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A hypothesis about the
influence of oxidative stress
on amino acid protein
composition during evolution
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1School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom,
2Institute for Biology, Freie Universität Berlin, Berlin, Germany, 3Division for Small Animal Internal
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Life emerged in an anoxic world, but the release of molecular oxygen, the by-

product of photosynthesis, forced adaptive changes to counteract its toxicity.

However, reactive oxygen species can damage all cellular components,

including proteins. Therefore, several mechanisms have evolved to balance the

intracellular redox state and maintain a reductive environment more compatible

with many essential biological functions. In this study, we statistically

interrogated the amino acid composition of E. coli proteins to investigate how

the proneness or susceptibility to oxidation of amino acids biased their

sequences. By sorting the proteins into five compartments (cytoplasm, internal

membrane, periplasm, outer membrane, and extracellular), we found that various

oxidative lesions constrain protein composition and depend on the cellular

compartments, impacting the evenness of distribution or frequency. Our

findings suggest that oxidative susceptibility could influence the observed

differences in amino acid abundance across cellular compartments. This result

reflects how the oxidative atmosphere could restrict protein amino acid

composition and impose a codon bias trend.

KEYWORDS

oxidative stress, protein oxidation, amino acid sequence, protein evolution,
proteome damage
Introduction

The origin of life and the pristine molecular evolution is still a conundrum regarding

several questions about the changes that occurred at the molecular and cellular levels to

adapt to higher molecular oxygen concentrations (Lyons et al., 2014). During long evolving

processes, protein amino acid compositions were influenced by their functionalities

(Tourasse and Li, 2000), stability (Godoy-Ruiz et al., 2004; Mendez et al., 2010), energy

efficiency (Akashi and Gojobori, 2002; Smith and Chapman, 2010), and their ability to

create secondary structures (Lu and Freeland, 2006). This process involved a dynamic
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González-Tortuero and Rodrı́guez-Rojas 10.3389/fevo.2023.1172785
mutation-selection game that produced specific combinations of

amino acid sequences (Knight et al., 2001). Proteins represent the

ultimate product of the genetic flow of information, and their

functions are ultimately determined by the amino acid sequence.

However, these functions must be in harmony with biological

complexity, which is heavily influenced by environmental

conditions (Worth et al., 2009).

Life originally evolved in an anaerobic and reductive

atmosphere, but the emergence of oxygen through photosynthesis

changed the environment and forced microbes to alter their

physiology to cope with oxidative conditions (Cavalier-Smith,

2006; Cavalier-Smith et al., 2006). Oxygen and its reactive species

(ROS) can damage all cellular components, including lipids, nucleic

acids, and proteins. ROS encompass a group of highly reactive

molecules that include the hydroxyl radical (·OH), superoxide

radical (·O2), singlet oxygen (1O2), hydrogen peroxide (H2O2),

hypochlorous acid (HOCl), and peroxynitrite (ONOO−). These

species can be generated during normal cellular metabolism or in

response to external factors like radiation or pollutants (Anbar,

2008; Imlay, 2015). Inside the cell, the cytoplasm is kept under

reductive conditions due to evolved systems that control ROS. The

primary cellular anti-ROS defence systems include enzymatic

antioxidants and non-enzymatic antioxidants. Enzymatic

antioxidants such as superoxide dismutase (SOD), catalase, and

glutathione peroxidase (GPx) work collaboratively to neutralise

ROS. SOD converts superoxide radicals into hydrogen peroxide,

which is further detoxified by catalase and GPx. GPx also directly

utilises reduced glutathione (GSH) to scavenge hydrogen peroxide

and lipid peroxides. Non-enzymatic antioxidants such as vitamin C,

vitamin E, and glutathione (GSH) act as ROS scavengers by

donating electrons or hydrogen atoms, thereby preventing the

propagation of oxidative damage (Imlay, 2013).

ROS-produced damage to proteins, primarily oxidative

modifications, can compromise their biological activities (Imlay,

2015). Protein oxidation and aggregation have been linked to

senescence and ageing in bacteria (Steiner, 2021) and eukaryotic

cells (Höhn et al., 2013). The high frequency of protein oxidation,

among other causes, forces the cell to perform protein turnover,

which accelerates the presence of excessive oxidative agents

(Cabiscol et al., 2000; Imlay, 2013). As a proteome quality control

mechanism, several proteolytic and chaperone systems work

together to eliminate non-functional and structurally altered

proteins (Stadtman, 2006). However, secreted proteins that play

essential functions for bacteria can evade such quality control

mechanisms. Thus, they are likely to encounter more adverse

conditions, including more oxidative environments, and should

possess certain robustness to carry out their functions.

