement to 
satellite remote sensing. LiDAR technology has a unique and practical 
vegetation removal function to form a digital elevation model of bare 
ground (Mezaal et  al., 2017), but its high cost is not suitable for 
monitoring a large range of long-time sequences. Other scholars have 
built landslide susceptibility models based on machine learning 
algorithms or artificial intelligence techniques to achieve landslide spatial 
prediction (Chowdhuri et al., 2020), which will enable the development 
of geological hazard potential identification toward intelligent automation.

At present, there have been a large number of related studies on 
landslide disaster detection by optical remote sensing technology. Its 
application in landslide research has gradually developed from single 
data to multi-temporal and multi-source data fusion analysis, and 
from static landslide disaster identification and morphological analysis 
to the dynamic observation of the deformation process (Xu et al., 
2022). However, the use of optical remote sensing for landslide disaster 
identification requires extensive professional background knowledge 
of the interpreters, while the dense vegetation in high vegetation 
coverage areas obscures and suppresses the morphological 
characteristics of the landslide surface, cannot provide the deformation 
characteristics and more accurate quantitative information (Chen 
et al., 2014). For high vegetation coverage areas, a few scholars have 
also studied landslides using vegetation with the help of optical remote 
sensing technology (Zhang et  al., 2018). For example, Saito et  al. 
(2022) used multi-temporal high-resolution satellite images and UAV 
terrain data to explore the recovery of vegetation after the Aso volcano-
induced landslide in Japan by Normalized Difference Vegetation Index 
(NDVI) and its ratio, and found that the NDVI ratio decreased 
significantly after the landslide occurred while reaching the same 
vegetation level as before the landslide after 12 years. Taking 
Jiuzhaigou, Sichuan Province, as an example, Guo et  al. (2022) 
proposed to use multi-temporal remote sensing images before and 
after the landslide as data source, to detect changes in pixels based on 
NDVI, and to complete landslide identification by combining object-
oriented geometric rules. The above studies mainly focus on the 
extraction and rapid detection of landslides after landslides based on 
NDVI vegetation index, as well as the monitoring of vegetation 
recovery before and after landslides for landslide identification, while 
less research has been conducted on landslide development by using 
such weak information as vegetation changes around Pre-sliding 
slopes to play its indicative role on landslide creep. and the selection 
of NDVI as a landslide monitoring index was interfered by factors 
such as soil, seasonal phase, and sensor differences, leading to easy 
saturation of its value and reduced sensitivity to high vegetation 
density areas, making it more difficult to meet the accuracy 
requirements for early identification of such landslides (Small, 2001).

Therefore, this study proposes an efficient, low-cost, and universal 
landslide early identification method for high vegetation coverage 
areas. Through the combination of optical remote sensing and 
ecology, the dynamic change characteristics of vegetation in remote 
sensing images of the landslide development stage were extracted, 
and the internal relationship between vegetation anomaly and 
landslide creep was explored by using multi-temporal spatial feature 
sequence, and the landslide monitoring index with vegetation as the 
core change was constructed. The apparent remote sensing 
phenomenon indirectly reflects the deformation process of landslides 
and provides a new research idea for obtaining landslide precursor 
information in high vegetation coverage areas.

2. Study area overview and data 
sources

2.1. Overview of the study area

The study area is located in Xinmo Village, Mao County, Aba 
Tibetan and Qiang Autonomous Prefecture, Sichuan Province, in 
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the overlap between the Qinghai-Tibetan Plateau and the western 
Sichuan Plain, and in the middle of the upper reaches of the 
Minjiang River. The terrain is dominated by high mountains and 
valleys, with an altitude of 857-5,133 m, the terrain is high in the 
northwest and low in the southeast, and the Minjiang River 
system runs from north to south throughout the area (Figure 1). 
The natural landscape of the study area is characterized by high 
mountains and dense vegetation, with a high vegetation coverage 
of approximately 75% (Figure 2). The climate is dry and windy, 
and the annual rainfall is unevenly distributed, mostly 
concentrated from May–October. with a maximum daily 
precipitation of 75.2 mm and heavy transient rainfall, resulting in 
widespread geological disasters such as landslides, collapses, and 
mudslides in the Mao County area (Liu et al., 2019). The Maowen 
Fault and the Longmenshan Fault are frequently active in the 
study area, with deep rock joints and fragile geological conditions 
(Fan et al., 2017). The regional stratigraphy is dominated by the 
Malcolm Division strata, with the T zh3 , T2 , T b1 , P1 , Q, C, 
Dwg2  (Figure 3).

The Xinmo landslide occurred at about 6:00 (GMT + 8) on June 
24, 2017, in Xinmo Village, Diexi Town, Mao County, Sichuan 
Province (Li et al., 2022). The back edge of the slope is approximately 
3,400 m and the front edge is approximately 2,200 m, with a difference 
in elevation of 1,200 m. The mountain where the landslide is located 
is clamped by the Songpinggou fault and the Minjiang fault. The 
original slope is steep at the top and gentle at the bottom. The upper 
section is mainly bedrock slope with a slope of up to 50° in the 
material source area, and the lower section is old landslide deposits 
with a gentle slope (He et al., 2017; Su et al., 2017). From the above, 
it is clear that the Xinmo Village landslide is high, steep, densely 
covered with vegetation and extremely concealed, making it difficult 
to carry out through traditional means, UAV photogrammetry, and 
InSAR technology.