In oxygen-rich conditions, a decreasing redox potential gradient

extends from intracellular compartments to the extracellular

environment. This compartmentalised gradient is less complex in

Gram-positive bacteria due to the absence of a periplasmic space

(which includes cytoplasm, cell envelopes, and extracellular space).

In contrast, Gram-negative bacteria have two additional

compartments because of the presence of the outer and inner

membranes, each generating a periplasmic space. In addition,

previous research has shown that bacteria reduce the energetic
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synthetic cost of extracellular proteins by using less energetically

expensive amino acids in their sequences (Smith and

Chapman, 2010).

Until recent years, there was a notion that microbes were

potentially immortal or resistant to ageing processes due to

binary division, which theoretically generates two identical cells

(Zimniak, 2008; Gómez, 2010). However, after division, the splitting

of bacterial proteins is asymmetric, and this asymmetry is correlated

with the accumulation of oxidised proteins, ultimately leading to

bacterial ageing and death (Lybarger and Maddock, 2001;

Ackermann et al., 2003; Stewart et al., 2005). For example,

carbonylation can lead to protein aggregation and intracellular

precipitation, harming the cell, promoting senescence, and

increasing the probability of viability loss (Gómez, 2010).

In this study, we propose a hypothesis that the redox states

within the microenvironment play a pivotal role in shaping the

amino acid composition of proteins within various cellular

compartments in prokaryotic cells. To substantiate this

hypothesis, we comprehensively analysed amino acid frequencies

in every protein within the complete proteome of the model

bacterium Escherichia coli, clustering them by cellular location

and compartments.
Results and discussion

We initially compiled all amino acid sequences from proteins

categorised by cellular compartment: cytoplasm, inner membrane,

periplasm, outer membrane, and extracellular environment (Table

S1). Subsequently, we identified amino acids more susceptible to

oxidative damage using the well-annotated Escherichia coli genome

K12 MG1655 as a model. However, this type of analysis may be

compromised in other microorganisms where information

regarding protein location and function is less well-established

(Galperin and Koonin, 2010). These oxidative lesions encompass

methionine sulfoxidation, disulfide formation, histidine, tyrosine,

and tryptophan oxidation, peroxidation, adduct formation, metal-

catalysed oxidation, and carbonylation (Shacter, 2000).

Carbonylation is likely the most prevalent form of cell oxidative

damage (Nyström, 2005). The number of proteins per cellular

compartment in E. coli K-12 MG1655 exhibits heterogeneity

(Cytoplasm: 2689; Inner Membrane: 941; Periplasm: 349; Outer

Membrane: 146; Extracellular: 16; Figure 1). Although this

imbalance in protein distribution represents a potential source of

bias in the analyses, it is somewhat inevitable.

In this article, we operate under the assumption that the

frequency of a particular amino acid within the proteome, which

is susceptible to oxidative damage, logically correlates with the

likelihood of such damage occurring. An analysis of protein amino

acid composition conducted in E. coli revealed significant

differences for all amino acids across cellular compartments

(GLM: p=0.0283). Only alanine (A), aspartic acid (D), isoleucine

(I), lysine (K), leucine (L), methionine (M), proline (P), and

glutamine (Q) did not exhibit a specific preference for a

particular cellular compartment (Table S2). Similar findings were

obtained when comparing 38 proteomes across the Tree of Life,
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encompassing Eubacteria, Archaea, and Eukarya. In contrast, low-

reactive amino acids, including glycine, alanine, isoleucine, and

valine, were predominant in proteins with an extended half-life

(Brüne et al., 2018). Therefore, we focused on the amino acid

residues susceptible to oxidation. For several of the most oxidation-

prone amino acids [cysteine (C), glutamic acid (E), histidine (H),

and arginine (R)], there was a significant decrease in their content

across subcellular compartments (Figure 2). Based on our

hypothesis that amino acid susceptibility to oxidation may limit

protein sequences, we analysed the amino acid frequency

distribution for all five compartments. While we acknowledge

that this correlation does not imply causation, it allows us to

explore the differences in amino acid sequences of proteins across

compartments. Unfortunately, the majority of evolutionary studies

rely on circumstantial evidence. Therefore, correlation-based

evolutionary models are required (Nuismer et al., 2010). Due to

the nature of the data, no experimental approaches are available to

test this hypothesis, as has been the case in previous studies (Akashi

and Gojobori, 2002; Smith and Chapman, 2010; Brüne et al., 2018).
Aberrant disulfide bond formation
and other irreversible oxidative
damages of cysteine