2.2. Data sources

2.2.1. Satellite image data
Taking into account the resolution of the remote sensing images, 

the reflection of the vegetation and the quality of the images available, 
Landsat 8 OLI satellite images were selected for this study, with data 
from the United States Geological Survey (USGS).1 The Landsat 8 
satellite carries two sensors, the Operational Land Imager (OLI) and 
the Thermal Infrared red Sensor (TIRS), with 11 bands, bands 1–7, 
9–11 with a spatial resolution of 30 m and band 8 with a panchromatic 
resolution of 15 m, providing a reliable data source for vegetation 
growth information (Chu et al., 2013).

In terms of temporal phase, to avoid the interference of seasonal 
and natural growth factors on the abnormal characteristics of 
vegetation, 3 images in May 2015, May 2016, and May 2017 that were 
close to the month of the landslide were selected. Due to the influence 
of clouds and fog, 2 images of Landsat 8 OLI from April 2017 and May 
2017 were selected to obtain the growth of vegetation at the time of 
the landslide proximity (Table 1).

2.2.2. Topographical data
In this study, the Advanced Land Observing Satellite (ALOS) 

satellite launched by Japan in 2006 was selected to acquire ALOS 
12.5 m Digital Elevation Model (DEM) data from National 
Aeronautics and Space Administration (NASA).2 It has higher 
accuracy compared with other DEM data and extracts elevation, 
slope, and slope direction information from it, which is widely used 
in various natural hazard surveys and mapping studies.

1 https://glovis.usgs.gov/

2 https://search.asf.alaska.edu/

FIGURE 1

Location map of Mao county study area, Aba Prefecture, Sichuan Province.
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2.2.3. Geological data
The geological data of stratum lithology, geological structure, and 

occurrence in the study area are mainly obtained from the “Regional 
Geological Survey Report-1: 200,000 Songpan Area” compiled by the 
Second Regional Geological Survey Team of the Sichuan Provincial 
Geological Bureau in 1975.

3. Research methodology

This study is oriented toward high vegetation coverage areas 
with complex geological elements, where a single technical 
approach has a specific scope of application and limitations. The 
research methodology is divided into four steps: (1) data 

FIGURE 2

Vegetation coverage map of the study area.

FIGURE 3

Geological map of the study area.
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preparation; (2) landslide pre-selection; (3) landslide monitoring 
indicator selection; and (4) identification and quantitative 
analysis of landslide hazard areas. In the first step, data are 
collected from satellites and Google images and geological 
information, which are pre-processed and analyzed. In the 
second step, topography (elevation, gradient, slope direction), 
underlying geology (lithology production), and environmental 
conditions (water system) are selected as landslide evaluation 
factors to analyze the spatial distribution of disasters and to 
establish landslide pre-selection areas. In the third step, nine 
vegetation indexes were constructed based on Landsat 8 OLI 

image data, and the index with the highest correlation and better 
dispersion with vegetation coverage was selected as the landslide 
monitoring indicator through the correlation analysis of the nine 
indexes. In the fourth step, the phenological phenomena and 
quantitative analysis of image pixels of abnormal vegetation 
changes on remote sensing images were extracted and overlaid 
with the above landslide pre-selected areas, and finally, the 
landslide hazards were verified through the analysis of Google 
Earth satellite images. The research process is shown in Figure 4.

3.1. Landslide pre-selection area identified

3.1.1. Landslide causative factors (LCFs)
Different slopes, with different elevations, slope directions, 

geological formations, and surface environments, are bound to have 
different impacts on the stability of the slope, thus affecting the 
probability of landslide disasters. The environmental factors of 
landslide breeding in the study area are mainly topography and 
geomorphology, basic geology, and environmental conditions. 
According to the study of LCFs and the characteristics of the study 

TABLE 1 Remote sensing image information used in this paper.

Image time
Loaded 
satellites

Spatial resolution/m

2015-05-19 Landsat 8 OLI 30

2016-05-05 Landsat 8 OLI 30

2017-04-06 Landsat 8 OLI 30

2017-05-08 Landsat 8 OLI 30

FIGURE 4

Technology roadmap.
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area itself, five LCFs, namely elevation, gradient, slope direction, rock 
production, and water system, are selected through remote sensing 
image processing and ArcGIS spatial analysis and other technical 
means (Table 2).

3.1.2. Multicollinearity analysis
In landslide sensitivity evaluation, the covariance between 

landslide factors can affect the accuracy of model predictions. 
Therefore, to improve the accuracy and robustness of the model, 
it is necessary to analyze the multicollinearity among the 
landslide causative factors before model construction (Sahana 
et al., 2020). In this study, the variance inflation factor (VIF) and 
tolerance level (TOL) were used to analyze the multicollinearity 
of the extracted landslide factors, and the results are shown in 
Table 3. The VIF values of the five selected landslide evaluation 
factors were found to be  less than 2 and the TOL values were 
found to be  greater than 0.5, indicating that there was no 
covariance among the selected landslide causative indicators, and 
therefore the five landslide factors could be used in the landslide 
model construction.

3.1.3. Classification of slope types
The slope structure is a combination of different rock structures 

and slope surfaces, and the complexity of the rock structures in the 
study area determines the variety of slope structure types (Wen et al., 
2020). Due to the different geological environments in each region, 
the distribution of slope types also shows differences, but in general, 
the slope direction of the dip slope and rock tendency are basically the 
same, and it is an unstable slope prone to disasters compared with 
other slope structures (Chen et al., 2021). In this study, using the LCFs 
in the area, the relationship between the occurrence of rock and the 
slope direction in the region was used to classify the slope structure 
types in the region as follows: dip slope, down slope, transverse slope, 
reverse slope, counter-tilt slope, and combined with the visual 
interpretation results, the red dip slope part in Figure 5 was identified 
as a pre-selected area for landslides.

3.2. Landslide change indicator selection

During the landslide development stage, the vegetation on the 
slope is also undergoing abnormal changes, and the vegetation index 
can reflect the vegetation growth, coverage, and biomass, so this study 
indirectly reflects the creeping process of landslide through the 
dynamic change of vegetation. Since the selection of vegetation index 
has a direct impact on the estimation results of vegetation coverage. It 
can be  seen from Figure  6 that each curve represents a different 
vegetation coverage, with the lowermost curve indicating no 
vegetation coverage and 0% FVC, the uppermost indicating complete 
coverage of vegetation was 100%. In the blue band range (450–515 nm) 
within the visible band, as the vegetation coverage increases (FVC 
from 0% to 100%), the corresponding vertical coordinate develops 
downward, with a tendency for the reflectance to decrease. While the 
reflectance in the green band (525–600 nm) tends to increase in the 
high vegetation coverage area, the reflectance in the red band 
(630–680 nm) tends to decrease more obviously, and the reflectance 
in the near-infrared band (845–885 nm) tends to decrease. and the 
increase rate is relatively larger. The spectral reflectance of bare soil is 
significantly higher in the red band (630–680 nm) and lower in the 
near-infrared band (845–885 nm) than that of vegetation coverage, 
and the pattern of vegetation spectral reflectance with vegetation 
coverage is not obvious after 1,000 nm (Xie et al., 2020). Therefore, the 
following nine vegetation indexes with reflectance less than 1,000 nm 
were chosen for the study area in Mao County, Sichuan Province, 
which is deep inland and densely vegetated. The formulae are shown 
in Table 4 and the different vegetation indexes calculated for the study 
area are shown in Figure 7.

The study used the moderate-resolution imaging 
spectroradiometer (MODIS) NDVI datasets (MOD13Q1) synthetic 
product with a resolution of 250 m as the standard to calculate the 
vegetation coverage of the study area. 21 pixels were randomly selected 
on the MODIS image, 8*8 pixels of the same area were found on the 
spatial distribution map of each vegetation index according to the 
latitude and longitude, and the average value of 64 pixels in the area 
was calculated as the estimated value of the vegetation index of the 
area and compared with the standard value. The two-dimensional 
scatter plot was obtained with the vegetation index as the horizontal 
coordinate and the vegetation coverage as the vertical coordinate. The 
results of the correlation analysis of the scatter plot using Statistical 
Product Service Solutions (SPSS) software are shown in Figure 8. The 
correlation judgment coefficients R2  of DVI and standard vegetation 
coverage was 0.694, RVI was 0.696, NDWI was 0.902, MVI was 0.484, 
NDVI was 0.933, MSAVI was 0.953, EVI was 0.471, GNDVI was 
0.904, NDGI was 0.487. The R2  of EVI, MVI, and NDGI were all less 
than 0.5, indicating that the correlation between these three vegetation 
indexes and vegetation coverage was low, while all other vegetation 
indexes could reflect the vegetation coverage in the study area to a 
certain extent, but the MSAVI index had the highest correlation with 
vegetation coverage, and the estimated vegetation coverage was closer 
to the real ground surface Vegetation coverage.

The Coefficient of Variation (CV), a normalized measure of the 
degree of dispersion of a probability distribution, is introduced for 
comparative analysis of the vegetation indexes in the study area and is 
defined as the ratio of the standard deviation σ to the mean μ. The 
results of the analysis are shown in Table 5. The standard deviation 
and coefficient of variation of the vegetation index MSAVI are higher 

TABLE 2 Landslide causative factors.

LCFs Source Spatial resolution/scale

DEM ALOS PALSAR DEM 12.5 m

Slope gradient ALOS PALSAR DEM 12.5 m

Slope direction ALOS PALSAR DEM 12.5 m

Occurrence
Sichuan Geological 

Survey of China
RF = 1:200,000

Distance to water 

system
ALOS PALSAR DEM 12.5 m

TABLE 3 Results of multicollinearity tests for landslide causative factors.