Cysteine plays a crucial role in maintaining the redox state of

the cytoplasmic compartment (Antelmann and Helmann, 2011).

There is a significant difference in cysteine frequency between

cytoplasmic proteins and other spaces, including the inner

membrane, periplasm, outer membrane, and extracellular
Frontiers in Ecology and Evolution 03
medium (Kruskal-Wallis test: p=2.20×10−16). The paired

comparison for cysteine (Mann-Whitney U-test) show that all

compartments have different histidine frequencies (cytoplasm

versus inner membrane, p=9.76×10−35; cytoplasm versus

periplasm, p=2.61×10−10; cytoplasm versus outer membrane,

p=2.71×10−5; and cytoplasm versus extracellular, p=1.34×10−4). A

trend towards decreasing cysteine content from intracellular to

extracellular compartments was observed (see Figure 3A) (GLM:

slope=−2.71×10−3; p=2.20×10−16; Spearman correlation: rS=

−0.20; p=2.20×10−16).

The covalent linking of amino acid side chains within a

polypeptide adds to the stability and function of several proteins,

with disulfide bridges being the most common (Hatahet et al.,

2014). However, aberrant disulfide bonds can lead to the mispairing

of cysteines, resulting in misfolding, aggregation, and irreversible

oxidative damage (Barshishat et al., 2018). Disulfide-bonded

proteins are generally restricted to compartments other than the

cytoplasmic space (Dutton et al., 2008). Bacteria, in particular, lack

internal compartments. Only a few proteins, such as OxyR and

some reductases, use disulfide bonds as redox signalling systems.

Disulfide bonds are formed solely in extracellular cysteines as part

of their structural function, with the fim operon being the most

illustrative case (Rodrıǵuez-Rojas et al., 2020).

On the other hand, flagella proteins lack disulfide bonds, and

the amount of this amino acid is minimal. In contrast, most of the

proteins in the cytoplasm exist in a reduced state due to the high

levels of reducing agents like glutathione, which can reach values

near 17 mM when E. coli is fed with glucose and grows in the

exponential phase (Bennett et al., 2009). This study provides a clear

example of how the redox conditions of the environment constrain
FIGURE 1

A graphical representation of the E. coli cell compartments and the total number of proteins segregated by each (cytoplasm, inner membrane,
periplasm, outer membrane, extracellular media) is presented. The numbers in parentheses indicate the quantity of proteins in each compartment.
Flagella proteins were classified based on their location as inner membrane, periplasmic, or outer membrane proteins. Furthermore, only secretable
proteins were assigned to the extracellular media. This figure used as a template an image from the Swiss Institute of Bioinformatics (SIB, https://
www.sib.swiss/).
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the susceptibility of amino acid composition, which may be related

to the energetic cost of amino acid biosynthesis (Smith and

Chapman, 2010).

In addition to aberrant disulfide bond, thiol groups in protein

cysteine residues can undergo one- and two-electron oxidation

reactions, forming thiyl radicals or sulfenic acids, respectively.

Both thiyl radicals and sulfenic acids play integral roles in the
Frontiers in Ecology and Evolution 04
catalytic mechanisms of various enzymes and the redox regulation

of protein function and signalling pathways. These species are

typically short-lived and subsequently engage in further reactions,

ultimately forming diverse stable products. These processes lead to

various post-translational modifications of the protein, some of

which can be reversed through the action of specific cellular

reduction systems. However, others irreversibly damage the
FIGURE 2

The distribution of each amino acid residue (A–Y) ratio within proteins across all subcellular compartments that entail cytoplasm, inner membrane,
periplasm, outer membrane, and extracellular media is displayed. Please note that the amino acid occurrence frequency scale has been individually
adjusted to the maximum value, resulting in variations among the cases. The trend lines represent the GLM model, which is statistically significant for
all amino acids except alanine, aspartic acid, leucine, isoleucine, lysine, methionine, proline, and glutamine (for detailed statistical values, refer to
Table S1).
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proteins, rendering them more susceptible to aggregation or