Factors VIF TOL

DEM 1.313 0.569

Slope gradient 1.425 0.602

Slope direction 1.658 0.859

Occurrence 1.536 0.712

Distance to water system 1.152 0.509
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than those of other vegetation indexes, indicating that the MSAVI 
dataset is more discrete than other vegetation indexes. From a 
statistical point of view, it shows that the MSAVI index better reflects 
the spatial variability of vegetation coverage and has a stronger ability 
to identify vegetation differences. Therefore, combining with the 
correlation analysis and the degree of dispersion, the MSAVI index 
was selected as the index of landslide change.

3.3. Estimation of vegetation coverage

As the vegetation index is related to many factors such as climate, 
soil, vegetation type and topographic relief, it cannot be used directly 

to reflect vegetation anomalies caused by landslide creep, and it is 
necessary to remove the influence of non-landslide factors from the 
vegetation index and retain the vegetation coverage information 
related to landslide creep. Therefore, the study is based on vegetation 
index, and the vegetation coverage is estimated by means of a 
dimidiate pixel model as a base model, which weakens the influence 
of soil background, vegetation type and atmosphere, and has a certain 
theoretical basis, is not restricted by geographical area, and can 
be easily extended (Carlson and Ripley, 1997).

The dimidiate pixel model is a method for calculating vegetation 
coverage based on the pixel linear decomposition model, which is 
based on the principle of decomposing the spectral information of the 
ground surface acquired by remote sensing sensors into two parts, one 
is the information SV  contributed entirely by green vegetation, and 
the other is the information SS  of bare ground without vegetation 
coverage, the pixel information S is synthesized by these two parts 
(Yue et al., 2021),

Namely:

 S S SV S= +  (1)

In a pixel of a remote sensing image, assuming that the area 
covered by vegetation (i.e., vegetation coverage) is In a pixel of a 
remote sensing image, assuming that the area covered by vegetation 
(i.e., vegetation coverage) is fc , the area covered by bare ground is 
1− fc . The information of pure pixel covered by vegetation is Sveg , 
and for a mixed pixel composed of vegetation and bare soil, the 
information SV  contributed by vegetation is equal to the product of 
Sveg  and fc :

 
S S fV veg c=

 
(2)

FIGURE 5

Classification of slope structure types in the study area.

FIGURE 6

Reflectance spectra of vegetation in different levels of vegetation 
coverage (Xu et al., 2012).
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Similarly, if a pure pixel information completely covered by bare 
ground is Ssoil , then for a mixed pixel composed of vegetation and 
bare ground, the information SS  contributed by the bare ground is 
the product of Ssoil  and1− fc , that is:

 
S S fS soil c= −( )1

 
(3)

Substituting Equations (2), (3) into Equation (1) and transforming 
gives the equation for vegetation coverage fc :

 
f S S S Sc soil veg soil= −( ) −( )/

 
(4)

where S is the spectral information of the ground surface acquired 
by the remote sensing sensor. Therefore, as long as the spectral 
information Ssoil  of pure bare ground pixels and the spectral 
information Sveg  of pure vegetation pixels are obtained, the 
vegetation coverage of the entire study area can be estimated (Song 
et al., 2022).

In this study, the MSAVI index was used to estimate vegetation 
coverage based on the principles of the dimidiate pixel model with the 
following equation:

 
f MSAVI MSAVI MSAVI MSAVIc soil veg soil= −( ) −( )/

 
(5)

Where MSAVIsoil  is the MSAVI value of the bare ground pixel, 
and MSAVIveg  the MSAVI value of the pure vegetation pixel.

In the actual calculation, it is difficult to find pure bare ground 
pixels and pure vegetation pixels, MSAVImin  and MSAVImax  are 
generally used instead. In order to ensure the accuracy of the 
experimental results, this study used histogram statistics to analyze 
the MSAVI values, obtain the cumulative percentage corresponding 
to each MSAVI, set the confidence interval according to the 
cumulative percentage, and then determine the values of MSAVIsoil  

and MSAVIveg . The confidence interval was set to 5–95% and the 
cumulative percentage of MSAVI ≤5% was defined as the pure bare 
ground portion, that is, the MSAVI value with a cumulative percentage 
of 5% was MSAVIsoil ; The cumulative percentage of MSAVI ≥95% 
was defined as the pure vegetation fraction, that is, the MSAVI value 
with a cumulative percentage of 95% was MSAVIveg  (Gao 
et al., 2020).

4. Results and analysis

4.1. Landslide creep and vegetation 
spatial–temporal variation characteristics

Vegetation coverage was estimated by MSAVI index using three 
phases of Landsat 8 OLI images data in the study area from May 2015, 
May 2016, and May 2017 (Figures  9A,C,E), where the arrows in 
Figures 9C,E point to the cloud-obscured portion and are not used as 
a vegetation spatial variation feature. The vegetation spatial variation 
areas of the 3 images were overlaid with the landslide pre-selection 
areas to obtain the areas of vegetation anomalies (Figure 9).

Figures 9B,D,F can be observed that, with the change of time 
series, the color of the yellow frame area coverage gradually 
changed from dark green to yellow-green, indicating that the 
vegetation coverage in the yellow frame gradually declined and the 
vegetation growth condition became worse (the yellow frame was 
red in 2016 due to the influence of clouds); the green in the black 
frame gradually decreased, and the yellow gradually increased in 
May 2017, reflecting a decreasing trend of vegetation coverage; the 
area in the red frame changed from green to yellow, and the 
vegetation coverage changed from high to low; the dark green in 
the blue frame gradually changed to light green and yellow, and had 
a gradual downward trend, indicating degradation of vegetation 
growth in the blue frame area. Therefore, as the time of the landslide 
approaches, the vegetation coverage is affected by landslide creep 
and shows a gradual decline. By combining the vegetation coverage 

TABLE 4 Vegetation indexes.

Vegetation index Formula Reference

Difference vegetation index (DVI) DVI NIR R= − Jordan (1969)

Ratio vegetation index (RVI) /RVI NIR R= Tian and min (1998)

Normalized difference water index (NDWI) ( ) ( )/NDWI G NIR G NIR= − + Chen et al. (2003)

Modified vegetation index (MVI) ( ) ( )/ 0.5MVI NIR R NIR R= − + +
McDaniel and Haas (1982)

Normalized difference vegetation index (NDVI) ( ) ( )/NDVI NIR R NIR R= − + Rouse et al. (1974)

Modified soil adjusted vegetation index (MSAVI)
( ) ( )2 1 2 1 8 / 22MSAVI NIR NIR NIR R 

= + − + − − 
 

Qi et al. (1994)

Enhanced vegetation index (EVI) ( ) ( )2.5 / 6 7.5 1EVI NIR R NIR R B= − + − + Jiang et al. (2008)

Green normalized difference vegetation index (GNDVI) ( ) ( )/GNDVI NIR G NIR G= − + Gitelson et al. (1996)

Normalized difference green index (NDGI) ( ) ( )/NDGI G R G R= − + Lyon et al. (1998)

NIR is near-infrared band reflectance, R is red band reflectance, G is green band reflectance and B is blue band reflectance.
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in the above 3 time phases with the slope structure, the four areas 
of yellow, black, red, and blue are identified as landslide 
hazard areas.

The growth of the vegetation has the phenological 
characteristics of an inter-annual cycle: the growth continues to 
accelerate in spring and the biomass begins to increase; the growth 
accelerates in summer, chlorophyll content and biomass reach 
their peak; it begins to gradually decline in autumn; it drops to a 
minimum in winter (Wu et al., 2008).To exclude the influence of 
non-landslide factors on vegetation anomalies, the vegetation 
coverage was analyzed by comparing April 2017 with May 2017 
(Figures  10A,B). As can be  observed in Figure  10, the yellow, 
black, and red frames changed from yellow to large areas of green, 
indicating that the vegetation coverage was gradually increasing in 
May in good condition, in line with its growth pattern; however, 
the vegetation coverage in the blue frame did not change color 
over a large area, judging that the vegetation may have been 
affected by landslide creep and its growth and development 
was hindered.

4.2. Quantitative analysis of vegetation 
anomaly pixels

The above study was based on the analysis of visual interpretation, 
and the original remote sensing images, slope structure type, and 
vegetation coverage of the time series were combined for comparison, 
showing the spatial variation in regional details of vegetation 
anomalies and spatial–temporal correlation of landslide creep. To 
correspond the vegetation anomalies on the remote sensing images 
with the actual landslide development, the vegetation coverage was 
graded based on the visual interpretation of the medium-resolution 
remote sensing images and field investigation (Table 6). Areas with 
vegetation coverage above 0.60 were defined as medium-high 
vegetation coverage areas and areas below 0.60 were defined as 
medium-low vegetation coverage areas. In this study, the number of 
pixels in the medium-low vegetation coverage area was counted to 
obtain the variation of the area, and then the spatial correlation 
between the vegetation anomalies and the landslide deformation on 
the images was analyzed from a quantitative perspective.

FIGURE 7

Different vegetation indexes in the study area. (A) DVI. (B) RVI. (C) NDWI. (D) MVI. (E) NDVI. (F) MSAVI. (G) EVI. (H) GNDVI. (I) NDGI.
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The statistics of the pixels of middle-low vegetation coverage 
areas (i.e., vegetation coverage less than 0.60) in the 2 temporal 
landslide hazard areas in the study area in April 2017 and May 

2017 (Table 7). It can be observed that the number of pixels with 
vegetation coverage less than 0.60 in the yellow, black and red 
frames decreased significantly month by month, with change 
rates of 78.4, 87.7, and 89.7% respectively, indicating that the area 
of bare ground in the yellow, black and red areas decreased 
significantly, which was consistent with the vegetation 
development pattern and visual interpretation results. In contrast, 
the number of pixels in the blue area changed from 234 in April 
to 186 in May, a decrease of 48 pixels, or 20.5 l%. Comparing the 
changes in pixels in the three hazard areas of yellow, black, and 
red, the change of vegetation in the blue area was not obvious, and 
the number of pixels with vegetation coverage of less than 0.60 
decreased abruptly, indicating that the vegetation here may 
be  affected by landslide creep and the vegetation growth was 
abnormal. Also based on the histogram of the change in the 
number of pixels with coverage less than 0.6 in each hidden area 
(Figure 11), it can be clearly that the blue frame shows the least 
change in the number of pixels. Therefore, from the four landslide 
hazard areas in the yellow, black, red, and blue frames, the blue 

FIGURE 8

Correlation between different vegetation indexes and vegetation coverage.