degradation (Turell et al., 2020).
Methionine sulfoxidation

In contrast to other amino acids, methionine oxidation is

reversible and is catalysed by the methionine sulfoxide reductases

family (Msr) (Etienne et al., 2003). This reduction occurs in both

free amino acids and protein residues. We did not observe any trend

in the distribution of methionine among the subcellular

compartments. There is a marginal difference in methionine

frequency between the cytoplasm and secreted proteins (Mann-

Whitney U-test, p=0.0352). Additionally, we did not find any
Frontiers in Ecology and Evolution 05
differences between the cytoplasm and the periplasm (Mann-

Whitney U-test, p=0.604), and neither between the cytoplasm and

the outer membrane (Mann-Whitney U-test, p=0.281) (Figure 3B).

Methionine residue oxidation can cause misfolding or render

proteins dysfunctional (Arts et al., 2015). The methionine

oxidation repair system is unique among amino acid oxidation

repair systems and may contribute to the possibility of more

extensive use of these amino acids in all compartments. Thus,

methionine function is not easily replaceable, and cells have evolved

the Msr system to continue using this amino acid in an oxidative

environment. The case of methionine provides strong evidence that

amino acid oxidative lesions could bias amino acid frequency in

proteins. We did not find differences in methionine abundance

(Figure 3B). This could be explained by the methionine oxidation
B

C D

E

A

FIGURE 3

Frequency distribution of the most susceptible amino acids to oxidative damage: (A) cysteine, (B) methionine, (C) histidine, (D) lysine, and (E) arginine
in all subcellular compartments (Cyt, cytoplasm; IM, inner membrane; Per, periplasm; OM, outer membrane; Ext, extracellular media). Different
letters indicate significant differences, while the same letters indicate no statistical differences (Nemenyi’s test). Please note how the cysteine,
histidine, and arginine frequencies significantly decrease from the cytoplasm to the extracellular compartments.
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repair, which actively reverses sulfoxidation and is highly conserved

across the Tree of Life (Dos Santos et al., 2018).
Histidine oxidation

Upon analysing the frequency of amino acids in protein

sequences, it was observed that histidine is one of the rarest

amino acids, following cysteine and tryptophan (Table S2) (Smith

and Chapman, 2010). Histidine residues in proteins enable the

coordination of certain metallic atoms. The cytoplasmic

compartment had the highest histidine frequency, while the

extracellular compartment had the lowest. A significant decrease

in histidine content was observed from intracellular to extracellular

compartments (GLM: slope=−5.58×10−3, p=2.20×10−16; Spearman

correlation: rS=−0.28, p=2.20×10
−16; Table S2; Figure 3C). Even

when comparing histidine frequency between compartments, a

significant difference was observed between cytoplasmic proteins

and the other compartments, from the inner membrane to the

extracellular space (Kruskal-Wallis test, p=2.20×10−16). All

individual pair comparison were also significant (Mann-Whitney

U-test, cytoplasm versus inner membrane, p=3.12×10−68; cytoplasm

versus periplasm, p=4.81×10−16; cytoplasm versus outer membrane,

p=1.67×10−9; and cytoplasm versus extracellular, p=5.95×10−7).

Among all oxidation products, histidine is the only amino acid

that can be oxidised to form two different amino acids: asparagine

and aspartic acid (Berlett and Stadtman, 1997). This phenomenon is

analogous to phenotypic mutations that can ultimately disrupt

protein sequence information (Yanagida et al., 2015). Under

oxidative stress, this consequence of oxidative damage is likely to

occur proteome-wide.

One of histidine’s roles inside the cell is metal binding and

coordination by specific proteins (Capdevila et al., 2016). Oxidative

damage could drive the evolution of microbial metal chelation

systems toward siderophore biosynthetic pathways rather than

histidine-based systems, a strategy necessary for metal assimilation,

such as iron, zinc, and manganese. Siderophores like pyoverdine and

catecholamine can protect cells against UV- and antibiotic-derived

ROS (Kramer et al., 2020). In anoxic conditions, we might expect

histidine-rich proteins to evolve as a preferential pathway, replacing

the function of siderophores in microbial biology. However, oxygen

undermines this possibility due to histidine’s sensitivity to ROS.