TABLE 5 Statistical analysis of different vegetation indexes.

Vegetation 
index

Standard 
deviation

Average 
value

Coefficient 
variation

R2

DVI 0.0896 0.2387 0.38 0.694

RVI 0.2616 0.6945 0.38 0.696

NDWI 0.2252 0.6205 0.36 0.902

MVI 0.1271 1.0788 0.12 0.484

NDVI 0.2609 0.6720 0.39 0.933

MSAVI 0.4043 0.7518 0.54 0.953

EVI 0.2436 0.9463 0.26 0.471

GNDVI 0.2542 0.6205 0.41 0.904

NDGI 0.0815 0.2933 0.28 0.487
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frame was finally identified as the most likely area for landslides 
to occur.

4.3. Results verification

4.3.1. Model verification
To further verify the accuracy of the vegetation coverage 

estimation model, a linear regression model was established using the 
MOD13Q1 NDVI product as the standard value and the vegetation 
index extraction model results as the estimated value (Figure 8). The 
accuracy of the linear regression model was verified by root mean 
squared error (RMSE), the smaller the RMSE, the closer the standard 
value was to the estimated value; the coefficient of determination ( R2 )  
was used to evaluate the goodness of fit of the linear regression model, 
the closer R2  was to 1, the better the standard value fitted the 
estimated value. Among them, the MSAVI index extracted better ( R2  
was 0.953 and RMSE was 0.190) (Table 8).

4.3.2. Experimental verification
To further verify the correlation between vegetation 

anomalies on remote sensing images and landslide creep, 
according to the Google Earth satellite images in August 2003 
and January 2016 (Figures 12A,B), five obvious fissures F1-F5 
were found in each slide source area, and a group of joints J1 was 
developed on the bedrock surface. In Figure 12A, five fissures can 
be seen spreading in the sliding direction, roughly parallel to the 
direction of joints J1, with fissures F1 and F4 corresponding to 
the right and left boundaries of this landslide, respectively. 
According to Figure  12B, fissures F1–F4 did not obvious 
expansion and extension, and fissure F5 extended along the 
cracking direction to the ridgeline, and the vegetation shadows 
were distributed in thin lines, indicating that fissures developed 
under the vegetation (Xu et al., 2017). Comparing the images 
from 2003 to 2016, we found that the lower part of the bedrock 
on the left side and the lower side of the slope deposit had an 
obvious downward crumbling trend, indicating that the loose 

FIGURE 9

Landslide potential areas. (A) 20150519 Landsat 8 satellite image. (B) 20150519 Vegetation coverage anomaly map. (C) 20160505 Landsat 8 satellite 
image. (D) 20160505 Vegetation coverage anomaly map. (E) 20170508 Landsat satellite image. (F) 20170508Vegetation coverage anomaly map.
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debris was slowly dislodged, and the upper part of the rock body 
was more clearly defined and longer than in 2003.

In the red ellipse (Figures 12A,B), approximately 60 m from the 
lower margin of the slope deposit, there were significant differences in 
the shading of the surface between the two phases, with the surface 
was relatively flat in 2003 and there were fluctuations roughly parallel 
to the underside line of the slope deposit in 2016, this phenomenon 
was not found on either side of the rock mass or at lower levels. The 
hidden danger was characterized by a hard top and soft bottom, with 
a localized high-strength “locked section” in the middle or lower 
middle of the area and slow creep in the weaker parts, confirming that 
stresses were constantly shifting toward the “locked section” of the 
rock. With the accumulation of stress, the locking section was 

“overloaded” and a sudden brittle fracture occurs, resulting in a high-
speed collapse (Li et al., 2018).

When the above features of hidden danger development 
(Figures  12A,B) were compared with the vegetation anomalous 
changes in the landslide hazard areas in May 2015, May 2016, and May 
2017 (Figures 12C–E). It can be observed that although the red area 
within the blue curve in Figures 12C–E decreases, the yellow area 
corresponds to the blue curve in Figures 12A,B, which is consistent 
with the trend of the lower edge of the bedrock on the left side and has 
an obvious downward sliding trend, it basically matches the position 
of some fissures and joints in the pre-slip image, indicating that the 
vegetation growth condition becomes worse. The black curve in 
Figures 12C–E gradually extended downwards, indicating a downward 
trend of vegetation coverage degradation. It not only verifies the 
correlation between vegetation anomalies and landslide creep, but also 
reflects in practice the feasibility of optical remote sensing for early 
identification of landslides in areas with high vegetation coverage.

5. Discussion

5.1. Comparative analysis of study results

In this study, the Landsat 8 OLI satellite was used to estimate the 
vegetation coverage using time-series remote sensing images from 

FIGURE 10

Comparison of vegetation coverage between 201704 and 201705. (A) 20170406 vegetation anomaly map. (B) 20170508 vegetation anomaly map.

TABLE 6 Vegetation coverage grading scale.

Range of vegetation 
coverage

Vegetation coverage class

0–0.20 Low vegetation coverage

0.20–0.40 Lower vegetation coverage

0.40–0.60 Moderate Vegetation coverage

0.60–0.80 Higher vegetation coverage

0.80–1.0 High vegetation coverage
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May 2015, May 2016, April and May 2017, to exclude the influence of 
non-landslide factors on the spatial variation of vegetation, and to 
establish the correlation between landslide creep and vegetation 
anomalies based on the slope structure types and vegetation spatial–
temporal variation characteristics in the region, so as to reflect the 
evolution of landslides in areas with high vegetation coverage and 
successfully identify the landslide in Xinmo Village. This is also 
consistent with the study results of some scholars, who have used the 
flexible and time-efficient UAV technology to obtain digital terrain 
products and on-site images of the “6.24” Xinmo Village landslide for 
accurate description, and qualitative and quantitative analysis of 
geological hazards. But UAV technology is mainly used as a useful 
supplement to satellite remote sensing means, which can realize 
regular and continuous observation in small areas and meet the 
dynamic monitoring needs of landslides in key areas (Guo C. et al., 

2020). Another Intrieri et  al. (2017) conducted the deformation 
history of 45 c-band synthetic aperture radar (SAR) images acquired 
by the European Space Agency’s Sentinel-1 satellite and found 
deformation of the Xinmo Village landslide in the slide source area. 
However, since Xinmo Village in Mao County is located in the 
southwest mountainous area with steep terrain and dense vegetation, 
the InSAR technique has uncertainties about the complexity of ground 
undulations and the quality differences of the interferometric image 
data itself and loses the ability to observe deformation damage of large 
magnitude, and the high vegetation coverage acquires fewer stable 
scatterers, causing data loss of correlation and difficulty in phase 
deconvolution, which restricts the accuracy of landslide identification 
in areas with high vegetation coverage. Guo X. Y. et al. (2020) based 
on the objective reality of field investigation that the creep of slope in 
the development stage of landslide in Xinmo village would cause the 
change of environmental conditions and further affect the growth of 
vegetation, used high-resolution satellite images to judge the abnormal 
situation of vegetation on the landslide slope through the changes of 
NDVI sequence. But the values are prone to saturation when based on 
the NDVI index as an indicator for landslide monitoring in areas with 
high vegetation coverage, making it more difficult to meet its accuracy 
requirements (Jiang et  al., 2006). Therefore, in this study, nine 
vegetation indexes were compared and analyzed for high vegetation 
coverage areas, and the MSAVI index with the highest correlation and 
better dispersion with vegetation coverage was selected as the landslide 
monitoring Indicator, which reduces the change of soil factors and 
better reflects the spatial differences of vegetation, extracts the 
appearance of abnormal changes in vegetation on remote sensing 
images and pixel quantitative analysis to achieve early identification 
of landslides in high vegetation coverage areas.

5.2. Factors influencing spatial–temporal 
variation in vegetation coverage

The complex topographic and geomorphological conditions in the 
high vegetation coverage areas of southwest China, there are numerous 
factors influencing vegetation coverage, resulting in spatial–temporal 
variations in vegetation that are not always caused by landslide 
deformation. Analysis of the influence of precipitation and 
topographic factors on vegetation dynamics through the recovery of 
vegetation in the NDVI dataset after the 2008 Wenchuan earthquake 
revealed that precipitation appeared to inhibit vegetation recovery in 
2010 and 2011, and that vegetation recovery was weaker on gentle 
slopes with elevations <1,300 or > 3,500 m and slopes <35° (Yang et al., 
2018). Another Deijns et al. (2020) used the cumulative difference 
(CD) between the NDVI and the fitted harmonic sine curve for semi-
automated landslide monitoring in the Buckinghorse River region of 
Canada, and found the utility of anomalous changes in vegetation as 

TABLE 7 Statistics on vegetation anomalies in landslide hazard areas.

Time
Number of pixels with 

FVC (yellow) < 0.60
Number of pixels with 

FVC (black) < 0.60
Number of pixels 

with FVC (red) < 0.60
Number of pixels with 

FVC (blue) < 0.60

2017-04-06 435 864 456 234

2017-05-08 94 106 47 186

Change rate 78.4% 87.7% 89.7% 20.5%

FIGURE 11

Histogram of the change in the number of image elements in the 
hidden area.

TABLE 8 Vegetation coverage estimation model accuracy validation.