Histidine-rich proteins are associated with bacterial habitats, mainly

found in rhizobia and pathogenic Gram-negative bacteria, but not in

obligate intracellular pathogens (Cheng et al., 2013). Some histidine-

rich proteins, such as ceruloplasmin and transferrin, are involved in

the chelation and transport of copper and iron, respectively (Steere

et al., 2010; Koh and Henderson, 2015). Another issue is that histidine

oxidation could disrupt those signalling systems where histidine (de)

phosphorylation plays a fundamental role (Adam and Hunter, 2018).
Aromatic amino acid oxidation

Aromatic amino acid residues are frequently targeted by ROS

(Berlett and Stadtman, 1997). We observed a slightly positive
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correlation between the levels of tyrosine, tryptophan, and

phenylalanine and the pronounced spatial gradient across

compartments, extending from the cytoplasm to the extracellular

environment. For tyrosine (Tyr), the GLM Slope was 5.003×10−3;

p=2.20×10−16; and the Spearman correlation was rS=0.057; p=

2.56×10−4. For tryptophan (Trp), the GLM slope was 2.86×10−3;

p=2.20×10−16, while Spearman correlation was rS=0.183;

p=2.20×10−16. In the case of phenylalanine, the GLM slope was

3.50×10−3; p=4.15×10−9, and the Spearman correlation was

rS=0.12; p=2.20×10
−16).

Tyrosine and tryptophan rank as the second and fifth least

abundant amino acids in the E. coli proteome, respectively (Table

S2). When comparing tyrosine frequency among compartments,

significant differences only exist between cytoplasmic and the

periplasm proteins (Mann-Whitney U test, p=3.59×10−5) and

between the outer membrane and cytoplasm (Mann-Whitney U-

test, p=4.13×10−8). On the other hand, tryptophan frequency is

unevenly distributed among compartments, likely due to its

hydrophobic nature (Kruskal-Wallis test: p=2.20×10−16). When it

comes to pair comparison between compartments, all tests were

significant using Mann-Whitney U-test (cytoplasm versus inner

membrane, p=1.16×10−43; cytoplasm versus periplasm,

p=6.42×10−5; cytoplasm versus outer membrane, p=6.78×10−4,

cytoplasm versus extracellular, p=3.63×10−2). This uneven

distribution is also observed in phenylalanine (Kruskal-Wallis

test: p=2.20×10−16). For phenylalanine, all pair comparisons via

Mann-Whitney U-test were also significant (cytoplasm versus inner

membrane, p=2.41×10−84; cytoplasm versus periplasm,

p=2.19×10−46; cytoplasm versus outer membrane, p=6.48×10−14;

and cytoplasm versus extracellular, p=6.94×10−9). Their aliphatic

nature and structural properties render them indispensable,

explaining their consistent representation among compartments.

The over-representation of these amino acids within membranes is

attributed to their lack of polarity and their compatibility with

hydrophobic environments (De Planque and Killian, 2003). The

oxidation of aromatic amino acids is of paramount importance as it

takes place proximal to biological membranes, assuming a central

role in cellular signalling, managing oxidative stress responses, and

governing diverse physiological processes. This dynamic interplay

between ROS and membrane constituents is a pivotal aspect of

redox biology (Fisher, 2009).
Protein peroxidation

Peroxidation selectively targets valine, leucine, tryptophan, and

tyrosine. Although tryptophan and tyrosine are present at low

frequencies, leucine and valine are the most common and fourth

most abundant amino acids in E. coli (Table S2). This subsection

will focus on leucine and valine, as tryptophan and tyrosine were

discussed in the preceding section. Notably, we only observed

significant differences in the frequency of leucine (Mann-Whitney

U-test, p=1.83×10−16) and valine (Mann-Whitney U-test,

p=1.46×10−5) between the cytoplasm and the inner membrane.

Peroxidation does not appear to significantly influence the bias in

the frequency of susceptible amino acids. It is plausible that the
frontiersin.org
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ubiquity of this reaction has prompted natural selection to

partially mitigate its impact by evolving scavenging systems, such

as catalases and peroxidases, aimed at curtailing widespread damage

(Imlay, 2008).
Carbonylation

Protein carbonylation, a form of protein oxidation induced by

reactive oxygen species (ROS), entails the conversion of alcohol

(−OH) groups in side chains into reactive ketones or aldehydes.