Vegetation index 
model

RMSE R2

DVI 0.209 0.694

RVI 0.238 0.696

NDWI 0.193 0.902

MVI 0.279 0.484

NDVI 0.195 0.933

MSAVI 0.190 0.953

EVI 0.265 0.471

GNDVI 0.194 0.904

NDGI 0.244 0.487
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an indicator of landslide creep, suggesting that riverbank erosion, 
deforestation, etc. have similar NDVI response, which may confound 
landslide characteristics. All of the above studies show that the 
combination of hydrometeorology, topography, physical and chemical 
characteristics of vegetation, land use et.al, spatial changes in 
vegetation caused by natural phenomena and human actions should 
not be  ignored as well, all of which may interfere with the early 
identification accuracy of landslides.

In summary, with sufficient time-series remote sensing images, 
combined with the phenological characteristics of normal vegetation, 
the use of multiple quantifications of known landslide time-series 
imagery to train the vegetation index sequence characteristics of 
specific landslide areas can effectively distinguish landslides from 
non-dominant factors such as cropland and bare ground, and improve 
the accuracy of the spatial distribution of landslides in large areas, 
which will be an important direction for future research on the early 
identification of landslides in high vegetation coverage areas.

5.3. Uncertainty analysis

Landsat image was chosen for the study because of its large period 
and global coverage, which facilitates long time series analysis, and the 

large number of bands and ease of combining Landsat imagery to 
analyze specific features (Zhu et al., 2019), but its relatively low spatial 
resolution resulted in some small-scale landslide creep not being easily 
detected. With regard to the application of lower resolution products 
to landslide monitoring, most “landslide” pixels are a mixture of 
landslides and other land coverage, and analyses based on these pixels 
are uncertain to effectively identify smaller landslides, and their data 
do not reveal the spatial variability of small landslides. In order to 
reduce the influence of mixed pixels, landslides with more than 9 
Landsat pixels are selected for analysis, which can reveal more detailed 
vegetation recovery processes and slope activity (Zhong et al., 2021). 
Therefore, the use of Landsat imagery to effectively capture large 
landslide deformation in areas of high vegetation cover at a large scale 
can help reduce the influence of mixed pixels and support detailed 
investigation of landslide areas.

In addition, this study analyses the spatial–temporal variation 
characteristics of vegetation based on the MSAVI index for early 
identification of landslides, which had the highest correlation 
with vegetation coverage of 0.953, and the CV is 0.54, effectively 
weakening the influence of soil background and mountain 
shadows on vegetation, with stronger ability to identify vegetation 
differences and better reflecting the real vegetation coverage 
information in high vegetation cover areas. Yang et al. (2014) used 

FIGURE 12

Comparison of hidden danger development and vegetation anomalies. (A) 2003–08 Google earth image 2D view. (B) 2016–01 Google earth image 2D 
view. (C) Changes in vegetation coverage in 2015–05. (D) Changes in vegetation coverage in 2016–05. (E) Changes in vegetation coverage in 2017–05.
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MOD13Q1 data to construct various vegetation indexes and 
compared them with TM images for analysis, and found that the 
vegetation coverage estimated using MSAVI was closer to the 
actual situation in Shangri-La County. However, the MSAVI index 
has certain limitations for non-growing season vegetation 
monitoring, and its overall change is decreasing, which cannot 
better represent the spatial change characteristics of vegetation, 
leading to uncertainty in landslide identification. Therefore, there 
are still challenges in detecting landslides in the non-growing 
season based on optical remote sensing extraction of vegetation 
index. For non-growing vegetation, the estimation of classification 
thresholds of vegetation index varies widely, and in subsequent 
studies, attempts can be made to study the limit values of landslide 
Indicator, where different indexes may be  more appropriate 
depending on the situation, or to construct new types of index or 
composite index, whether they are better than the landslide results 
obtained from a single vegetation index to reduce the influence of 
non-growing vegetation uncertainty as much as possible.

6. Conclusion

There is an urgent need to establish an effective monitoring system 
for the early identification of landslide disasters globally to reduce the 
loss of life and property caused by such natural disasters. Large 
landslides are often highly concealed and it is difficult to 
comprehensively identify the potential hazards by traditional manual 
inspection methods, especially in the dense forests of southwest 
China, where landslides, collapses and other potential hazards are 
hidden under the dense forests and are a constant threat to people’s 
life and property. This study focuses on the steep terrain and dense 
vegetation of southwest China as the main study area. Based on the 
topography, stratigraphic, and slope structure of the high vegetation 
coverage area. From the perspective of remote sensing, the MSAVI 
index with the highest correlation was proposed as the indicator of 
landslide change to estimate the vegetation coverage by using medium 
resolution Landsat 8 OLI optical remote sensing images, and the 
abnormal characteristics of the vegetation overlying the slope before 
the occurrence of the landslide were identified and quantitatively 
analyzed by remote sensing to establish the intrinsic link between the 
abnormal vegetation development and landslide creep. The study 
shows that there is an obvious spatial and temporal correlation 
between vegetation anomalies and landslide deformation during the 
landslide creep phase, which indirectly reflects the evolutionary 
process of landslide instability. The method is efficient and universal, 
and to a certain extent compensates for the shortcomings of existing 
methods in the early identification of landslides in complex 
geographical environments, providing effective scientific support for 
the early identification of large landslides in areas with high vegetation 
coverage worldwide.
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