While all amino acids are susceptible to carbonylation at the

protein’s C-terminus, our focus lies on lysine, arginine, proline,

and threonine due to their heightened susceptibility to oxidation

into carbonyl derivatives (Cabiscol et al., 2000; Shacter, 2000).

Notably, carbonylation’s impact extends beyond carbonyl group

oxidation, as proteins may undergo this modification through

mechanisms unrelated to oxidation (Cabiscol et al., 2000).

All, lysine, arginine, proline, and threonine showed differences

in their frequencies between the cytoplasm and periplasm

employing the Mann-Whitney U-test (Lys, p=1.02×10−14, (Arg,

p=1.28×10−11; p=1.94×10−2; Thr, p=1.45×10−10. Moreover, we

detected significant differences in the frequency of lysine, arginine

and proline between the cytoplasm and inner membrane also via

Mann-Whitney U-test (Lys, p=9.81×10−38, Arg, p=5.14×10−40, Pro

p=4.85×10−4). There were also differences in the frequency of lysine,

arginine and threonine between the cytoplasm and outer membrane

(Mann-Whitney U-test: Lys, p=1.57×10−2; Arg, p=4.53×10−2; Thr,

p=4.77×10−3. Finally, differences in the frequency of arginine,

proline and threonine were detected between the cytoplasm and

extracellular proteins, also using Mann-Whitney U-test (Arg, p=

1.22×10−5; Pro, p=1.275×10−2; Thr, p=1.98×10−3; Figures 2, 3D, E).

These frequencies coincide with expected decreased frequencies of

amino acids prone to carbonylation from more reducing

microenvironment (cytoplasm) to more oxidative ones such as

extracellular compartments. Interestingly, we noticed that elevated

frequencies of arginine and lysine were significantly higher in outer

membrane proteins than in inner membrane ones (Figures 3D-E).

Arginine is more frequent in a-helix structural domains, which is

also more abundant in outer membrane proteins, while b-barrels
are more common in inner membrane proteins (Hristova and

Wimley, 2011). A similar use could be expected for lysine due to

its chemical similarity, although we did not find any report

regarding this amino acid.
Differences in the amino acid composition
of inner transmembrane proteins

One unique compartment is the inner membrane, where the

same protein has amino acid residues exposed to the cytoplasmic

reductive environment and the periplasmic oxidative one.

Therefore, we analysed the sequences within the same protein

concerning amino acid frequency in different protein segments

(cytoplasm, transmembrane, and periplasm). The amino acid

composition of 878 transmembrane proteins across regions shows
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significant differences in amino acid occurrence for all amino acids

(Figure 4; Table S3). Additionally, substantial discrepancies exist

among unevenly distributed amino acids across the three locations

within the same protein. While alanine, cysteine, phenylalanine,

isoleucine, leucine, valine, tryptophan, and tyrosine are prevalent in

the transmembrane region, lysine and arginine are more common

in the cytoplasmic area, and aspartate, glycine, asparagine, proline,

serine, and threonine are more abundant in the periplasmic

compartment (Figure 4; Table S3). This amino acid bias is

primarily constrained by the protein’s secondary structure and

function within the membrane (Ulmschneider and Sansom, 2001;

Pascal et al., 2006). Hence, no clear pattern regarding amino acid

distribution related to oxidation susceptibility exists.
Conclusions

The present study reveals significant variations in amino acid

frequencies that could be partially attributed to the predisposition of

amino acids to undergo oxidation across proteins in various cellular

compartments in E. coli. These findings suggest an uneven

distribution of amino acids intricately linked to a protein’s cellular

localization within the organism. This observation aligns with

previous research, which proposed a connection between amino

acid distribution and the energetic cost (Smith and Chapman, 2010).

Furthermore, the susceptibility of residues to different oxidative

lesions brought about by oxygen accumulation and the emergence

of anaerobic respiration may contribute to this amino acid bias in

protein sequences. Notably, primary oxidation-prone amino acids

exhibit an overrepresentation in the cytoplasm, diminishing as we

move to distinct subcellular compartments, mirroring the

redox gradient from reductive to oxidative microenvironments.

Several factors, including structural constraints, catalytic amino

acids, subcellular compartment polarity, and protein-specific

information, could also impact the non-uniform distribution of

amino acids across cellular compartments. While we have

identified some positive correlations indicating that oxidative stress

may influence amino acid sequences, promoting the evolution of a

proteome with enhanced resistance to oxidation, establishing a

causal relationship requires further research.
Methods

Data mining

The complete proteome of Escherichia coli K-12 MG1655,

encompassing 4143 proteins, was retrieved from EcoCyc (Keseler

et al., 2021) in FASTA format. Each protein underwent analysis to

calculate the occurrences of individual amino acids, facilitated by a

custom Python script. This analysis yielded a tabular-separated

values (TSV) file, where each row corresponds to a single protein,

and each column indicates the absolute frequency of a particular

amino acid within that protein. The classification of amino acids’

susceptibility to various oxidative stresses was conducted by a prior

study (Shacter, 2000).
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Amino acid composition and distribution in
subcellular compartment calculation

Given that the protein size distribution in all compartments did

not conform to a normal distribution (Sommer and Cohen, 1980),

the values were presented as amino acid frequency normalised by the

median size of proteins within each cellular compartment. Under the

classical protein definition, only polypeptides exceeding 50 amino
Frontiers in Ecology and Evolution 08
acids were considered for all analyses (Milo et al., 2010). To assess

whether the content of each amino acid among proteins in the

various cellular compartments (i.e., cytoplasm, inner membrane,

periplasm, outer membrane, and secreted) follows a uniform

distribution, the Kruskal-Wallis test was conducted. In cases where

significant differences were observed, multiple comparisons were

performed using Nemenyi’s test (Nemenyi, 1963), with p-values

corrected for false discovery rate (Benjamini and Hochberg, 1995).
FIGURE 4

The distribution of amino acid residue ratios in inner membrane proteins is categorized into three groups: cytoplasm-oriented, transmembrane, and
periplasm-oriented. The plots illustrate the frequency of all amino acids across these categories. Notably, all amino acid frequencies showed a
significant uneven distribution except for cysteine, phenylalanine, and tryptophan. The frequencies of amino acids in the various compartments were
published elsewhere (Smith and Chapman, 2010).
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Additionally, Bonferroni-corrected Mann-Whitney U tests were

carried out for specific pair-wise comparisons, as indicated

throughout the text. Finally, general linear models (GLMs) were

applied per amino acid and subcellular compartment, and Spearman

correlations were computed to elucidate the spatial gradient of

amino acid oxidative lesions. All these analyses were executed

using R 3.2.1 (R Core Team, 2017), with the aid of the HH

(Heiberger and Holland, 2015) and PMCMR packages

(Pohlert, 2015).
Amino acid composition and distribution in
transmembrane proteins

The prediction of transmembrane regions was carried out using

Phobius 1.01 (Käll et al., 2004) and TMHMM 2.0 (Krogh et al.,

2001) with default parameters. To ensure consistency, all signal

peptides were predicted using Signal-P 4.0 (Petersen et al., 2011)

and their amino acidic residues excluded prior our analyses. All

analyses about the distribution of amino acids within various

regions were conducted following previously established protocols.
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SUPPLEMENTARY TABLE 2

Amino acid composition and distribution of the E. coli proteome across
subcellular compartments. Numbers in columns C to G represent the median

of the normalised frequencies of each amino acid relative to the median
protein length within each compartment. Different letter(s) indicate

significant differences (p<0.05) between compartments, determined by

Nemenyi’s test and adjusted for false discovery rate. Spearman’s rS and
corresponding p-values demonstrate the correlation between amino acid

frequency and subcellular compartments and their significance, respectively.
Finally, the slope, coefficient of determination (R2), and the GLM P-value

reveal the trend of amino acid distribution across subcellular compartments,
the degree to which it aligns with a generalised linear model, and its

significance. All p-values shown in bold are significant following

Bonferroni correction.

SUPPLEMENTARY TABLE 3

Amino acid composition of E. coli transmembrane proteins on the inner

membrane. Numbers in columns D, F, and H represent the median of the
normalised frequencies of each amino acid relative to the median protein

length within each compartment. Different letter(s) indicate significant

differences (p<0.05) between compartments as determined by Nemenyi’s
test, adjusted via false discovery rate.
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